剪力图和弯矩图(基础)

合集下载

梁的剪力和弯矩剪力图和弯矩图课件

梁的剪力和弯矩剪力图和弯矩图课件
静力平衡条件的意义
静力平衡条件是物体受力分析的基本依据,通过它我们可以 分析物体在受到外力作用时的运动状态,并计算出物体所受 到的合力。
梁的剪力和弯矩的静力平衡条件的推导和应用
梁的剪力和弯矩的静力平衡条件的推导
在梁的受力分析中,我们可以通过对梁进行截面切开、移除切块并代之以作用相 反的力等步骤,得到梁的内力——剪力和弯矩。当梁处于静力平衡状态时,其剪 力和弯矩也必须满足一定的平衡条件。
梁的剪力和弯矩剪力图和弯矩 图课件

CONTENCT

• 引言 • 梁的剪力分析 • 梁的弯矩分析 • 梁的剪力和弯矩组合分析 • 梁的剪力和弯矩的静力平衡条件 • 梁的剪力和弯矩的相互作用和影响
01
引言
课程背景
建筑力学是建筑设计和施工的重要基础,而梁的剪力和弯矩是建 筑力学中的重要概念。
通过学习梁的剪力和弯矩,可以更好地理解建筑结构的设计和施 工方法。
梁的剪力和弯矩的静力平衡条件的应用
通过应用静力平衡条件,我们可以分析梁在受到外力作用时的剪力和弯矩,进而 计算出梁的应力、应变等物理量,为结构设计提供依据。
梁的剪力和弯矩的静力平衡条件的应用实例
简支梁受垂直均布荷载作用
对于简支梁受垂直均布荷载作用的情况,通过应用静力平衡条件,我们可以得到梁的剪力图和弯矩图,并计算出 梁的最大剪力和最大弯矩。
简单梁分析
以简单梁为例,说明如何进行剪力和弯矩的组合分析。
复杂梁分析
通过有限元模型,对复杂梁进行剪力和弯矩的组合分析,讨论各种因素对梁内 力的影响。
05
梁的剪力和弯矩的静力平衡条件
静力平衡条件的概念和意义
静力平衡条件的概念
静力平衡条件是指物体在受到外力作用时,如果处于静止状 态,则物体内部的力也处于平衡状态,即所有作用在物体上 的外力矢量和为零。

工程力学弯曲强度1(剪力图与弯矩图

工程力学弯曲强度1(剪力图与弯矩图

05 剪力图与弯矩图的计算与分析
CHAPTER
剪力与弯矩的计算方法
要点一
剪力计算
根据受力分析,通过力的平衡原理计算剪力。在梁的截面 上,剪力方向与梁的轴线垂直,大小等于通过截面形心的 剪切面上的剪力。
要点二
弯矩计算
弯矩是描述梁弯曲变形的量,其计算方法包括截面法、力 矩分配法等。弯矩的计算需要考虑梁的长度、截面尺寸、 材料属性以及外力分布等因素。
在工程实践中,许多结构和设备都需 要承受弯曲负荷,如桥梁、建筑、车 辆等,因此弯曲强度的研究具有重要 意义。
弯曲强度的基本原理
弯曲强度的基本原理包括剪力和弯矩 的分析。剪力是指在弯曲过程中垂直 于轴线的力,而弯矩则是指弯曲过程 中产生的力矩。
剪力和弯矩的分析是确定结构在弯曲 负荷下的应力和变形的重要手段,也 是进行结构设计和优化的基础。
谢谢
THANKS
剪力图与弯矩图的受力分析
剪力图
通过绘制剪力随梁长度变化的曲线图,可以直观地表示 出梁在不同位置受到的剪力大小和方向。根据剪力图, 可以分析梁在受力过程中的稳定性以及剪切破坏的可能 性。
弯矩图
弯矩图表示弯矩随梁长度变化的曲线图,可以用来分析 梁在不同位置的弯曲变形程度以及弯曲应力分布情况。 通过弯矩图,可以判断梁在受力过程中是否会发生弯曲 失稳或弯曲破坏。
CHAPTER
剪力图与弯矩图在结构设计中的应用
结构设计是工程中非常重要的环节,剪力图 与弯矩图是进行结构设计的关键工具。通过 分析剪力和弯矩的分布和大小,可以确定结 构的受力情况和变形趋势,从而优化结构设 计,提高结构的稳定性和安全性。
在进行结构设计时,需要综合考虑多种因素 ,如载荷、材料属性、连接方式等。剪力图 与弯矩图可以帮助工程师更好地理解和分析

剪力图与弯矩图的画法_图文_图文

剪力图与弯矩图的画法_图文_图文
剪力图与弯矩图的画法_图文_图文.ppt
dM(x) = Q(x)
dx
dQ(x) = q(x)
dx
2
d M(x)
2
= q(x)
dx
公式的几何意义
剪力图上某点处的切线斜率等于该点 处荷载集度的大小 弯矩图上某点处的切线斜率等于该点 处剪力的大小。
梁上最大弯矩可能发生在 Q(x) = 0 的截面上 或梁段 边界的截面上。最大剪力 发生在全梁或梁段的界面。
解: 在AC段中 q=0 ,且 QA=RA
q
A
B
CE
D
0.2
1.6
1
2
q
在AC段中 Qc = 80KN,剪力图
A
B
CE
D
为矩形,MA =0
0.2
1.6
1
2
80KN
(b)
+
80KN
q
在CE段中,剪力图为三角形
A
B
CE
D
QC=80KN,MC=16KN.m
0.2
1.6
1
2
80KN
(b)
+
80KN
81KN
CD段: 向右下方的斜直线
DB段:水平直线
最大剪力发生在 CD 和 DB 段的任一横截面上。
1
A C
0.2
1
q
E
1.6 2
2
B D
80KN
+
80KN
MB = 0
全梁的最大2
1
q
E
1.6 2
2
B D
16 16
+
单位:KN.m
例 作梁的内力图
A

梁的剪力图与弯矩

梁的剪力图与弯矩
梁的剪力图与弯矩
目录 CONTENT
• 梁的剪力与弯矩的基本概念 • 梁的剪力图 • 梁的弯矩图 • 剪力与弯矩的关系 • 梁的剪力与弯矩的实例分析
01
梁的剪力与弯矩的基本概 念
剪力与弯矩的定义
剪力
剪力是作用在梁上的垂直力,它 使梁产生剪切变形。剪力通常用 Q表示,单位为牛顿或千牛顿。
弯矩
弯矩是作用在梁上的力矩,它使 梁产生弯曲变形。弯矩通常用M 表示,单位为牛顿米或千牛顿米 。
在梁的跨中位置,剪力图的峰值最大,而在梁的 支座位置,剪力图的谷值最小。
随着梁上载荷的增加,剪力图的峰值逐渐增大, 谷值逐渐减小。
03
梁的弯矩图
弯矩图的绘制方法
1 2
截面法
通过分析梁在不同截面上的弯矩值,绘制出弯矩 图。
叠加法
将多个弯矩值叠加起来,绘制出弯矩图。
3
微分法
利用弯矩函数的微分性质,绘制出弯矩图。
剪力与弯矩的符号规定
剪力的正负号规定
在截面左侧上作用的剪力为正,反之 为负。
弯矩的正负号规定
在截面左侧上作用的弯矩为正,反之 为负。
剪力与弯矩的计算公式
剪力计算公式
Q = F * sinθ(F为作用在梁上的外力,θ为外力与梁轴线的夹角)。
弯矩计算公式
M = F * d / 2(F为作用在梁上的外力,d为梁的跨度)。
考察,从而为实际工程设计提供依据。
梁的剪力与弯矩的模拟计算
01
模拟计算是利用计算机软件对梁的剪力和弯矩进行数值模拟分 析的方法。通过模拟计算,可以快速得到梁在不同载荷条件下
的剪力和弯矩分布情况。
02
模拟计算可以采用不同的计算方法,如有限元法、有限差分法 和边界元法等。其中,有限元法是最常用的一种方法,能够考

剪力以及弯矩剪力图以及弯矩图

剪力以及弯矩剪力图以及弯矩图

剪力图和弯矩图在工程管理中的应用
结构设计:用于计 算结构受力确定结 构尺寸和材料
施工管理:用于 指导施工确保施 工质量和安全
维护管理:用于 评估结构状态制 定维护计划
优化设计:用于 优化结构设计降 低成本和能耗
剪力图和弯矩图的注意 事项
绘制剪力图和弯矩图时应注意的事项
确保数据准确无误 注意单位换算确保单位一致 绘制过程中注意比例尺和坐标轴的设置 绘制完成后检查图例、标题、标注等是否清晰明确
添加副标题
剪力和弯矩剪力图以及弯矩 图
汇报人:
目录
CONTENTS
01 添加目录标题
02 剪力和弯矩的基本 概念
03 剪力图和弯矩图的 绘制
04 剪力图和弯矩图的 解读
05 剪力图和弯矩图的 应用
06 剪力图和弯矩图的 注意事项
添加章节标题
剪力和弯矩的基本概念
剪力和弯矩的定义
剪力:作用在物体表面上的力使物体发生剪切变形 弯矩:作用在物体表面上的力使物体发生弯曲变形 剪力图:表示剪力在物体表面上的分布情况 弯矩图:表示弯矩在物体表面上的分布情况
剪力和弯矩的计算方法
剪力:作用在物体上的力使物体发生剪切变形 弯矩:作用在物体上的力使物体发生弯曲变形 剪力计算方法:根据力的平衡原理利用剪力公式进行计算 弯矩计算方法:根据力的平衡原理利用弯矩公式进行计算
剪力和弯矩的单位和符号
剪力:单位为牛顿(N) 符号为F
弯矩:单位为牛顿·米 (N·m)符号为M
证结构安全
剪力图和弯矩图在施工中的应用
确定结构受力情况: 通过剪力图和弯矩图 可以了解结构的受力 情况为施工提供依据。
优化施工方案:根据 剪力图和弯矩图可以 优化施工方案提高施 工效率和质量。

剪力图和弯矩图

剪力图和弯矩图
FS(x)qx (0xl) M(x)1qx2 (0xl)
2 括号里的不等式说明对应的内力方程所使用的区段。
FS(x)qx (0xl) M(x)1qx2 (0xl)
2 剪力图为一斜直线
FS(0) 0 FS(l) ql
弯矩图为二次抛物线
M (0) 0 M ( l 2 ) 1 ql 2
8 M ( l ) 1 ql 2
绘剪力图和弯矩图的基本方法:首先分别写出梁 的剪力方程和弯矩方程,然后根据它们作图。
Fs(x)
o
x
o
x
Fs 图的坐标系
M(x) M 图的坐标系
不论在截面的 左侧 或 右侧 向上的外力均将引起 正值 的弯矩,而向下 的外力则引起 负值 的弯矩。
例题:图示简支梁 ,在全梁上受集度为 q 的均布荷载作用。 试作此梁的剪力图和弯矩图。
FS 称为 剪力
y
FA
m
C
A
xm
FS x
由平衡方程
a
P
m
m C0
MFAx0
A
B
m
可得 M = FAx
x
内力偶 M 称为 弯矩
y
FA
m FS
C
x
A
xm
M
结论
a
P
m
梁在弯曲变形时,
横截面上的内力有
A
B
两个,即,
m x
剪力 FS 弯矩 M
y
FA
m FS
C
x
A
xm
M
取右段梁为研究对象。
y
FA
m FS
-
FS FS
dx
(2)弯矩符号 横截面上的弯矩使考虑的脱离体下边受拉,上边受压时为 正 。

建筑力学弯矩图、剪力图课件

建筑力学弯矩图、剪力图课件

弯矩图与剪力图的应用场景
应用场景
弯矩图和剪力图广泛应用于建筑结构设计和 分析中。例如,在桥梁、高层建筑、大跨度 结构等的设计过程中,都需要利用弯矩图和 剪力图来评估结构的承载能力、稳定性以及 可能发生的变形和破坏。
实际应用
在实际应用中,结构工程师通常会根据结构 的形状、尺寸、材料特性以及所受外力等因 素,绘制出相应的弯矩图和剪力图。通过对 比和分析这些图,可以确定结构的薄弱环节 ,优化设计方案,提高结构的安全性和稳定
要点一
总结词
剪力图在工程中用于表示剪切应力分布情况。
要点二
详细描述
剪切应力是物体受到剪切力作用时产生的应力。剪力图通 过将剪切应力分布情况以图形的方式表示出来,帮助工程 师了解剪切应力对结构的影响,从而进行合理的结构设计 和优化。
实际工程案例的总结与启示
总结词
实际工程案例表明,弯矩图和剪力图在结构设计中具有 重要意义。
框架结构的剪力图
总结词
框架结构的剪力图较为复杂,需要综合考虑框架的各个部分 。
详细描述
框架结构的剪力图由多个杆件的剪力图组成,需要考虑框架 的整体平衡和稳定性。在绘制框架结构的剪力图时,需要先 分析框架的整体受力情况,然后分别绘制各个杆件的剪力图 ,并确保它们在连接点处协调一致。
弯矩图与剪力图的
位置的变化情况。
02
剪力图绘制原理
根据结构在不同截面处的剪力值,绘制出剪力图,用以表示剪力随截面
位置的变化情况。
03
弯矩图和剪力图的绘制步骤
先计算出各截面的弯矩和剪力值,然后按照一定的比例绘制出弯矩图和
剪力图。在绘制过程中,需要注意坐标轴的选择和单位统一。
弯矩图的绘制
03
简单梁的弯矩图

《材料力学》课件4-2梁的剪力和弯矩.剪力图和弯矩图

《材料力学》课件4-2梁的剪力和弯矩.剪力图和弯矩图

实例1
实例2
实例3
03
剪力图和弯矩图的解读
剪力图和弯矩图的解读方法
截面法
通过在梁上选择若干个截面,分别计算出每个截面的剪力 和弯矩值,然后以这些值为纵坐标,以截面位置为横坐标, 绘制出剪力图和弯矩图。
微分关系法
利用剪力和弯矩的微分关系,通过积分求解出剪力图和弯 矩图。
叠加法
对于分段常数的情况,将每一段的剪力和弯矩分别叠加, 得到整体的剪力图和弯矩图。
在机械工程中,梁的剪力和弯矩分析用于设计和优化各种机 械设备,如起重机、输送机和机床等,以提高设备的性能和 可靠性。
梁的剪力和弯矩在科研中的应用
在科研领域,梁的剪力和弯矩分析也是重要的研究内容之 一。通过深入研究梁的剪力和弯矩的分布规律和影响因素 ,可以揭示材料的力学性能和结构行为的本质。
科研人员利用先进的实验技术和数值模拟方法,对梁的剪 力和弯矩进行深入探索,为材料科学、固体力学和结构工 程等领域的发展提供理论支持和实践指导。
选择截面位置
在梁上选择若干个具有代表性的截面,用于 计算剪力和弯矩。
计算剪力和弯矩
对每个截面进行受力分析,计算出剪力和弯 矩的大小。
绘制剪力图和弯矩图
根据计算结果,绘制出相应的剪力图和弯矩 图。
剪力图和弯矩图的绘制实例
悬臂梁在集中力作用下的 剪力和弯矩图
简支梁在均布载荷作用下 的剪力和弯矩图
简支梁在集中力作用下的 剪力和弯矩图
感谢您的观看
THANKS
截面法
通过在梁上选择若干个截面,计算每个截面的剪 力和弯矩,然后绘制相应的图形。
微元法
将梁分成若干个微元段,对每个微元段进行受力 分析,计算剪力和弯矩,然后绘制图形。
解析法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴,。

以表(a)(c)(1)(2) (3)≤ (4) 以剪力图是平行于轴的直线。

段的剪力为正,故剪力图在轴上方;段剪力为负,故剪力图在轴之下,如图8-12(b )所示。

由式(2)与式(4)可知,弯矩都是的一次方程,所以弯矩图是两段斜直线。

根据式(2)、(4)确定三点,, ,由这三点分别作出段与段的弯矩图,如图8-12(c )。

例8-4 简支梁受集度为的均布载荷作用,如图8-13(a )所示,作此梁的剪力图和弯矩图。

图8-13解 (1)求支反力 由载荷与支反力的对称性可知两个支反力相.即(2)列出剪力方程和弯矩方程 以梁左端为坐标原点,选取坐标系如图所示。

距原点为的任意横截面上的剪力和弯矩分别为x C l x AC x BC x x 0=x 0)(=x M a x =l Fabx M =)(l x =0)(=x M AC BC AB q A x解 (1)求支反力 由静力平衡方程,得(2)列剪力方程和弯矩方程 由于集中力作用在处,全梁内力不能用一个方程来表示,故以为界,分两段列出内力方程段0<≤ (1)0≤< (2)段 ≤< (3)≤≤(4) (3) 画剪力图和弯矩图 由式(1)、(3)画出剪力图,见图8-14(b );由式(2)(4)画出弯矩图,见图8-14(c )。

二、弯矩、剪力与分布载荷集度之间的微分关系在例8-4中,若将的表达式对取导数,就得到剪力。

若再将的∑=0)(x M A ∑=0)(x M B m C C AC l mF x F A Q ==)(x a xl m x F x M A ==)(x a BC l mF x F A Q ==)(a x l mx l mm x F x M A -=-=)(a x l )(x M x )(x F Q )(x F Q表达式对取导数,则得到载荷集度。

这里所得到的结果,并不是偶然的。

实际上,在载荷集度、剪力和弯矩之间存在着普遍的微分关系。

现从一般情况出发加以论证。

图8-15设图8-15(a )所示简支梁,受载荷作用,其中有载荷集度为的分布载荷。

是的连续函数,规定向上为正,选取坐标系如图所示。

若用坐标为和的两个相邻横截面,从梁中取出长为的一段来研究,由于是微量,微段上的载荷集度可视为均布载荷,见图8-15(b ) 。

设坐标为的横截面上的内力为和,在坐标为的横截面上的内力为和。

假设这些内力均为正值,且在微段内没有集中力和集中力偶。

微段梁在上述各力作用下处于平衡。

根据平衡条件,得由此导出 (8-1) 设坐标为截面与梁轴线交点为C ,由,得略去二阶微量,可得(8-2)将式(8-2)对求一阶导数,并利用式(8-1),得(8-3)公式(8-1)~(8-3)就是载荷集度、剪力和弯矩之间的微分关系。

它表示:(1)横截面的剪力对的一阶导数,等于梁在该截面的载荷集度,即剪力图上某点切线的斜率等于该点相应横截面上的载荷集度。

(2)横截面的弯矩对的一阶导数,等于该截面上的剪力,即弯矩图上某点切线的斜率等于该点相应横截面上的剪力。

(3)横截面的弯矩对的二阶导数,等于梁在该截面的载荷集度。

由此表明弯矩图的变化形式与载荷集度的正负值有关。

若方向向下(负值),即<0,弯矩图为向上凸曲线;反之,方向向上(正值),则弯矩图为向下凸曲线。

根据微分关系,还可以看出剪力和弯矩有以下规律:(1) 梁的某一段内无载荷作用,即,由可知,常量。

若,剪力图为沿轴的直线,并由可知,常量,弯矩图为平行于轴的直线。

若等于常数,剪力图为平行于轴的直线,弯矩图为向上或向下倾斜的直线。

(2)梁的某一段内有均布载荷作用,即等于常数,则剪力是的一次函数,弯矩是的二次函数。

剪力图为斜直线;若为正值,斜线向上倾斜;若负值,斜线向下倾斜。

弯矩图为二次抛物线,当为正值,即>0时,弯矩x q )(x q )(x q x x x x d +x d x d )(x q x )(x F Q )(x M x x d +)(d )(x F x F Q Q +)(d )(x M x M +x d ∑=0y F )(d )(d x q x x F Q =x x d +∑=0C M 2d d )(xxx q )(d )(d x F x x M Q =x )(d )(d 22x q x x M =)(x q )(x F Q )(x M x x x )(x q )(x q )(x q )(d )(d 22x q x x M =)(x q 0)(=x q 0)(d )(d ==x q x x F Q =)(x F Q 0)(=x F Q x 0)(d )(d ==x F x x M Q =)(x M x )(x F Q x )(x q )(x F Q x )(x M x )(x q )(x q )(x q )(d )(d 22x q x x M =例8-6 图8-16(a )所示简支梁,受均布(a) 载荷和集中力共同作用,试绘梁的内力图。

解 (1)计算支反力 由,得(b) 所以由,得 (c)得(2)根据载荷作用位置把梁分成三段,并 图8-16对各段的内力图形状作出分析判断,求出各段内力图的起点、终点和极值点的内力值,然后∑=0)(F A M 0kN 62)(=⨯-⨯+⨯⨯-AD F AC ABAB q D kN3kN 6212=⨯+⋅-=AD AC AB q F D ∑=0y F kN 3=A F(3)根据上表,由左至右逐段画出剪力图,如图8-16(b ) 所示;画出弯矩图,如图8-17(c )所示,可见,。

例8-7 外伸梁与其所受载荷如图8-17(a )所示,试作梁的剪力图和弯矩图。

图8-17解 按照前述使用的方法作剪力图和弯矩图时,应分段列出剪力方程与弯矩方程,然后按方程作图。

现利用本节所得结论,可以不列方程而直接作图。

(1)求支反力 由和可求得,(2)分段 沿集中力作用线、均布载荷的始末端以与集中力偶所在位置进行分段。

现将梁分为.、四段。

(3) 作剪力图段 在支反力的右侧梁截面上,剪力为。

截面到截面之间的载荷为均布载荷,即常数。

剪力图为斜直线。

算出集中力左侧梁截面上剪力 即可确定这条斜直线,见图8-17(b )。

段 截面处有一集中力,剪力图发生突变,变化的数值等于。

故从到剪力图又为斜直线,知段 截面与截面之间梁上无载荷,剪力图为水平线。

段 截面与截面之间剪力图也为水平线,算出截面右侧截面上的,即可画出这一水平线。

(4) 作弯矩图段 截面上弯矩为零。

从到梁上为均布载荷,且均布载荷向下,则弯矩图为上凸的抛物线。

算出截面的弯矩为已知点、点弯矩以与抛物线为上凸,即可大致画出段的弯矩图。

段 由受力特性可知,从到弯矩图为上凸的另一抛物线。

截面的剪力突变,故弯矩图在点斜率也突变。

在截面上的剪力等于零,故点为弯矩的极值点。

由段的剪力方程可计算出至梁左端距离为,故可求出截面上弯矩的极值为 在集中力偶左侧截面上弯矩为已知、与等三个截面上的弯矩,即可连成到之间的抛物线。

段和段 截面上有一集中力偶,弯矩图突变,而且变化的数值等于。

所以在右侧截面上为截面上的弯矩为由于段的剪力图为水平直线,于是由和就确定了这条直线。

到之间弯矩图也是斜直线,由于,故可画出图示斜直线。

从所得的剪力图(图8-17b )和弯矩图(图8-17c )上,不难确定最大剪力,最大弯矩。

kN 3max =Q F m kN 3max ⋅=M ∑=0)(F A M ∑=0)(F B M kN 7=A F kN 5=B F AE AC CD DB BE AC A F kN 7A C =AC q 1F 左QC FCD C 1F 1F C D DB D B BE B E B =右QB F kN 2AC A A C C A C AC CD C D C C F F CD F 5m F 0M 左D M m 16kN m kN 881214287211⋅=⋅⨯⨯⨯-⨯-⨯=⨯⨯-⨯-⨯=)(左AD AD q CD F AD F M A D C F 左DC D DB BE D m kN 100⋅=M D 右D M B B M DB 右D MB M B E 0=E M kN7max=QF mkN 5.20max ⋅=M要注意的是:不但可能发生在的截面上,也有可能发生在集中力或集中力偶作用处。

所以求弯矩的最大值时,应综合考虑上述几种可能性。

先假设M 求为某一方向,(一般我是假设为逆时针,书上好像是把逆时针方向规定为正方向),然后对该分离体(或研究对象)列弯矩平衡方程(当然必须是在分离体弯矩平衡情况下):M 总=0。

即MA+MB+MC+M 求=0。

(注意对于MA 、MB 、MC ,如果是逆时针的取正值,顺时针取负值。

),此时如果球出的M 求为正值,则它就是逆时针的,如果是负值,那它的方向与假设方向是相反的,是顺时针。

也可以把所有顺时针的弯矩全取正值放在等号左边相加,把所有逆时针的也取正值但放在等号右边相加(其实跟上面是一样的,也是得假设M 求为某一方向)列平衡方程。

那还不简单,不同X 对应不同的弯矩了,要看X 等于多少了。

不知道你的是不是结构构件上的弯矩,结构力学上梁的弯矩正负判断原则是使梁的上表面受拉的弯矩为正,反之为负。

我不知道你的原题是什么样的,X 表示的是什么。

如果X 表示的是位置坐标,那么M 求=AX²+BX+C 表示的是构件上的弯矩分布函数,不同位置对应不同的弯矩,也就是说构件上弯矩有的地方正有的地方负,凡是求出是正值的就与假设方向或默认方向相同,反之相反。

如果X 表示的是某个构件的长度,也是一样判方法。

还有一个可能是你所算的是一种动态情况,就是某个东西在动,导致弯矩是个变量,也是一样的。

总之一句话,要看X 值的情况。

最好把原题放上来,这样更有针对性。

你的应该是结构力学方面的,结构力学上梁的弯矩正负判断原则是使梁的上表面受拉的弯矩为正,反之为负。

所以假设时应假设成如图方向。

弯矩图都是画在受拉一侧的,所以凡是出现正值的区域就把弯矩图画在上面,出现负值的就画在下面,过度地带就是为0的地方。

强调一下,假设没有什么对或错的,M 求>0对应的X 处弯矩跟假设的方向就是相同的,正的,M 求<0对应的XX 围处弯矩方向就是跟假设相反,无论假设方向怎么样求出的弯矩都是一样的。

、一般规定 梁的哪侧纤维受拉就画在哪侧的 一般规定下侧受拉为正弯矩。

建筑力学中弯矩剪力图方向悬赏分:30 - 解决时间:2010-2-2 11:27我不知道画上边还是下边左边还是右边,希望举个简支梁的例子详细说明说的明了给加分 你把梁想象成柔性的,梁的变形和图像要一致!即往哪儿变形画那边比如,简支梁上面作用一集中力,画下面。

如果作用一力偶,1,力偶顺时针时,左边上,右边下;2力偶逆时针时,相反。

相关文档
最新文档