c语言链表的创建方法
链表实验报告

C 语言程序设计实验报告实验一:链表的基本操作一·实验目的1. 掌握链表的建立方法2. 掌握链表中节点的查找与删除3. 掌握输出链表节点的方法4. 掌握链表节点排序的一种方法5. 掌握C 语言创建菜单的方法6. 掌握结构化程序设计的方法二·实验环境1. 硬件环境:当前所有电脑硬件环境均支持2. 软件环境:Visual C++6.0三.函数功能1. CreateList // 声明创建链表函数2.TraverseList // 声明遍历链表函数3. InsertList // 声明链表插入函数4.DeleteTheList // 声明删除整个链表函数5. FindList // 声明链表查询函数 四.程序流程图五.程序代码#include<stdio.h>#include<stdlib.h>typedef int Elemtype;typedef int Status;typedef struct node//定义存储节点{int data;//数据域struct node *next;//结构体指针} *linklist,node;//结构体变量,结构体名称linklist creat (int n)//创建单链表{linklist head,r,p;//定义头指针r,p,指针int x,i;head=(node *)malloc(sizeof(node));//生成头结点 声明函数 主函数 main 创建链表函数定义CreateList 定义链表遍历函数TraverseList定义链表查询函数FindList 定义链表插入函数在链表位置第pos 节点前插入包含数据val 的节点InsertList(PNode List, int pos, int val) 插入节点 定义删除整个链表函数 DeleteTheList定义删除链表元素函数删除链表中的第pos 节点DeleteList(PNode List, int pos) 删除节点r=head;//r指向头结点printf("输入数字:\n");for(i=n;i>0;i--)//for 循环用于生成第一个节点并读入数据{scanf("%d",&x);p=(node *)malloc(sizeof(node));p->data=x;//读入第一个节点的数据r->next=p;//把第一个节点连在头结点的后面r=p;//循环以便于生成第二个节点}r->next=0;//生成链表后的断开符return head;//返回头指针}void output (linklist head)//输出链表{linklist p;p=head->next;do{printf("%3d",p->data);p=p->next;}while(p);printf("\n")}Status insert ( linklist &l,int i, Elemtype e)//插入操作{int j=0;linklist p=l,s;while(j<i-1 && p){p=p->next;++j;}if(!p || j>i-1)return -1;else{s=(node *)malloc(sizeof(node));s->data=e;s->next=p->next;p->next=s;return 1;}}Status delect ( linklist &l,int i, Elemtype &e)//删除操作{int j=0;linklist p=l,q;while(j<i-1 && p->next){p=p->next;++j;}if(!p->next || j>i-1)return -1;else{q=p->next;p->next=q->next;e=q->data;free(q);return 1;}}void combine(linklist la,linklist lb)//合并单链表{node *pa,*pb,*pc;linklist lc;pa=la->next;pb=lb->next;lc=pc=la;while(pa && pb){if(pa->data<=pb->data){pc->next=pa;pc=pa;pa=pa->next;}else{pc->next=pb;pc=pb;pb=pb->next;} }pc->next=pa?pa:pb;free(lb);}Status GetElem(linklist l,int i,Elemtype &e )//查找操作 {linklist p;int j;p=l->next;j=1;while(p && j<i){p=p->next;++j;}if(!p || j>i)return -2;e=p->data;return e;}void main(){linklist la,lb;int n;int i,j;Elemtype e;printf("请输入第一个链表:\n");printf("输入链表元素的个数:\n");scanf("%d",&n);la=creat(n);printf("输出链表:\n");output(la);printf("请输入要查找元素的位置:\n");scanf("%d",&i);j=GetElem(la,i,e);printf("所要查找的元素是%d\n",j);printf("请输入插入位置和元素:\n");scanf("%d%d",&i,&e);insert(la,i,e);printf("插入后的链表:\n");output(la);printf("请输入要删除的位置:\n");scanf("%d",&i);delect(la,i,e);printf("删除的那个元素是:%d\n",e);printf("输出删除后的顺序表:\n");output(la);printf("请输入第一个非递减链表:\n");printf("输入链表元素的个数:\n");scanf("%d",&n);la=creat(n);printf("输出链表:\n");output(la);printf("请输入第二个非递减链表:\n");printf("输入链表元素的个数:\n");scanf("%d",&n);lb=creat(n);printf("输出链表:\n");output(lb);combine(la,lb);printf("输出合并后的链表:\n");output(la);六.运行结果七.心得体会通过本次实验我对链表有了更深的了解,对链表的插删操作、遍历、查找等基本上掌握了。
c语言哈希链表

c语言哈希链表C语言中的哈希链表是指使用哈希函数将数据分散存储在链表中,以提高查找数据的效率。
下面是一个简单的实现,以展示如何使用哈希链表来存储数据:```c#include <stdio.h>#include <stdlib.h>#define SIZE 10// 定义链表节点结构typedef struct Node {int key;int value;struct Node* next;} Node;// 定义哈希表结构typedef struct {Node* table[SIZE];} HashTable;// 创建新节点Node* createNode(int key, int value) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->key = key;newNode->value = value;newNode->next = NULL;return newNode;}// 初始化哈希表void initHashTable(HashTable* ht) {for (int i = 0; i < SIZE; i++) {ht->table[i] = NULL;}}// 计算哈希值int hash(int key) {return key % SIZE;}// 向哈希表中插入数据void insert(HashTable* ht, int key, int value) { int index = hash(key);Node* newNode = createNode(key, value); if (ht->table[index] == NULL) {ht->table[index] = newNode;} else {Node* current = ht->table[index];while (current->next != NULL) {current = current->next;}current->next = newNode;}}// 从哈希表中查找数据int lookup(HashTable* ht, int key) { int index = hash(key);Node* current = ht->table[index]; while (current != NULL) {if (current->key == key) {return current->value;}current = current->next;}return -1; // 数据不存在}int main() {HashTable ht;initHashTable(&ht);// 插入数据insert(&ht, 1, 10);insert(&ht, 2, 20);insert(&ht, 3, 30);// 查找数据int value = lookup(&ht, 2);if (value != -1) {printf("Value: %d\n", value);} else {printf("Data not found\n");}return 0;}```这段代码创建了一个大小为10的哈希表,使用取模运算来计算哈希值,然后将数据插入哈希表中。
c语言超时重发机制的链表

c语言超时重发机制的链表C语言超时重发机制的链表引言:在网络通信中,超时重发机制是一种常见的应对网络延迟和丢包的技术手段。
本文将介绍如何使用C语言实现一个超时重发机制的链表,以及其原理和应用。
一、超时重发机制的链表超时重发机制的链表是一种数据结构,用于管理需要进行超时重发的数据包。
它的主要特点是可以按照发送顺序进行管理,并且能够自动检测超时并进行重发操作。
二、链表的基本结构链表是由一系列节点组成的数据结构,每个节点包含一个数据域和一个指针域。
在超时重发机制的链表中,每个节点代表一个数据包,并且需要额外包含超时时间和重发次数等信息。
三、链表的初始化在使用链表之前,需要进行初始化操作。
初始化操作主要包括创建链表头节点,并将头节点的指针域置空。
四、数据包的插入在发送数据包时,将数据包插入到链表的末尾。
这需要遍历链表,找到最后一个节点,并将其指针域指向新节点。
五、超时检测与重发超时检测是链表中的重要操作,用于判断是否有数据包超时。
当一个数据包超时时,需要将其重新发送,并更新超时时间和重发次数等信息。
六、数据包的删除当一个数据包发送成功后,需要从链表中删除。
删除操作需要遍历链表,找到对应的节点,并更新前后节点的指针域。
七、链表的销毁当所有数据包都发送完成或不再需要重发时,需要销毁链表。
销毁链表操作主要包括释放所有节点的内存空间,并将链表头节点的指针域置空。
八、超时重发机制的应用超时重发机制在网络通信中广泛应用于保证数据可靠性和提高传输效率。
例如,在TCP协议中,超时重发机制被用于保证数据包的可靠传输。
九、注意事项在实现超时重发机制的链表时,需要注意以下事项:1. 设置合理的超时时间,以适应不同的网络环境。
2. 避免重复发送已经成功发送的数据包,以节省网络带宽和资源。
3. 考虑异常情况,如网络中断或故障,需要对链表进行适当的处理。
结论:超时重发机制的链表是一种实现超时重发的重要数据结构。
它可以有效地应对网络延迟和丢包等问题,提高数据传输的可靠性和效率。
c语言中链表的定义

c语言中链表的定义C语言中链表的定义链表是一种常用的数据结构,它是由一系列节点组成的,每个节点包含一个数据元素和一个指向下一个节点的指针。
链表可以用来存储任意类型的数据,而且它的大小可以动态地增加或减少,非常灵活。
在C语言中,链表的定义通常包括两个部分:节点结构体和链表结构体。
节点结构体定义如下:```typedef struct node {int data; // 数据元素struct node *next; // 指向下一个节点的指针} Node;```这里定义了一个名为Node的结构体,它包含两个成员变量:data和next。
其中,data用来存储节点的数据元素,next用来指向下一个节点的指针。
注意,这里的next是一个指向Node类型的指针,这样才能实现链表的连接。
链表结构体定义如下:```typedef struct list {Node *head; // 指向链表头节点的指针Node *tail; // 指向链表尾节点的指针int size; // 链表的大小} List;```这里定义了一个名为List的结构体,它包含三个成员变量:head、tail和size。
其中,head和tail分别指向链表的头节点和尾节点,size表示链表的大小。
通过这两个结构体的定义,我们就可以创建一个链表了。
下面是一个简单的例子:```int main() {List list = {NULL, NULL, 0}; // 初始化链表Node *node1 = (Node*)malloc(sizeof(Node)); // 创建第一个节点node1->data = 1; // 设置节点的数据元素node1->next = NULL; // 设置节点的指针list.head = node1; // 将节点1设置为链表的头节点list.tail = node1; // 将节点1设置为链表的尾节点list.size++; // 链表大小加1// 创建更多的节点...return 0;}```在这个例子中,我们首先初始化了一个空链表,然后创建了第一个节点,并将它设置为链表的头节点和尾节点。
单链表初始化 c语言

单链表初始化 c语言单链表是一种常用的数据结构,它由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。
在使用单链表之前,需要先进行初始化操作,即创建一个空链表。
本文将介绍单链表的初始化方法,并给出相应的C语言代码。
单链表的初始化操作包括两个步骤:1. 创建一个头结点:头结点不包含任何数据元素,只有一个指向第一个节点的指针。
它的作用是统一处理链表的操作,简化代码的编写。
2. 将头结点的指针域置为空:由于此时还没有节点加入链表,所以头结点的指针域应该为空。
下面是单链表初始化的C语言代码:```#include <stdio.h>#include <stdlib.h>typedef struct Node { //定义单链表节点结构体int data; //数据域struct Node *next; //指针域} Node, *LinkedList; //Node为节点类型,LinkedList为指向节点的指针类型LinkedList InitList() { //初始化单链表LinkedList L; //定义头结点指针L = (LinkedList)malloc(sizeof(Node)); //分配头结点空间 if (L == NULL) { //判断内存是否分配成功printf('内存分配失败!');exit(0);}L->next = NULL; //将头结点的指针域置为空return L; //返回头结点指针}int main() {LinkedList L = InitList(); //创建一个空链表printf('单链表初始化成功!');return 0;}```在上面的代码中,我们首先定义了一个节点结构体,包含一个数据域和一个指针域。
然后定义了一个头结点指针类型,用于指向链表的头结点。
接着我们使用malloc函数为头结点分配内存空间,并判断内存分配是否成功。
[转载整理]C语言链表实例
![[转载整理]C语言链表实例](https://img.taocdn.com/s3/m/0aca427eb94ae45c3b3567ec102de2bd9605debe.png)
[转载整理]C语⾔链表实例 C语⾔链表有单链表、双向链表、循环链表。
单链表由数据域和指针域组成,数据域存放数据,指针域存放该数据类型的指针便于找到下⼀个节点。
双链表则含有头指针域、数据域和尾指针域,域单链表不同,双链表可以从后⼀个节点找到前⼀个节点,⼆单链表则不⾏。
循环链表就是在单链表的基础上,将头结点的地址指针存放在最后⼀个节点的指针域⾥以,此形成循环。
此外还有双向循环链表,它同时具有双向链表和循环链表的功能。
单链表如:链表节点的数据结构定义struct node{int num;struct node *p;} ;在此链表节点的定义中,除⼀个整型的成员外,成员p是指向与节点类型完全相同的指针。
※在链表节点的数据结构中,⾮常特殊的⼀点就是结构体内的指针域的数据类型使⽤了未定义成功的数据类型。
这是在C中唯⼀规定可以先使⽤后定义的数据结构。
链表实例代码:1// 原⽂地址 /wireless-dragon/p/5170565.html2 #include<stdio.h>3 #include<stdlib.h>4 #include<string.h>56 typedef int elemType;//定义存⼊的数据的类型可以是int char78 typedef struct NODE{ //定义链表的结构类型9 elemType element;10struct NODE *next;11 }Node;1213/************************************************************************/14/* 以下是关于线性表链接存储(单链表)操作的19种算法 */1516/* 1.初始化线性表,即置单链表的表头指针为空 */17/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/18/* 3.打印链表,链表的遍历*/19/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */20/* 5.返回单链表的长度 */21/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */22/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停⽌程序运⾏ */23/* 8.从单链表中查找具有给定值x的第⼀个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */24/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */25/* 10.向单链表的表头插⼊⼀个元素 */26/* 11.向单链表的末尾添加⼀个元素 */27/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0 */28/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */29/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏ */30/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */31/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */32/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */33/* 18.交换2个元素的位置 */34/* 19.将线性表进⾏冒排序 */35363738/*注意检查分配到的动态内存是否为空*/3940414243/* 1.初始化线性表,即置单链表的表头指针为空 */44void initList(Node **pNode)45 {46 *pNode=NULL;47 printf("initList函数执⾏,初始化成功\n");48 }4950/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/51 Node *creatList(Node *pHead)52 {53 Node *p1,*p2;54 p1=p2=(Node *)malloc(sizeof(Node));55if(p1 == NULL || p2 ==NULL)57 printf("内存分配失败\n");58 exit(0);59 }60 memset(p1,0,sizeof(Node));6162 scanf("%d",&p1->element);63 p1->next=NULL;6465while(p1->element >0) //输⼊的值⼤于0则继续,否则停⽌66 {67if(pHead == NULL)//空表,接⼊表头68 {69 pHead=p1;70 }71else72 {73 p2->next=p1;74 }7576 p2=p1;77 p1=(Node *)malloc(sizeof(Node));7879if(p1==NULL||p2==NULL)80 {81 printf("内存分配失败\n");82 exit(0);83 }84 memset(p1,0,sizeof(Node));85 scanf("%d",&p1->element);86 p1->next=NULL;87 }88 printf("CreatList函数执⾏,链表创建成功\n");89return pHead;90 }9192/* 3.打印链表,链表的遍历*/93void printList(Node *pHead)94 {95if(NULL==pHead)96 {97 printf("PrintList函数执⾏,链表为空\n");98 }99else100 {101while(NULL!=pHead)102 {103 printf("%d\n",pHead->element);104 pHead=pHead->next;105 }106 }107108 }109110111/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */ 112void clearList(Node *pHead)113 {114 Node *pNext;115116if(pHead==NULL)117 {118 printf("clearList函数执⾏,链表为空\n");119return;120 }121while(pHead->next!=NULL)122 {123 pNext=pHead->next;124free(pHead);125 pHead=pNext;126 }127 printf("clearList函数执⾏,链表已经清除!\n");128129 }130131/* 5.返回链表的长度*/132int sizeList(Node *pHead)133 {134int size=0;135136while(pHead!=NULL)137 {138 size++;139 pHead=pHead->next;141 printf("sizelist函数执⾏,链表长度为%d\n",size);142return size;143 }144145/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */146int isEmptyList(Node *pHead)147 {148if(pHead==NULL)149 {150 printf("isEmptylist函数执⾏,链表为空!\n");151return1;152 }153154else155 printf("isEmptylist函数执⾏,链表⾮空!\n");156return0;157158 }159160/* 7.返回链表中第post节点的数据,若post超出范围,则停⽌程序运⾏*/161int getElement(Node *pHead,int pos)162 {163int i=0;164if(pos<1)165 {166 printf("getElement函数执⾏,pos值⾮法!");167return0;168 }169if(pHead==NULL)170 {171 printf("getElement函数执⾏,链表为空!");172 }173174while (pHead!=NULL)175 {176 ++i;177if(i==pos)178 {179break;180 }181 pHead=pHead->next;182 }183if(i<pos)184 {185 printf("getElement函数执⾏,pos值超出链表长度\n");186return0;187 }188 printf("getElement函数执⾏,位置%d中的元素为%d\n",pos,pHead->element);189190return1;191 }192193//8.从单⼀链表中查找具有给定值x的第⼀个元素,若查找成功后,返回该节点data域的存储位置,否则返回NULL 194 elemType *getElemAddr(Node *pHead,elemType x)195 {196if(NULL==pHead)197 {198 printf("getEleAddr函数执⾏,链表为空");199return NULL;200 }201if(x<0)202 {203 printf("getEleAddr函数执⾏,给定值x不合法\n");204return NULL;205 }206while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素207 {208 pHead=pHead->next;209 }210if(pHead->element!=x)211 {212 printf("getElemAddr函数执⾏,在链表中没有找到x值\n");213return NULL;214 }215else216 {217 printf("getElemAddr函数执⾏,元素%d的地址为0x%x\n",x,&(pHead->element));218 }219return &(pHead->element);220221 }222223224/*9.修改链表中第pos个点X的值,如果修改成功,则返回1,否则返回0*/225int modifyElem(Node *pNode,int pos,elemType x)226 {227 Node *pHead;228 pHead=pNode;229int i=0;230if(NULL==pHead)231 {232 printf("modifyElem函数执⾏,链表为空\n");233return0;234 }235236if(pos<1)237 {238 printf("modifyElem函数执⾏,pos值⾮法\n");239return0;240 }241242while(pHead!= NULL)243 {244 ++i;245if(i==pos)246 {247break;248 }249 pHead=pHead->next;250 }251252if(i<pos)253 {254 printf("modifyElem函数执⾏,pos值超出链表长度\n");255return0;256 }257 pNode=pHead;258 pNode->element=x;259 printf("modifyElem函数执⾏,修改第%d点的元素为%d\n",pos,x);260261return1;262263 }264265/* 10.向单链表的表头插⼊⼀个元素 */266int insertHeadList(Node **pNode,elemType insertElem)267 {268 Node *pInsert;269 pInsert=(Node *)malloc(sizeof(Node));270if(pInsert==NULL) exit(1);271 memset(pInsert,0,sizeof(Node));272 pInsert->element=insertElem;273 pInsert->next=*pNode;274 *pNode=pInsert;275 printf("insertHeadList函数执⾏,向表头插⼊元素%d成功\n",insertElem);276return1;277 }278279/* 11.向单链表的末尾添加⼀个元素 */280int insertLastList(Node *pNode,elemType insertElem)281 {282 Node *pInsert;283 Node *pHead;284 Node *pTmp;285286 pHead=pNode;287 pTmp=pHead;288 pInsert=(Node *)malloc(sizeof(Node));289if(pInsert==NULL) exit(1);290 memset(pInsert,0,sizeof(Node));291 pInsert->element=insertElem;292 pInsert->next=NULL;293while(pHead->next!=NULL)294 {295 pHead=pHead->next;296 }297 pHead->next=pInsert;298 printf("insertLastList函数执⾏,向表尾插⼊元素%d成功!\n",insertElem);299return1;300 }301302/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0*/ 303int isAddPos(Node *pNode,int pos,elemType x)304 {305 Node *pHead;306 pHead=pNode;307 Node *pTmp;308int i=0;309310if(NULL==pHead)311 {312 printf("AddPos函数执⾏,链表为空\n");313return0;314 }315316if(pos<1)317 {318 printf("AddPos函数执⾏,pos值⾮法\n");319return0;320 }321322while(pHead!=NULL)323 {324 ++i;325if(i==pos)326break;327 pHead=pHead->next;328 }329330if(i<pos)331 {332 printf("AddPos函数执⾏,pos值超出链表长度\n");333return0;334 }335336 pTmp=(Node *)malloc(sizeof(Node));337if(pTmp==NULL) exit(1);338 memset(pTmp,0,sizeof(Node));339 pTmp->next=pHead->next;340 pHead->next=pTmp;341 pTmp->element=x;342343 printf("AddPos函数执⾏成功,向节点%d后插⼊数值%d\n",pos,x); 344return1;345 }346347/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */348int OrrderList(Node *pNode,elemType x)349 {350//注意如果此数值要排到⾏尾要修改本代码351 Node *pHead;352 pHead=pNode;353 Node *pTmp;354355if(NULL==pHead)356 {357 printf("OrrderList函数执⾏,链表为空\n");358return0;359 }360361if(x<1)362 {363 printf("OrrderList函数执⾏,x值⾮法\n");364return0;365 }366367while(pHead!=NULL)368 {369if((pHead->element)>=x)370break;371 pHead=pHead->next;372 }373374375if(pHead==NULL)376 {377 printf("OrrderList函数查找完毕,该函数中没有该值\n");378return0;379 }380381382 pTmp=(Node *)malloc(sizeof(Node));383if(pTmp==NULL) exit(1);384 memset(pTmp,0,sizeof(Node));385 pTmp->next=pHead->next;386 pHead->next=pTmp;387 pTmp->element=x;388389 printf("OrrderList函数成功插⼊数值%d\n",x);390return1;391 }392393/*14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏*/ 394int DelHeadList(Node **pList)395 {396 Node *pHead;397 pHead=*pList;398if(pHead!=NULL)399 printf("DelHeadList函数执⾏,函数⾸元素为%d删除成功\n",pHead->element); 400else401 {402 printf("DelHeadList函数执⾏,链表为空!");403return0;404 }405 *pList=pHead->next;406return1;407 }408409/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */410int DelLastList(Node *pNode)411 {412 Node *pHead;413 Node *pTmp;414415 pHead=pNode;416while(pHead->next!=NULL)417 {418 pTmp=pHead;419 pHead=pHead->next;420 }421 printf("链表尾删除元素%d成功!\n",pHead->element);422free(pHead);423 pTmp->next=NULL;424return1;425 }426427/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */ 428int DelPos(Node *pNode,int pos)429 {430 Node *pHead;431 pHead=pNode;432 Node *pTmp;433434int i=0;435436if(NULL==pHead)437 {438 printf("DelPos函数执⾏,链表为空\n");439return0;440 }441442if(pos<1)443 {444 printf("DelPos函数执⾏,pos值⾮法\n");445return0;446 }447448while(pHead!=NULL)449 {450 ++i;451if(i==pos)452break;453 pTmp=pHead;454 pHead=pHead->next;455 }456457if(i<pos)458 {459 printf("DelPos函数执⾏,pos值超出链表长度\n");460return0;461 }462 printf("DelPos函数执⾏成功,节点%d删除数值%d\n",pos,pHead->element); 463 pTmp->next=pHead->next;464free(pHead);465return1;466 }467468/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */469int Delx(Node **pNode,int x)470 {471 Node *pHead;472 Node *pTmp;473 pHead=*pNode;474int i=0;475476if(NULL==pHead)477 {478 printf("Delx函数执⾏,链表为空");479return0;480 }481if(x<0)482 {483 printf("Delx函数执⾏,给定值x不合法\n");484return0;485 }486while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素487 {488 ++i;489 pTmp=pHead;490 pHead=pHead->next;491 }492if(pHead->element!=x)493 {494 printf("Delx函数执⾏,在链表中没有找到x值\n");495return0;496 }497if((i==0)&&(NULL!=pHead->next))498 {499 printf("Delx函数执⾏,在链表⾸部找到此元素,此元素已经被删除\n");500 *pNode=pHead->next;501free(pHead);502return1;503 }504 printf("Delx函数执⾏,⾸个为%d元素被删除\n",x);505 pTmp->next=pHead->next;506free(pHead);507return1;508 }509510/* 18.交换2个元素的位置 */511int exchange2pos(Node *pNode,int pos1,int pos2)512 {513 Node *pHead;514int *pTmp;515int *pInsert;516int a;517int i=0;518519if(pos1<1||pos2<1)520 {521 printf("DelPos函数执⾏,pos值⾮法\n");522return0;523 }524525 pHead=pNode;526while(pHead!=NULL)527 {528 ++i;529if(i==pos1)530break;531 pHead=pHead->next;532 }533534if(i<pos1)535 {536 printf("DelPos函数执⾏,pos1值超出链表长度\n");537return0;538 }539540 pTmp=&(pHead->element);541 i=0;542 pHead=pNode;543while(pHead!=NULL)544 {545 ++i;546if(i==pos2)547break;548 pHead=pHead->next;549 }550551if(i<pos2)552 {553 printf("DelPos函数执⾏,pos2值超出链表长度\n");554return0;555 }556557 pInsert=&(pHead->element);558 a=*pTmp;559 *pTmp=*pInsert;560 *pInsert=a;561562 printf("DelPos函数执⾏,交换第%d个和第%d个pos点的值\n",pos1,pos2); 563return1;564 }565566int swap(int *p1,int *p2)567 {568int a;569if(*p1>*p2)570 {571 a=*p1;572 *p1=*p2;573 *p2=a;574 }575return0;576 }577578/* 19.将线性表进⾏冒泡排序 */579int Arrange(Node *pNode)580 {581 Node *pHead;582 pHead=pNode;583584int a=0,i,j;585586if(NULL==pHead)587 {588 printf("Arrange函数执⾏,链表为空\n");589return0;590 }591592while(pHead!=NULL)593 {594 ++a;595 pHead=pHead->next;596 }597598 pHead=pNode;599for(i=0;i<a-1;i++)600 {601for(j=1;j<a-i;j++)602 {603 swap(&(pHead->element),&(pHead->next->element));604 pHead=pHead->next;605 }606 pHead=pNode;607 }608 printf("Arrange函数执⾏,链表排序完毕!\n");609return0;610 }611612int main()613 {614 Node *pList=NULL;615int length=0;616617 elemType posElem;618619 initList(&pList);620 printList(pList);621622 pList=creatList(pList);623 printList(pList);624625 sizeList(pList);626 printList(pList);627628 isEmptyList(pList);629630631 posElem=getElement(pList,3);632 printList(pList);633634 getElemAddr(pList,5);635636 modifyElem(pList,4,1);637 printList(pList);638639 insertHeadList(&pList,5);640 printList(pList);641642 insertLastList(pList,10);643 printList(pList);644645 isAddPos(pList,4,5); 646 printList(pList);647648 OrrderList(pList,6);649 printList(pList);650651 DelHeadList(&pList); 652 printList(pList);653654 DelLastList(pList);655 printList(pList);656657 DelPos(pList,5);658 printList(pList);659660 Delx(&pList,5);661 printList(pList);662663 exchange2pos(pList,2,5); 664 printList(pList);665666 Arrange(pList);667 printList(pList);668669 clearList(pList);670return0;671 }。
链表c语言经典例题

链表c语言经典例题
链表是计算机科学中的经典数据结构之一,常用于存储和操作动态数据。
以下是一些常见的链表例题,可以帮助理解链表的基本操作和应用。
1. 链表的创建:
- 创建一个空链表。
- 创建一个包含指定节点值的链表。
2. 链表的插入操作:
- 在链表的头部插入一个节点。
- 在链表的尾部插入一个节点。
- 在指定位置插入一个节点。
3. 链表的删除操作:
- 删除链表的头节点。
- 删除链表的尾节点。
- 删除指定数值的节点。
4. 链表的查找操作:
- 查找链表中指定数值的节点。
- 查找链表的中间节点。
5. 链表的逆序操作:
- 反转整个链表。
- 反转链表的前 N 个节点。
- 反转链表的一部分区间内的节点。
6. 链表的合并操作:
- 合并两个有序链表,使其有序。
- 合并 K 个有序链表,使其有序。
7. 链表的环检测:
- 判断链表中是否存在环,若存在,则返回环的起始节点。
8. 链表的拆分操作:
- 将一个链表按照奇偶位置拆分成两个链表。
以上是一些链表的经典例题,通过解答这些例题,可以加深对链表结构和基本操作的理解。
在编写对应的 C 语言代码时,需要注意链表节点的定义、指针的使用以及内存的动态分配和释放等问题。
数据结构单链表实验报告

数据结构单链表实验报告一、实验目的1、深入理解单链表的数据结构及其基本操作。
2、掌握单链表的创建、插入、删除、查找等操作的实现方法。
3、通过实际编程,提高对数据结构和算法的理解和应用能力。
二、实验环境1、操作系统:Windows 102、编程语言:C 语言3、开发工具:Visual Studio 2019三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。
指针域用于指向下一个节点,从而形成链表的链式结构。
单链表的基本操作包括:1、创建链表:通过动态分配内存创建链表的头节点,并初始化链表为空。
2、插入节点:可以在链表的头部、尾部或指定位置插入新的节点。
3、删除节点:根据给定的条件删除链表中的节点。
4、查找节点:在链表中查找满足特定条件的节点。
四、实验内容(一)单链表的创建```cinclude <stdioh>include <stdlibh>//定义链表节点结构体typedef struct Node {int data;struct Node next;} Node;//创建单链表Node createList(){Node head =(Node)malloc(sizeof(Node));if (head == NULL) {printf("内存分配失败!\n");return NULL;}head>data = 0;head>next = NULL;return head;}int main(){Node list = createList();//后续操作return 0;}```在创建单链表时,首先为头节点分配内存空间。
若内存分配失败,则提示错误信息并返回`NULL`。
成功分配内存后,初始化头节点的数据域和指针域。
(二)单链表的插入操作插入操作分为三种情况:头部插入、尾部插入和指定位置插入。
1、头部插入```cvoid insertAtHead(Node head, int data) {Node newNode =(Node)malloc(sizeof(Node));if (newNode == NULL) {printf("内存分配失败!\n");return;}newNode>data = data;newNode>next = head>next;head>next = newNode;}```头部插入时,创建新节点,将新节点的数据域赋值,并将其指针域指向原头节点的下一个节点,然后更新头节点的指针域指向新节点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c语言链表的创建方法
在C语言中,链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个值和一个指向下一个节点的指针。
链表可以动态地添加或删除节点,因此在许多应用程序中被广泛使用。
链表的创建方法大致可以分为以下几个步骤:
1. 定义一个节点结构体
链表的节点通常包含一个值和一个指针,指针指向下一个节点。
因此,我们需要定义一个结构体来表示节点:
```
struct Node {
int data;
struct Node* next;
};
```
其中,`data`表示节点的值,`next`表示指向下一个节点的指针。
2. 创建第一个节点
创建第一个节点时,我们需要先分配一段内存,然后将节点的值和指针都赋值为NULL:
```
struct Node* head = NULL;
head = (struct Node*)malloc(sizeof(struct Node));
head->data = 1;
head->next = NULL;
```
这里我们使用了`malloc`函数来分配内存,并将返回的指针强制转换为`struct Node*`类型,然后将节点的值和指针赋值为1和NULL。
3. 添加新节点
添加新节点时,我们需要先找到链表的末尾,然后在末尾添加新节点:
```
struct Node* newNode = NULL;
newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = 2;
newNode->next = NULL;
struct Node* current = head;
while (current->next != NULL) {
current = current->next;
}
current->next = newNode;
```
这里我们定义了一个新节点`newNode`,然后遍历链表找到末尾节点,将末尾节点的指针指向新节点。
4. 删除节点
删除节点时,我们需要先找到要删除的节点,然后将该节点的前
一个节点的指针指向该节点的下一个节点:
```
struct Node* current = head;
struct Node* previous = NULL;
while (current != NULL && current->data != 2) {
previous = current;
current = current->next;
}
if (current == NULL) {
printf('Node not found.
');
return 0;
}
previous->next = current->next;
free(current);
```
这里我们定义了两个指针,`current`和`previous`,分别指向当前节点和前一个节点。
然后遍历链表找到要删除的节点,将前一个节点的指针指向该节点的下一个节点,最后释放该节点的内存。
总结:
链表的创建方法可以通过定义节点结构体、分配内存、遍历链表等步骤来实现。
链表的优点是可以动态地添加或删除节点,适用于许
多应用程序。