关于xx和xx2的两个对称不等式的证明

合集下载

高考数学总复习考点知识讲解与提升练习9 函数的对称性

高考数学总复习考点知识讲解与提升练习9 函数的对称性

高考数学总复习考点知识讲解与提升练习专题9 函数的对称性考点知识1.能通过平移,分析得出一般的轴对称和中心对称公式和推论.2.会利用对称公式解决问题.知识梳理1.奇函数、偶函数的对称性(1)奇函数关于原点对称,偶函数关于y轴对称.(2)若f(x-2)是偶函数,则函数f(x)图象的对称轴为x=-2;若f(x-2)是奇函数,则函数f(x)图象的对称中心为(-2,0).2.若函数y=f(x)的图象关于直线x=a对称,则f(a-x)=f(a+x);若函数y=f(x)满足f(a-x)=-f(a+x),则函数的图象关于点(a,0)对称.3.两个函数图象的对称(1)函数y=f(x)与y=f(-x)关于y轴对称;(2)函数y=f(x)与y=-f(x)关于x轴对称;(3)函数y=f(x)与y=-f(-x)关于原点对称.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y=f(x+1)是偶函数,则函数y=f(x)的图象关于直线x=1对称.(√)(2)函数y=f(x-1)是奇函数,则函数y=f(x)的图象关于点(1,0)对称.(×)(3)若函数f(x)满足f(x-1)+f(x+1) =0,则f(x)的图象关于y轴对称.(×)(4)若函数f(x)满足f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称.(√)教材改编题1.函数f(x)=x+1x图象的对称中心为()A.(0,0) B.(0,1) C.(1,0) D.(1,1) 答案B解析因为f(x)=x+1x=1+1x,由y=1x向上平移一个单位长度得到y=1+1x,又y=1x关于(0,0)对称,所以f(x)=1+1x的图象关于(0,1)对称.2.已知定义在R上的函数f(x)在[-2,+∞)上单调递减,且f(-2-x)=f(-2+x),则f(-4)与f(1)的大小关系为________.答案f(-4)>f(1)解析∵f(-2-x)=f(-2+x),∴f(x)关于直线x=-2对称,又f(x)在[-2,+∞)上单调递减,∴f(-4)=f(0)>f(1),故f(-4)>f(1).3.偶函数y=f(x)的图象关于直线x=2对称,且当x∈[2,3]时,f(x)=2x-1,则f(-1)=________.答案5解析∵f(x)为偶函数,∴f(-1)=f(1),由f(x)的图象关于x=2对称,可得f(1)=f(3)=2×3-1=5.题型一轴对称问题例1(1)已知定义在R上的函数f(x)是奇函数,对x∈R都有f(x+1)=f(1-x),当f(-3)=-2时,则f(2023)等于()A.-2B.2C.0D.-4答案B解析定义在R上的函数f(x)是奇函数,且对x∈R都有f(x+1)=f(1-x),故函数f(x)的图象关于直线x=1对称,∴f(x)=f(2-x),故f(-x)=f(2+x)=-f(x),∴f(x)=-f(2+x)=f(4+x),∴f(x)是周期为4的周期函数.则f(2023)=f(505×4+3)=f(3)=-f(-3)=2.(2)已知函数f(x)的定义域为R,且f(x+2)为偶函数,f(x)在[2,+∞)上单调递减,则不等式f(x-1)>f(1)的解集为________.答案(2,4)解析∵f(x+2)是偶函数,∴f(x+2)的图象关于直线x=0对称,∴f(x)的图象关于直线x=2对称,又f(x)在[2,+∞)上单调递减,∴f(x)在(-∞,2]上单调递增.又f(x-1)>f(1),∴|x-1-2|<|1-2|,即|x-3|<1,解得2<x<4,∴原不等式的解集为(2,4).思维升华函数y=f(x)的图象关于直线x=a对称⇔f(x)=f(2a-x)⇔f(a-x)=f(a+x);若函数y=f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2成轴对称.跟踪训练1(1)已知函数f(x)=-x2+bx+c,且f(x+1)是偶函数,则f(-1),f(1),f(2)的大小关系是()A.f(-1)<f(1)<f(2)B.f(1)<f(2)<f(-1)C.f(2)<f(-1)<f(1)D.f(-1)<f(2)<f(1)答案D解析因为f(x+1)是偶函数,所以其对称轴为x=0,所以f(x)的对称轴为x=1,又二次函数f(x)=-x2+bx+c的开口向下,根据自变量离对称轴的距离可得f(-1)<f(2)<f(1).(2)如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x-1),那么函数f (x )在[-2,0]上的最大值与最小值之和为() A .2B .3C .4D .-1 答案C解析根据f (1+x )=f (-x )可知,f (x )的图象关于x =12对称,那么求函数f (x )在[-2,0]上的最大值与最小值之和,即求函数f (x )在[1,3]上的最大值与最小值之和,因为f (x )=log 2(3x -1)在⎣⎢⎡⎭⎪⎫12,+∞上单调递增,所以最小值与最大值分别为f (1)=1,f (3)=3,f (1)+f (3)=4. 题型二中心对称问题例2(1)(多选)若定义在R 上的偶函数f (x )的图象关于点(2,0)对称,则下列说法正确的是()A .f (x )=f (-x )B .f (2+x )+f (2-x )=0C .f (-x )=-f (x +4)D .f (x +2)=f (x -2) 答案ABC解析因为f (x )为偶函数,则f (x )=f (-x ),故A 正确;因为f (x )的图象关于点(2,0)对称,对于f (x )的图象上的点(x ,y )关于(2,0)的对称点(4-x ,-y )也在函数图象上,即f (4-x )=-y =-f (x ),用2+x 替换x 得到,f [4-(2+x )]=-f (2+x ),即f (2+x )+f (2-x )=0,故B 正确;由f (2+x )+f (2-x )=0,令x =x +2,可得f (x +4)+f (-x )=0,即f (-x )=-f (x +4),故C 正确;由B 知,f (2+x )=-f (2-x )=-f (x -2),故D 错误.(2)已知函数f (x )满足f (x )+f (-x )=2,g (x )=1x+1,y =f (x )与y =g (x )有4个交点,则这4个交点的纵坐标之和为________. 答案4解析因为f (x )+f (-x )=2,所以y =f (x )的图象关于点(0,1)对称, y =g (x )=1x+1的图象也关于点(0,1)对称,则交点关于(0,1)对称,所以4个交点的纵坐标之和为2×2=4.思维升华函数y =f (x )的图象关于点(a ,b )对称⇔f (a +x )+f (a -x )=2b ⇔2b -f (x )=f (2a -x );若函数y =f (x )满足f (a +x )+f (b -x )=c ,则y =f (x )的图象关于点⎝⎛⎭⎪⎫a +b 2,c 2成中心对称. 跟踪训练2(1)函数f (x )=e x -2-e 2-x 的图象关于() A .点(-2,0)对称B .直线x =-2对称 C .点(2,0)对称D .直线x =2对称 答案C解析∵f (x )=e x -2-e 2-x ,∴f (2+x )=e 2+x -2-e 2-(2+x )=e x -e -x ,f (2-x )=e 2-x -2-e 2-(2-x )=e -x -e x , 所以f (2+x )+f (2-x )=0,因此,函数f (x )的图象关于点(2,0)对称.(2)(2023·郑州模拟)若函数f (x )满足f (2-x )+f (x )=-2,则下列函数中为奇函数的是()A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+1答案D解析因为f(2-x)+f(x)=-2,所以f(x)关于点(1,-1)对称,所以将f(x)向左平移1个单位长度,再向上平移1个单位长度得到函数y=f(x+1)+1,该函数的对称中心为(0,0),故y=f(x+1)+1为奇函数.题型三两个函数图象的对称例3已知函数y=f(x)是定义域为R的函数,则函数y=f(x+2)的图象与y=f(4-x)的图象()A.关于直线x=1对称B.关于直线x=3对称C.关于直线y=3对称D.关于点(3,0)对称答案A解析设P(x0,y0)为y=f(x+2)图象上任意一点,则y0=f(x0+2)=f(4-(2-x0)),所以点Q(2-x0,y0)在函数y=f(4-x)的图象上,而P(x0,y0)与Q(2-x0,y0)关于直线x=1对称,所以函数y=f(x+2)的图象与y=f(4-x)的图象关于直线x=1对称.思维升华函数y=f(a+x)的图象与函数y=f(b-x)的图象关于直线x=b-a2对称.跟踪训练3设函数y=f(x)的定义域为R,则函数y=f(x-1)的图象与y=f(1-x)的图象()A.关于y轴对称B.关于x轴对称C.关于直线x=1对称D.关于直线y=1对称答案C解析A选项,函数y=f(x-1)关于y轴对称的函数为y=f(-x-1)≠f(1-x),故A错误;B选项,函数y=f(x-1)关于x轴对称的函数为y=-f(x-1)≠f(1-x),故B错误;C选项,函数y=f(x-1)关于直线x=1对称的函数为y=f(2-x-1)=f(1-x),故C 正确;D选项,函数y=f(x-1)关于直线y=1对称的函数为y=2-f(x-1)≠f(1-x),故D 错误.课时精练1.已知函数y=f(x)的图象经过点P(1,-2),则函数y=-f(-x)的图象必过点() A.(-1,2) B.(1,2)C.(-1,-2) D.(-2,1)答案A解析函数y=f(x)与y=-f(-x)的图象关于原点对称,又y=f(x)的图象经过点P(1,-2),则函数y=-f(-x)的图象必过点(-1,2).2.已知函数f(x)=2|x-a|的图象关于直线x=2对称,则a等于()A.1B.2C.0D.-2答案B解析函数y=2|x|的图象关于y轴对称,将函数y=2|x|的图象向右平移2个单位长度可得函数y=2|x-2|的图象,所以函数y=2|x-2|的图象关于直线x=2对称,故a=2.3.已知奇函数f(x)满足f(5)=1,且f(x-2)的图象关于x=3对称,则f(2025)等于()A.-1B.1C.0D.3答案B解析∵函数f(x-2)的图象关于直线x=3对称,∴f(x)的图象关于直线x=1对称,∴f(-x)=f(x+2),∵f(x)为奇函数,∴f(-x)=f(2+x)=-f(x),∴f(x+4)=f(x),∴f(x)是周期为4的周期函数,∴f(2025)=f(1)=f(5)=1.4.(2023·郑州质检)若函数f(x)满足f(-x)+f(x)=2,则下列函数是奇函数的是() A.f(x-1)-1B.f(x+1)+1C.f(x)-1D.f(x)+1答案C解析∵f(-x)+f(x)=2,∴f(x)的图象关于(0,1)对称,将y=f(x)的图象向下平移1个单位长度得函数y=f(x)-1的图象,该图象关于(0,0)对称,∴y=f(x)-1为奇函数.5.已知函数f(x+2)是R上的偶函数,且f(x)在[2,+∞)上恒有f(x1)-f(x2)x1-x2<0(x1≠x2),则不等式f(ln x)>f(1)的解集为()A.(-∞,e)∪(e3,+∞) B.(1,e2)C.(e,e3) D.(e,+∞)答案C解析因为函数f(x+2)是R上的偶函数,所以f(x)的图象关于直线x=2对称,在[2,+∞)上恒有f(x1)-f(x2)x1-x2<0(x1≠x2),当x1<x2时,f(x1)>f(x2),所以f(x)在[2,+∞)上单调递减,f(x)在(-∞,2)上单调递增,不等式f(ln x)>f(1)需满足|ln x-2|<|1-2|⇒1<ln x<3,解得e<x<e3.6.(多选)定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,则下列关于f(x)的结论中正确的有()A.f(x)的图象关于直线x=1对称B.f(x)在[0,1]上单调递增C.f(x)在[1,2]上单调递减D.f(2)=f(0)答案AD解析根据题意,若f(x+1)=-f(x),则f(x+2)=-f(x+1)=f(x),即f(x+2)=f(x),f(x)是周期为2的周期函数,则有f(2)=f(0),故D正确;若f(x+2)=f(x),且函数f(x)为偶函数,则有f(x+2)=f(-x),则函数f(x)的图象关于直线x=1对称,故A正确;f(x)在[-1,0]上单调递增,且函数f(x)为偶函数,则函数f(x)在[0,1]上单调递减,故B错误;f(x)在[-1,0]上单调递增,且f(x)是周期为2的周期函数,则函数f(x)在[1,2]上单调递增,故C错误.7.与f(x)=e x关于直线x=1对称的函数是________.答案y=e2-x解析f(x)=e x关于直线x=1对称的是f(2-x)=e2-x,即y=e2-x.8.(2022·江苏七市联考)写出一个同时具有性质①②③的函数f(x)=________.①f(x)是定义域为R的奇函数;②f(1+x)=f(1-x);③f(1)=2.答案2sin π2x(答案不唯一)解析由①②③可知函数f(x)是对称轴为x=1,定义域为R的奇函数,且f(1)=2,可写出满足条件的函数f(x)=2sin π2 x.9.已知函数f(x)=a·2x-2-x2x+2-x是奇函数.(1)求a的值,并解关于x的不等式f(x)>1 3;(2)求函数g(x)=2x+12x+2-x图象的对称中心.解(1)对任意的x∈R,2x+2-x>0,故函数f(x)的定义域为R,又因为函数f(x)=a·2x-2-x2x+2-x为奇函数,则f(0)=a-12=0,解得a=1,所以f(x)=2x-2-x2x+2-x,下面验证函数f(x)=2x-2-x2x+2-x为奇函数,f(-x)=2-x-2x2-x+2x=-f(x),故函数f(x)=2x-2-x2x+2-x为奇函数,由f(x)=2x-2-x2x+2-x=2x(2x-2-x)2x(2x+2-x)=4x-14x+1>13,得2·4x>4,即22x+1>22,所以2x+1>2,解得x>1 2,因此不等式f(x)>13的解集为⎝⎛⎭⎪⎫12,+∞.(2)g(x)=2x+12x+2-x=2·2x2x+2-x,则g(-x)=2·2-x2-x+2x,所以g(x)+g(-x)=2(2x+2-x)2x+2-x=2,因此函数g(x)=2x+12x+2-x图象的对称中心为(0,1).10.函数y =f (x )的图象关于点P (a ,b )成中心对称的充要条件是函数y =f (x +a )-b 为奇函数.(1)若f (x )=x 3-3x 2.求此函数图象的对称中心;(2)类比上述推广结论,写出“函数y =f (x )的图象关于y 轴成轴对称的充要条件是函数y =f (x )为偶函数”的一个推广结论.解(1)设函数f (x )=x 3-3x 2图象的对称中心为P (a ,b ),g (x )=f (x +a )-b , 则g (x )为奇函数,故g (-x )=-g (x ),故f (-x +a )-b =-f (x +a )+b , 即f (-x +a )+f (x +a )=2b ,即[(-x +a )3-3(-x +a )2]+[(x +a )3-3(x +a )2]=2b . 整理得(3a -3)x 2+a 3-3a 2-b =0,故⎩⎨⎧3a -3=0,a 3-3a 2-b =0,解得⎩⎨⎧a =1,b =-2,所以函数f (x )=x 3-3x 2图象的对称中心为(1,-2).(2)推论:函数y =f (x )的图象关于直线x =a 成轴对称的充要条件是函数y =f (x +a )为偶函数.11.(多选)已知函数y =f (x ),x ∈R ,下列4个命题中是真命题的是() A .若y =f (x +1)为偶函数,则f (x )的图象自身关于直线x =1对称 B .函数f (x -1)与f (1-x )的图象关于直线x =1对称C .若f (x )为奇函数,且f (x +2)=-f (x ),则f (x )的图象自身关于点(1,0)对称D .若f (x )为奇函数,且f (x )=f (-x -2),则f (x )的图象自身关于直线x =1对称 答案ABD解析对于A ,若y =f (x +1)为偶函数,其函数图象关于直线x =0对称,故y =f (x +1)的图象向右平移1个单位长度得f (x )的图象,故f (x )的图象自身关于直线x =1对称,正确;对于B ,将f (x )的图象向右平移1个单位长度,可得f (x -1)的图象,将f (x )的图象关于y 轴对称得f (-x )的图象,然后将其图象向右平移1个单位长度得f (1-x )的图象,故f (x -1)与f (1-x )的图象关于直线x =1对称,故正确;对于C ,若f (x )为奇函数,且f (x +2)=-f (x )=f (-x ),故f (x +1)=f (1-x ),所以f (x )的图象自身关于直线x =1对称,故不正确;对于D ,因为f (x )为奇函数,且f (x )=f (-x -2),故f (x +2)=-f (x )=f (-x ),所以f (x )的图象自身关于直线x =1对称,故正确.12.已知函数f (x )满足f (x +2)是偶函数,若函数y =|x 2-4x -5|与函数y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则横坐标之和x 1+x 2+…+x n =________. 答案2n解析因为f (x +2)是偶函数,所以函数f (x +2)的图象关于直线x =0对称, 又因为函数f (x +2)向右平移2个单位长度得到函数f (x )的图象, 所以函数f (x )的图象关于直线x =2对称, 因为y =|x 2-4x -5|=|(x -2)2-9|,所以函数y =|x 2-4x -5|的图象也关于直线x =2对称, 所以x 1+x 2+…+x n =n2·4=2n .13.已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x ,x >0,-x 2-4x ,x ≤0,则此函数图象上关于原点对称的点有()A .0对B .1对C .2对D .3对 答案B解析作出函数y =f (x )的图象,如图所示,再作出-y =f (-x ),记为曲线C ,由图象可知,满足条件的对称点只有一对,图中的A ,B 就是符合题意的点. 14.已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -2-4,x ≤2,2x -2-4,x >2,则满足f (2+log 4x )>f (1-log 4x )的x 的取值范围是()A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,2 C .(0,2) D .(2,+∞)答案A解析当x ≤2时,f (x )=⎝ ⎛⎭⎪⎫12x -2-4=22-x -4=2|x -2|-4,当x >2时,f (x )=2x -2-4=2|x -2|-4, 所以对任意的x ∈R ,f (x )=2|x -2|-4,则f (4-x )=2|4-x -2|-4=2|x -2|-4=f (x ),所以函数f (x )的图象关于直线x =2对称, 因为函数f (x )在[2,+∞)上单调递增,由f (2+log 4x )>f (1-log 4x )可得|2+log 4x -2|>|1-log 4x -2|,即|log 4x |>|1+log 4x |,不等式|log 4x |>|1+log 4x |两边平方得log 4x <-12,解得0<x <12.。

一个代数不等式的几何证法

一个代数不等式的几何证法

一个代数不等式的几何证法不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。

步骤/方法比较法比较法是证明不等式的最基本方法,具体有作差比较和作商比较两种。

基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。

当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)基准1未知a+b0,澄清:a3+b3a2b+ab2分析:由题目观察知用作差比较,然后提取公因式,结合a+b0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。

∵(a3+b3)?(a2b+ab2)=a2(a-b)-b2(a-b)=(a-b)(a2-b2)证明: =(a-b)2(a+b)又∵(a-b)20(a-b)2(a+b)0即a3+b3a2b+ab2例2 设a、br+,且ab,求证:aabbabba分析:由澄清的不等式所述,a、b具备轮休对称性,因此可以在设a0的前提下用做商比较法,作商后同1比较大小,从而达至证明目的,步骤就是:10作商20商形整理30推论为与1的大小证明:由a、b的对称性,不妨解a0则aabbabba=aa-b?bb-a=(ab)a-b∵a?b?0,ab?1,a-b?0(ab)a-b?(ab)0=1即aabbabba1,又abba0aabbabba练习1 已知a、br+,nn,求证(a+b)(an+bn)2(an+1+bn+1)基本不等式法利用基本不等式及其变式证明不等式就是常用的方法,常用的基本不等式及变形存有:(1)若a、br,则a2+b22ab(当且仅当a=b时,取等号)(2)若a、br+,则a+b 2ab (当且仅当a=b时,挑等号)(3)若a、b同号,则 ba+ab2(当且仅当a=b时,取等号)基准3 若a、br, |a|1,|b|1则a1-b2+b1-a21分析:通过观察可直接套用: xyx2+y22证明:∵a1-b2b1-a2a2+(1-b2)2+b2-(1-a2)2=1b1-a2+a1-b21,当且仅当a1+b2=1时,等号成立练2:若 a?b?0,证明a+1(a-b)b3综合法综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。

例谈题根在数学解题中的应用——以对数均值不等式为例

例谈题根在数学解题中的应用——以对数均值不等式为例

3_¥)故学敉学2021年第3期例谈题根在数学解题中的应用----以对数均值不等式为例张国治(新疆生产建设兵团第二中学,新疆乌鲁木齐83_2)笔者通过对近几年高考、竞赛试题的研究,有一个很有趣的发现——许多试题来源于 同一个问题.我们可以把这类不断生长的问题 称为“题根题根是一个题族、一个题系中的 源头,也是一个题群中的典例.把握住了一个 题根,叩源推委,便能寻觅到解决问题的“金钥 匙”,进而辐射到一个题族、题群.以题根方式 展开教学,旨在寻找解题思维入口,通过题根 的变式拓展探求不同的解法,帮助学生理解问 题内涵,总结归纳.那么如何寻找“题根”呢? 将源于课本、高考、竞赛的题目进行提炼与升 华形成结论,然后再将其广泛应用于解题实践 中,这便是寻找题源的不二法门.这一过程意 义非凡,因为茫茫题海中很多题目表象不同,但实质一样(可归结于同一个题根或题源).一 个题源加工而成的结论,其功效不亚于教材中 的一个定理,寻找“题根”需要八方联系,浑然一 体.笔者以一道竞赛题为例,探源溯流,给出一类 高考题、竞赛题命题的题根,多题归一,提供一种 高效学习数学的方法,敬请同行指正.[1]题根(2017年全国高中数学联赛湖南省 预赛第15题)[2]已知a、6 e 11且〇 > 0, i > Q,a #b.(i)求证:#(2)如果 a、6 是函数/(a:) = lnx -的两个零点,求证> e2.证法 1:如图 1,设/(*) = e*,x e [m,n],其中双m,0),B(n,0),过点分别作x轴的垂线,交曲线于c、Z)两点.点)处的切线/分别交BC、于点£、f,则f c pJ f=6〒,所以/:7 1梯形从一(j£+J f)=(n-m*n^l)e ,•^曲边梯形A sa) =| g dx =e一 e , *S梯形^ m数感是《义务教育数学课程标准(2011 版)》中的十大核心概念之一,对运算结果的估 计是数感的一种重要体现.估计(估算)在三个 学段都有明确具体的目标要求,其中在第三学 段(7-9年级)的知识技能目标对运算(包括估 算)技能的要求是达到掌握层级.固然,计算的 准确性是数学学科的基本要求之一,运算能力 是典型的数学能力,但其内涵已发生了变化.运 算能力不仅指能够“正确地从事运算”,还包括 借助工具计算和手算,也包括精确计算和估算[2].作为一线的数学教师,应该充分理解课标 的价值理念,在日常的教学中应该给“估算”留一席之地.准确、标准的答案是我们数学人的追求,但“估算”是数学运算中不可或缺的组成部分估算”过程中所体现出的发散式调适与思考,正是学生创新意识形成、创新能力培养的一个有效载体.参考文献[1]中华人民共和国教育部.义务教育数 学课程标准(2011版)[S].北京:北京师范大学出版社,2012.[2]马复,凌晓枚.新版课程标准解析与 教学指导[M].北京:北京师范大学出版社,2012.2021年第3期故学敉学3-41n - m . 、 n — m / m …、 _ ...2 (yA + J b ) = 2 (e + e )•显然有S 梯形y l B E F < $曲边梯形/I B C D < S 梯形A f i C Z ),艮Pm +nr j一)(n - m ) e 2 < en - em < —-—(em + e n),1_•设%> 1,则欲证不等式成立等价于证明21n % < i ---(x > 1).构造函数则e 宁<^<n - m a2,令 en = a ,可得< , , , - ^In a - lno 2证法2:(1)由对称性,不妨设a > 6 > 0,^ a - b a + b a - b a + l 先证^-----TT < —•因为^----— <In a - Ini 2 〇 In a - Ini >2(a - b )^ a ^In a - \nb 2a + ba—+设% = T > 1,则欲证不等式成立等价于〇证明lnx > ^l l (x > 1}.X + l构造函数/(尤)=lnx - ^~~> 1),则作)=(n因为* > 1,所以尸(*) >x(x + 1)0,/(X )在(1,+ =C )上为单调递增函数,由 f i x ) >/〇) = 0,即得lm > 1),即<In a - In 62再证#< , a ~ f -,-.因为# <In a - Ini In a - Inia<=> In a - In 6 <y 〇b<=> In — <g 〇) = 21m -卜 一(% > 1),则g '(x ) =- (% -J )<〇,因此g U )在(1, + 〇〇)上为单调递减函数.办)<g (l ) = 0,即得21n % < (a :---1 (x > 1),即y 〇b <a综上可知,#<In a - Inia -b In a - Ini2以上结论反映了对数平均与算术平均、几何平均的大小关系,我们知道两个正数a 、6的 对数平均定义:L (a , b ) = jlna - ln 6 () ’la(a = b ).则当 a >〇,i >〇,有<In a - Ini—^一,^^<[(16)<-^—(当且仅当〇=6时,等号成立).若令 lna =文!,Ini =%2,贝l j d = e*1,6 = e*2, < —z —等价于^^?J~a b <In a — Ini 2?V 2__*2 丄 ^2‘1—,利用该不等式,可x X pL e - e " e •十 ee 2 < ------- < —-xx - x 2 2以轻松获解该题的第(2)小题:证明:定义域为(〇, +〇〇 ),尸(%) 1 2017 -x2017 2黯•若p2〇17,则/,(,)= 0;若* e (0,2017),则尸〇) >0,函数/(;〇单调递 增;若;c e (2017, + 〇〇 ),则尸(无)< 0,函数3-42故学敉学2021年第3期/(幻单调递减.由对称性,不妨设 a >6> 〇,则可得〇< 6<2017 <a.由条件知,ln a= 且ln6=故 lna- ln6(a-6),即2017由对数均值不等式得2017即a + 6 > 2 x 2017.-bIn a - Inia -bIn a - In6= 2017,<2 ,1iia;,a:2= \nxl+ \nx2= m(x l+ x2)> 2m•— = 2,所以a:丨a:2> e*12.m评注:不难发现,例1第(2)小题是题根第(2)小题的一般情况,事实上,由对数均值不等,______ 1 X] ~X22J x x x2<—=---------------,艮p<m lnxj -m x2-7,可见必有〇< m < i.m e因为lnafc= In a+ In6 =----(a+ 6) >2017 》^x 2x 2017 = 2,所以d> e2.下面举例说明此题根在高考、竞赛、模考中的应用,也进一步洞悉此类问题的编拟奥秘.类型1直接用对数均值不等式例1(2016年全国高中数学联赛湖南省预赛第15题)[3]已知函数/(幻=i l n x-(1)若m =」2时,求函数/(幻的所有零点;(2)若/(4有两个极值点心、巧,且x, < 尤2•求证:丨内> e2.解析:(1)当m =-2时,/(幻=;*111»:+;*:2-x = x( \nx + x -l) (x> 0). i^,p(x)=ln% + x -1(«:> 0),则p'(A〇=丄+ 1> 0,于是p(a〇在X(〇, + «>)上为增函数.又P(1) = 0,所以,当m =-2时,函数/(幻有唯一的零点a; = 1.(2)若/(x)有两个极值点x,、*2,则导函数/'(*)有两个零点h h•由/'U)= In* -m*,可知例2(2018年全国高中数学联赛福建省预赛第14题)[4]已知/U)= e* -似.(1)当x > 0时,不等式Q-2)/(幻+ m*2+ 2> 0恒成立,求实数m的取值范围;(2)若力、*2是/(幻的两个零点,证明:A C, + A;2> 2.解析:(1)略.(2)证明:由题可得/U)= /U2) = 〇,即I e*' = m x., t _x x,x得。

不等式的性质和解法

不等式的性质和解法
应用举例:例如,若x > y且z > w,则x + z > y + w。
注意点:此性质可以推广到多个数的加法。例如,若a_1 > b_1,a_2 > b_2,...,a_n > b_n,则a_1 + a_2 + ... + a_n > b_1 + b_2 + ... + b_n。
性质3:乘法性质
性质3:乘法性质 性质4:加法性质 性质5:乘方性质 性质6:开方性质
力学:解决受力平衡问题,如物体 在重力、弹力、摩擦力作用下的运 动状态。
在物理中的应用
电磁学:研究电流、电压、电阻之 间的关系,以及电磁波的传播规律。
添加标题
添加标题
添加标题
添加标题
热学:比较不同温度下的压力、体 积等物理量,用于计算热力学性质。
光学:解释光的干涉、衍射等现象, 以及光学仪器的设计原理。
性质1:传递性
性质1:传递性
性质2:加法性质
性质3:乘法性质
性质4:同号得正,异号得负
性质2:加法性质
定义:如果a > b且c > d,则a + c > b + d。
证明:因为a > b,所以a - b > 0;因为c > d,所以c - d > 0。将两不等式相 加,得到(a - b) + (c - d) > 0,即a + c > b + d。
几何方法需要熟 练掌握数轴和坐 标系的基本概念, 以及不等式的几 何意义。
几何方法在数学 教学中广泛应用, 是解决不等式问 题的一种重不等式转化为等式进行求解 适用范围:适用于含有多个未知数的不等式 步骤:设定参数、建立等式、求解等式、回代求解不等式 注意事项:参数的取值范围需满足不等式的约束条件

高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

为函数 y=1x在(-∞,0)上单调递减,a<b<0,所以1a>1b,
故 D 正确.
答案:D
5.若 x>1,y>2,则: (1)2x+y>________; (2)xy>________. 解析:(1)x>1⇒2x>2,2x+y>2+2=4;(2)xy>2. 答案:(1)4 (2)2
类型 1 用不等式(组)表示不等关系 [典例 1] 分别写出满足下列条件的不等式: (1)一个两位数的个位数字 y 比十位数字 x 大,且这 个两位数小于 30; (2)某电脑用户计划用不超过 500 元的资金购买单价 分别为 60 元的单片软件 x 片和 70 元的盒装磁盘 y 盒.根 据需要,软件至少买 3 片,磁盘至少买 2 盒. 解:(1)y>x>0,30>10x+y>9,且 x,y∈N*; (2)x≥3,y≥2,60x+70y≤500,且 x,y∈N*.
同向 5
可加性
ac>>db⇒a+c⑫>b+d
同向同正 6
可乘性
ac>>db>>00⇒ac⑬>bd
7
可乘方性 a>b>0⇒an>bn(n∈N,n≥1)
8
可开方性
nn
a>b>0⇒ a> b(n∈N,n≥2)
[思考尝试·夯基] 1.思考义是指 x 不小于 2.( ) (2)若 a<b 或 a=b 之中有一个正确,则 a≤b 正 确.( ) (3)若 a>b,则 ac>bc 一定成立.( ) (4)若 a+c>b+d,则 a>b,c>d.( )
解析:(1)正确.不等式 x≥2 表示 x>2 或 x=2,即 x 不小于 2,故此说法是正确的.(2)正确.不等式 a≤b 表示 a<b 或 a=b.故若 a<b 或 a=b 中有一个正确,则 a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式 两端同乘以一个正数时,不等号方向不变,因此由 a>b, 则 ac>bc,不一定成立,故此说法是错误的.(4)错误.取 a=4,c=5,b=6,d=2,满足 a+c>b+d,但不满足 a >b,故此说法错误.

几个重要不等式与不等式的证明

几个重要不等式与不等式的证明

几个重要不等式与不等式的证明蔡玉书(江苏省苏州市第一中学,215006) 收稿日期:2008-09-16 修回日期:2009-02-17 (本讲适合高中)在不等式的证明中,重要不等式的使用是不等式证明的常用方法.1 几个重要不等式这里所说的几个重要不等式是指:均值不等式 设a 1,a 2,…,a n 都是正数.则a 1+a 2+…+a nn≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.柯西不等式 设a 1,a 2,…,a n ;b 1,b 2,…,b n 是两组实数.则(∑ni =1a 2i)(∑ni =1b 2i)≥(∑ni =1a ib i)2,当且仅当a i =kb i (i =1,2,…,n )时,等号成立.下列柯西不等式的三个变形在解题中有相当大的作用.变形1 设a 1,a 2,…,a n ;b 1,b 2,…,b n 是两组正实数.则∑ni =1a 2ib i≥(∑ni =1a i)2∑ni =1bi.变形2 设a 1,a 2,…,a n ;b 1,b 2,…,b n是两组正实数.则∑ni =1a ib i≥(∑ni =1a i )2∑ni =1a i bi.变形3 设a 1,a 2,…,a n ;b 1,b 2,…,b n是两组正实数.则∑ni =1a i·∑ni =1bi≥∑ni =1a ib i .Schur 不等式 设x 、y 、z ≥0,r 是实数.则x r(x -y )(x -z )+y r(y -x )(y -z )+z r(z -y )(z -x )≥0.当r =1时,Schur 不等式有几种变形:(1)x 3+y 3+z 3-(x 2y +xy 2+x 2z +xz 2+y 2z +yz 2)+3xyz ≥0;(2)(x +y +z )3-4(x +y +z )·(yz +zx +xy )+9xyz ≥0;(3)xyz ≥(x +y -z )(y +z -x )(z +x -y ).契比雪夫不等式 设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n ,则∑ni =1a i∑ni =1bi≤n∑ni =1a ib i;设a 1≤a 2≤…≤a n ,b 1≥b 2≥…≥b n ,则∑ni =1a i∑ni =1bi≥n∑ni =1a ib i.2 例题选讲在证明不等式时,要特别注意两点:(1)所给条件的综合变形与运用重要不等式的配合;(2)运用其他方法或技巧与运用重要不等式的配合.例1 设a 、b 、c 是正数,且ab +bc +ca =3.求证:11+a 2(b +c )+11+b 2(c +a )+11+c 2(a +b )≤1abc.(2008,罗马尼亚国家集训队试题)证明:依题设,由均值不等式得ab+bc+ca=3≥33(abc)2,即 abc≤1.故11+a2(b+c)≤1abc+a2(b+c)=1a(ab+bc+ca)=13a.同理,11+b2(c+a)≤1 3b,11+c2(a+b)≤1 3c.以上三式相加得11+a2(b+c)+11+b2(c+a)+11+c2(a+b)≤1 31a+1b+1c=ab+bc+ca3abc=1abc.注:本题巧妙地利用已知条件和均值不等式将不等式左边的分母中的1换成较小的abc,实现了转化.例2 设x、y、z是正实数,且x+y+z =3.证明:x3 y3+8+y3z3+8+z3x3+8≥19+227(xy+yz+zx).(2008,伊朗数学奥林匹克)证明:由均值不等式得x3 y3+8+y+227+y2-2y+427≥33x3y3+8·y+227·y2-2y+427=x3.同理,y 3z3+8+z+227+z2-2z+427≥y3,z3 x3+8+x+227+x2-2x+427≥z3.以上三式相加,并注意到x+y+z=3,得x3 y3+8+y3z3+8+z3x3+8≥4 9-127(x2+y2+z2)=19+9-(x2+y2+z2)27=19+(x+y+z)2-(x2+y2+z2)27=19+227(xy+yz+zx).注:本题巧妙地将分母进行了因式分解,并且通过考察不等式等号成立的充要条件,调整因式前面的系数,达到证明的目的.例3 设x、y、z是非负数,且x2+y2+z2=3.证明:xx2+y+z+yy2+z+x+zz2+x+y≤3.(2008,乌克兰数学奥林匹克)证明:由柯西不等式得3(x2+y2+z2)≥(x+y+z)2.因为x2+y2+z2=3,所以,x2+y2+z2≥x+y+z.①由柯西不等式得(x2+y+z)(1+y+z)≥(x+y+z)2.于是,只要证明x1+y+z+y1+z+x+z1+x+yx+y+z≤3.再由柯西不等式得(x1+y+z+y1+z+x+z1+x+y)2=(x·x+xy+zx+y·y+yz+xy+z·z+zx+xy)2≤(x+y+z)[(x+xy+zx)+ (y+yz+xy)+(z+zx+xy)]=(x+y+z)[(x+y+z)+2(xy+yz+zx)]≤(x+y+z)[x2+y2+z2+2(xy+yz+zx)]=(x+y+z)3.故x1+y+z+y1+z+x+z1+x+yx+y+z≤x+y+z.由不等式①得x+y+z≤x2+y2+z2= 3.因此,不等式得证.注:先局部使用柯西不等式,将分母化为相同,再继续使用柯西不等式进行放缩,从而达到证明的目标.例4 设a、b、c∈16,+∞,且a2+b2+c2=1.证明:1+a22a2+3ab-c2+1+b22b2+3bc-a2+1+c22c2+3ca-b2≥2(a+b+c).(2007,乌克兰国家集训队试题)证明:由柯西不等式得(2a2+3ab-c2+2b2+3bc-a2+2c2+3ca-b2)·a22a2+3ab-c2+b22b2+3bc-a2+c22c2+3ca-b2≥(a+b+c)2,①(2a2+3ab-c2+2b2+3bc-a2+2c2+3ca-b2)2≤(1+1+1)[(2a2+3ab-c2)+ (2b2+3bc-a2)+(2c2+3ca-b2)] =3[(a2+b2+c2)+3(ab+bc+ca)].②又由均值不等式得a2+b2+c2≥ab+bc+ca.故4(a+b+c)2≥3(a2+b2+c2)+9(ab+bc+ca).③由式②、③得2a2+3ab-c2+2b2+3bc-a2+2c2+3ca-b2≤2(a+b+c).④由式①、④得a22a2+3ab-c2+b22b2+3bc-a2+c22c2+3ca-b2≥12(a+b+c).⑤由柯西不等式得(2a2+3ab-c2+2b2+3bc-a2+2c2+3ca-b2)·12a2+3ab-c2+12b2+3bc-a2+12c2+3ca-b2≥(1+1+1)2=9.⑥注意到a2+b2+c2=1,由柯西不等式得9=9(a2+b2+c2)≥3(a+b+c)2.⑦由式④、⑥、⑦得12a2+3ab-c2+12b2+3bc-a2+12c2+3ca-b2≥3(a+b+c)2.⑧⑤+⑧得1+a22a2+3ab-c2+1+b22b2+3bc-a2+1+c22c2+3ca-b2≥2(a+b+c).注:将原不等式拆成两个后,分别采用柯西不等式进行处理,恰到好处.例5 已知a、b、c都是正实数.证明:(a+b)3+4c3≥4(a3b3+b3c3+c3a3).(2008,波兰数学奥林匹克)证明:由均值不等式和柯西不等式得(a+b)3+4c3=a3+b3+3a2b+3ab2+4c3=2(a2b+ab2)+(a2+b2)(a+b)+4c3≥4a3b3+(a32+b32)2+4c3≥4a3b3+4c32(a32+b32)=4(a3b3+b3c3+c3a3).注:在使用两个不等式时,应注意保证等号能够成立.证明之雅,使人回味无限.例6 设x、y、z都是正数,且x+y+z≥1.证明:x xy+z+y yz+x+z zx+y≥32.(2003,摩尔多瓦国家集训队试题)证明:由均值不等式得x32+y32+y32≥3x12y,x32+z32+z32≥3x12z.相加得2(x32+y32+z32)≥3x12(y+z).故xy+z≥3x322(x32+y32+z32).同理,yz+x≥3y322(x32+y32+z32),z x +y≥3z322(x 32+y 32+z32).于是,要证明原不等式只要证明x 2+y 2+z2x 32+y 32+z32≥13Ζ3(x 2+y 2+z 2)2≥(x 32+y 32+z 32)2.由柯西不等式得(x 2+y 2+z 2)(x +y +z )≥(x 32+y 32+z 32)2,3(x 2+y 2+z 2)≥(x +y +z )2≥x +y +z .两个不等式相乘即得.注:利用均值不等式将三个式子作对称化处理,为后面巧妙地应用柯西不等式做好了充分的准备.例7 设a 、b 、c 是正数.求证:1+4a b +c 1+4b c +a 1+4c a +b >25.(2008,波斯尼亚数学奥林匹克)证明:注意到1+4a b +c 1+4b c +a 1+4c a +b>25Ζ(b +c +4a )(c +a +4b )(a +b +4c )>25(a +b )(b +c )(c +a )Ζa 3+b 3+c 3+7abc>a 2b +ab 2+b 2c +bc 2+c 2a +ac 2.由Schur 不等式得a 3+b 3+c 3+3abc≥a 2b +ab 2+b 2c +bc 2+c 2a +a 2c .从而,不等式得证.注:在最近几年的数学竞赛中,Schur 不等式已经被普遍使用,希望引起大家的重视.例8 设x 、y 、z 是正实数.求证:xy z +yz x +zxy>23x 3+y 3+z 3.(2008,中国国家集训队测试题)证明:设xy z =a 2,yz x =b 2,zx y=c 2.因为x 、y 、z 是正实数,所以,x =ca ,y =ab ,z =bc .于是,原不等式化为a 2+b 2+c 2>23a 3b 3+b 3c 3+c 3a 3,即 (a 2+b 2+c 2)3>8(a 3b 3+b 3c 3+c 3a 3)Ζa 6+b 6+c 6+3(a 4b 2+a 2b 4+b 4c 2+b 2c 4+c 4a 2+c 2a 4)+6a 2b 2c2 >8(a 3b 3+b 3c 3+c 3a 3).由Schur 不等式得a 6+b 6+c 6+3a 2b 2c 2>a 4b 2+a 2b 4+b 4c 2+b 2c 4+c 4a 2+c 2a 4.①由均值不等式得a 4b 2+a 2b 4≥2a 3b 3,b 4c 2+b 2c 4≥2b 3c 3,c 4a 2+c 2a 4≥2c 3a 3.以上三式相加得a 4b 2+a 2b 4+b 4c 2+b 2c 4+c 4a 2+c 2a4≥2(a 3b 3+b 3c 3+c 3a 3).②又a 2b 2c 2>0.③①+4×②+3×③得a 6+b 6+c 6+3(a 4b 2+a 2b 4+b 4c 2+b 2c 4+c 4a 2+c 2a 4)+6a 2b 2c2>8(a 3b 3+b 3c 3+c 3a 3).注:分析法的使用为证明打开了大门,变量代换为Schur 不等式的使用铺平了道路.例9 已知a 、b 、c 是正数,且a +b +c =1.证明:1bc +a +1a+1ca +b +1b+1ab +c +1c≤2731.(2008,克罗地亚数学奥林匹克)证明:注意到1bc +a +1a+1ca +b +1b+1ab +c +1c≤2731Ζ9a 2+9abc +9-31a a 2+abc +1+9b 2+9abc +9-31bb 2+abc +1+9c 2+9abc +9-31c c 2+abc +1≥0.不妨设a ≥b ≥c .显然9(a +b )<31.容易证明9a2+9abc+9-31a≤9b2+9abc+9-31b≤9c2+9abc+9-31c.故a2+abc+1≥b2+abc+1≥c2+abc+1,即 1a2+abc+1≤1b2+abc+1≤1c2+abc+1.由契比雪夫不等式有39a2+9abc+9-31aa2+abc+1+9b2+9abc+9-31bb2+abc+1+9c2+9abc+9-31cc2+abc+1≥[(9a2+9abc+9-31a)+(9b2+9abc+ 9-31b)+(9c2+9abc+9-31c)]·1a2+abc+1+1b2+abc+1+1c2+abc+1.于是,只要证明(9a2+9abc+9-31a)+(9b2+9abc+9-31b)+(9c2+9abc+9-31c)≥0 Ζ9(a2+b2+c2)+27abc+27-31(a+b+c)≥0.又a+b+c=1,只要证明9(a2+b2+c2)+27abc-4≥0Ζ9(a2+b2+c2)(a+b+c)+27abc-4(a+b+c)3≥0Ζ5(a3+b3+c3)-3(a2b+ab2+b2c+bc2+c2a+ac2)+3abc≥0.①由Schur不等式得a3+b3+c3+3abc≥a2b+ab2+b2c+bc2+c2a+a2c.②由均值不等式得a3+b3+c3≥3abc.③②×3+③×2得不等式①.从而,原不等式得证.注:本题难度相当大.首先用分析法将不等式化为等价的不等式进行证明,也为利用契比雪夫不等式做好了充分的准备,Schur不等式和均值不等式的使用为最后的证明锦上添花.例10 已知x、y、z是正数,且x+y+z =1,k是正整数.证明:x k+2x k+1+y k+z k+yk+2y k+1+z k+x k+zk+2z k+1+x k+y k≥17.(2007,南斯拉夫数学奥林匹克)证明:不妨设x≥y≥z.则x k≥y k≥z k.由契比雪夫不等式得3(x k+1+y k+1+z k+1)≥(x+y+z)(x k+y k+z k).①因为x≥y≥z,所以,x k+1+y k+z k≤y k+1+z k+x k≤z k+1+x k+y k.事实上,由x≥y≥z,有x k-1≥y k-1≥z k-1,x(1-x)-y(1-y)=x(y+z)-y(z+x)=z(x-y)≥0,即 x(1-x)≥y(1-y).从而,x k(1-x)≥y k(1-y).所以,x k+1+y k+z k≤y k+1+z k+x k.同理,y k+1+z k+x k≤z k+1+x k+y k.故xk+1x k+1+y k+z k≥y k+1y k+1+z k+x k≥z k+1z k+1+x k+y k.由契比雪夫不等式得x k+2x k+1+y k+z k+yk+2y k+1+z k+x k+zk+2z k+1+x k+y k≥13(x+y+z)xk+1x k+1+y k+z k+y k+1y k+1+z k+x k+zk+1z k+1+x k+y k=13x k+1x k+1+y k+z k+y k+1y k+1+z k+x k+z k+1z k+1+x k+y k =13x k+1x k+1+y k+z k+y k+1y k+1+z k+x k+z k+1z k+1+x k+y k·[(x k+1+y k+z k)+(y k+1+z k+x k)+(z k+1+x k+y k)]·1x k+1+y k+1+z k+1+2(x k+y k+z k)≥x k +1+y k+1+z k+1x k+1+y k+1+z k+1+2(x k+y k+z k)=x k+1+y k+1+z k+1x k+1+y k+1+z k+1+2(x+y+z)(x k+y k+z k)≥x k +1+y k+1+z k+1x k+1+y k+1+z k+1+2×3(x k+1+y k+1+z k+1)=1 7 .最后一步用的是不等式①.注:条件x+y+z=1是用来调整不等式的次数的.这里多次采用排序,使用契比雪夫不等式,使得证明完美.练习题1.设x1,x2,…,x n是正实数,n是正整数.证明:∏n i=1(1+x1+x2+…+x i)≥(n+1)n+1x1x2…x n. (2007,俄罗斯数学奥林匹克)(提示:对元素y1=x11+x1,y2=x2(1+x1)(1+x1+x2),y3=x3(1+x1+x2)(1+x1+x2+x3),……y n=x n(1+x1+…+x n-1)(1+x1+…+x n-1+x n),y n+1=11+x1+…+x n-1+x n应用均值不等式.)2.已知a、b、c都是正数,且ab+bc+ca =1.证明:a3+a+b3+b+c3+c≥2a+b+c.(2008,伊朗国家集训队试题)(提示:用条件ab+bc+ca=1将问题化为证明a(a+b)(c+a)+b(a+b)(b+c)+c(c+a)(b+c)≥2(a+b+c)(ab+bc+ca),之后应用柯西不等式和Schur不等式.)3.设a、b、c∈R+,且abc=1.证明:1b(a+b)+1c(b+c)+1a(c+a)≥32.(2008,塔吉克斯坦数学奥林匹克)(提示:先作变换a=xy,b=yz,c=zx,再用柯西不等式和均值不等式.)4.设a、b、c、d是正数,且1a+1b+1c+1d =4.证明:3a3+b32+3b3+c32+3c3+d32+3d3+a32≤2(a+b+c+d)-4.(2007,波兰数学奥林匹克)(提示:先用分析法证明3a3+b32≤a2+b2a+b.再用柯西不等式.)5.设a≥b≥c>0,x≥y≥z>0.证明:a2x2(by+cz)(bz+cx)+b2y2(cz+ax)(cx+az)+c2z2(ax+by)(ay+bx)≥34.(2000,韩国数学奥林匹克)(提示:先用均值不等式,再用柯西不等式和契比雪夫不等式.)6.已知x1,x2,…,x n是正实数,满足∑ni=1x i =∑ni=11x i.证明:∑ni=11n-1+x i≤1.(2007,波兰等国联合数学竞赛)(提示:令yi=1n-1+x i.利用柯西不等式结合反证法加以证明.)欢迎订阅《中等数学》2009年第6期:服务于全国高中数学联赛的专刊。

不等式的性质与图像

不等式的性质与图像

不等式的性质
加法性
不等式两边同时 加(减)一个数, 不等号方向不变
传递性
若a>b且b>c, 则a>c
乘法性
不等式两边同时 乘(除)一个正 数,不等号方向 不变;乘(除) 一个负数,不等
号方向反转
不等式的解法
一元一次不 等式
化简、整理、判 断正负号
含绝对值不 等式
分情况讨论
多元不等式
用最小值或最大 值进行比较
不等式的变形
换元方法
将不等式中的变 量通过代入或替
换等方法转化
合并同类项
将不等式中的同 类型项合并,简
化计算过程
分式化简
将不等式中的分 式部分化简成整
式形式
不等式的证明方法
证明不等式的成立是数学推理的重要体现。通过 数学归纳法、反证法等方法,可以验证不等式在 特定条件下的有效性。掌握不同证明方法对于提 高数学逻辑推理能力至关重要。
不等式的应用拓展
01 数学竞赛
不等式理论在竞赛中常用于解决复杂问题, 提高得分率
02 科学研究
通过不等式推导,可以总结规律、优化方案, 推动科研进展
03 社会政策
应用不等式理论,优化社会分配方案,提高 资源利用效率
不等式的总结
基本性质
不等式性质和等式相似, 但具有更灵活的计算操作
解法方法
变形技巧、证明方法等多 种方式可解决不等式问题
不等式与代数几何
几何形态分 析
空间图像解读
解决问题
多变量关系
应用案例
立体几何问题
不等式在实际问题中的应用
01 生活中的应用
资源分配问题
02 工程案例
最优设计方案

高考数学一轮复习第六章不等式推理与证明6.1不等式的性质及一元二次不等式课件理

高考数学一轮复习第六章不等式推理与证明6.1不等式的性质及一元二次不等式课件理

合A,再求解.
(2)利用指数函数的性质,将原不等式化为关于x的一元
二次不等式求解即可.
【规范解答】(1)选C.A={x|1<x<3}, B={x|2<x<4}, 故A∩B={x|2<x<3}.
(2)因为4=22且y=2x在R上单调递增,所以 <4可化
为x2-x<2,解得-1<x<2.所以 <4的解集是 a(x 1 ) a
B.2个
C.433个,
D.4个
【解析】选C.运用倒数性质,
由a>b,ab>0可得 {x|2x
4}.
②④正确.又正数大于3 负数,①正确,③错误.
2.如果a,b,c满足c<b<a,且ac<0,那么下列选项中不一
定成立的是 ( )
A.ab>ac
B.c(b-a)>0
C.cb2<ab2
D.ac(a-c)<0
A.n>m>p
B.m>p>n
C.m>n>p
D.p>m>n
【解题导引】(1)根据已知条件可判断出x和z的符号, 然后由不等式的性质便可求解. (2)根据不等式性质和函数单调性求解.
【规范解答】(1)选C.因为x>y>z,x+y+z=0,所以x>0,
z<0.所以由 1 可得xy>xz. (2)选B.因为ax >1,所以a2+1-2a=(a-1)2>0,即a2+1>2a,
第六章 不等式、推理与证明 第一节
不等式的性质及一元二次不等式
ab
1

a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于xx和xx2的两个对称不等式的
证明
今天我们要谈论的是关于xx和xx2的两个对称不等式,如果你是数学爱好者,一定非常熟悉它。

它们分别是 xx 与xx2的不等式。

对称不等式是一种很有趣的数学挑战,也被称为不等式阵列,就是通过调整不
同的变量,使其成立保持原样。

首先,让我们来看看关于xx和xx2的两个对称不等式。

xx与xx2的不等式可
以用如下表达式来描述:
等式一:xx>xx2
等式二:xx2>xx
这两个等式的介绍表明,两边的系数差别只有2。

所以,当我们证明xx与xx2
的不等式时,可以发现,如果xx大于xx2,则xx2也会大于xx,而反之也是如此。

接下来,我们要证明这两个不等式,可以采用证明逻辑(proof logics)方法,即假设xx大于xx2,那么xx2也就大于xx。

用数学语言来表述,假设xx>xx2,即xx-xx2>0,则xx2-xx<0,因此等式一可
以得到证明。

同样地,假设xx2>xx,即xx2-xx>0,则xx-xx2<0,等式二也可以得到证明。

可以看出,xx与xx2的两个对称不等式满足对称条件,从而可以得出最终的
结果。

由于不等式是广泛应用于数学、物理、化学等诸多科学领域,所以只要想了解它,也可以看作是一种娱乐,玩起来完全没有压力。

最重要的是,这种活动可以让我们的大脑得到一定的开阔,给我们的学习生活带来更多的乐趣。

相关文档
最新文档