网络结构
企业网络的结构

企业网络的结构
在企业网络中,网络结构是一个关键的组成部分。
它可以被视为网络的基础架构,用于提供稳定的、可靠的和高性能的网络连接。
一个常见的企业网络结构是分层结构。
这种结构通常包括三个主要层次:核心层、分发层和接入层。
核心层是网络的中心,它承载着整个网络的核心交换功能。
在这个层次上,通常使用高性能的交换机和路由器来处理网络流量,以确保数据的快速传输和高效路由。
分发层位于核心层和接入层之间。
它的任务是将核心层的网络连接分发到各个部门或办公室的接入层。
在分发层上,通常使用三层交换机来处理网络流量,并提供一定程度的网络安全功能。
接入层是最接近用户的层次,它位于整个网络结构的最外围。
在这个层次上,各个部门或办公室的设备,如工作站、打印机和IP电话等,都可以接入到网络中。
通常使用二层交换机来连接这些设备,并提供局域网内部网络的连接。
除了分层结构,企业网络还可以采用其他结构,如融合结构和边缘计算结构。
融合结构将数据、语音和视频等不同类型的网络服务集成到统一的网络架构中,提供更高效的资源利用和管理。
而边缘计算结构则将计算和存储资源放置在离用户更近的地方,以提供更低的延迟和更好的用户体验。
无论采用何种网络结构,企业都需要考虑网络安全、容错性、扩展性和性能等因素。
此外,随着云计算和物联网等新技术的发展,企业网络结构也需要不断地进行更新和优化,以满足不断变化的业务需求。
网络体系结构

网络体系结构一、网络计算模型☆主机/终端模型☆对等模型☆C/S(客户端/服务器)模型胖客户端模型C/S模型数据处理方式为:客户端从服务器获取数据,后对数据进行处理,将处理结果返回给服务器。
☆B/S(浏览器/服务器)模型瘦客户端模型、多层模型最常见的B/S模型被称为B/W/D(浏览器/网站服务器/数据库服务器)模型。
二、网络分类PAN个人网、LAN局域网、MAN城域网、WAN广域网和Internet因特网。
三、体系结构□协议分层分层可以降低网络系统设计的复杂度,提高网络传输的适应性和灵活性。
在分层体系结构中,在同一层次中能够完成相同功能的元素成为对等实体。
对等实体之间的通信必须使用相同的通信规则,这种通信规则称为协议。
“服务”视为垂直的通信规则,“协议”1视为水平的通信规则。
□服务访问点SAP(服务访问点),是上层调用下层服务的接口,是服务的唯一标识。
网络体系结构中,对等实体之间发送数据前需要附加PCI(协议控制信息),PCI和数据一并构成PDU(协议数据单元)。
PDU将委托给下层进行转发,对于下层而言,上层的PDU就是SDU(服务数据单元),上层将SDU交给下层之前,需要附加ICI(接口控制信息),ICI和SDU一并构成IDU(接口数据单元)。
□服务类型□服务原语服务可以看成是由一组抽象的语句来实现的,这组语句称为服务原语。
下层对上层的服务一个完整的服务原语包括三个部分:原语名称、原语类型和原语参数。
四、参考模型第一个公开的网络体系参考模型,IBM公司提出的SNA(系统网络体系结构)△OSI参考模型ISO(国际标准组织)颁布了OSI参考模型,制定了7个层次的功能标准、通信协议以及各种服务。
①OSI参考模型的层次结构:物理层、数据链路层、网络层、传输层、会话层、表示层以及应用层。
主机需要达到应用层,路由器需要达到网络层,交换机需要达到数据链路层,中继器只需要达到物理层。
②OSI参考模型的数据封装OSI参考模型对数据的封装方法是从应用层到网络层,每次封装都是在原数据上附加一个头部,在头部里包含有控制信息;在数据链路层,除了要附加一个头部之外,还要附加一个尾部,头部里包含同步信息和控制信息;在物理层,数据以比特流形式传输,不再需要封装。
网络体系结构

网络体系结构网络体系结构,简称网络架构,指的是互联网整体架构的逻辑架构、物理架构和协议架构,它决定了互联网的功能、性能、可靠性和安全性,同时也为互联网的拓展和发展提供了基础支持。
一、逻辑架构网络逻辑架构是指网络系统中各个部分的功能和互相之间的关系。
它是网络系统最基本的部分,以分层的方式进行组织,从上至下分别是:应用层、传输层、网络层、数据链路层和物理层。
1. 应用层应用层是网络体系结构中最靠近用户的一层,它主要负责处理和管理用户与网络之间的信息交互。
在这一层上,包括了很多常见的协议,如HTTP、FTP、SMTP等。
2. 传输层传输层主要负责网络数据的传输和速率的控制,它负责把数据分成若干个数据包,并负责传输和接收。
这一层也包括了两个主要的协议:TCP和UDP。
3. 网络层网络层主要负责寻找最佳的路径,实现不同网络之间的数据传输,强调数据包在网络中的传输。
在这一层上最常见的协议是IP协议。
4. 数据链路层数据链路层位于物理层和网络层之间,主要负责将网络层传过来的数据包转换成适合物理层传输的数据包。
最常见的协议是以太网协议。
5. 物理层物理层负责传输和接收网络中的数据以及硬件的控制。
它决定了数据的传输速率、数据的格式和传输媒介等。
最常见的传输媒介是有线和无线两种。
二、物理架构网络物理架构是指网络系统中各个设备之间的连接方式和传输媒介等硬件设备的布局、位置和组成。
物理架构包括以下几种架构方式:1. 局域网(LAN)局域网是指在一个较小范围内的计算机网络,其覆盖范围通常在一个建筑物或者一个校园内。
局域网的传输速率非常快,最常常用的网线是双绞线。
2. 城域网(MAN)城域网是指在一个城市或者地理范围比较大的区域内的计算机网络。
城域网常用的传输媒介是光纤。
3. 广域网(WAN)广域网是指在一个大范围的区域内的计算机网络,它由多个局域网和城域网组成。
广域网的传输媒介是电话线路或者无线电波。
三、协议架构网络协议架构是指网络系统中使用的通信协议以及协议之间的关系。
网络的拓扑结构分类

网络的拓扑结构分类1. 星形拓扑结构(Star Topology)星形拓扑结构是一种中央集中式的拓扑结构,其中一个中心节点连接到其他所有节点。
所有的节点都通过中心节点进行通信。
星形拓扑结构具有简单、易扩展、易管理的特点,但依赖中心节点,如果中心节点发生故障,整个网络就会中断。
2. 总线拓扑结构(Bus Topology)总线拓扑结构是一种线性的拓扑结构,所有的节点都连接在一条共享的传输线上。
节点通过发送信号来进行通信,其他节点则通过监听传输线来接收信号。
总线拓扑结构简单、成本低廉,但是当多个节点同时发送信号时会产生冲突。
3. 环形拓扑结构(Ring Topology)环形拓扑结构是一种闭合的环路连接方式,每个节点都与其前后相邻的节点直接相连。
节点通过按顺序传递数据包来进行通信。
环形拓扑结构具有带宽均等分配、性能稳定的特点,但是如果环路断开,整个网络将无法正常工作。
4. 树状拓扑结构(Tree Topology)树状拓扑结构是一种分层的拓扑结构,节点之间的连接形成了树的结构。
树的根节点连接到所有中间节点,中间节点又连接到子节点。
树状拓扑结构具有清晰的层次结构、易于管理的特点,但是如果根节点或关键中间节点出现故障,将会影响整个分支的通信。
5. 网状拓扑结构(Mesh Topology)网状拓扑结构是一种所有节点互相直接连接的方式,节点之间可以通过多条路径进行通信。
网状拓扑结构具有高可靠性、高冗余性的特点,即使其中一些节点或链接发生故障,数据仍然可以通过其他路径传输。
但高冗余性也意味着更多的连接,导致较高的成本和复杂性。
6. 混合拓扑结构(Hybrid Topology)混合拓扑结构是将多种不同的拓扑结构相互组合而成,常见的是星形拓扑和总线拓扑的结合。
混合拓扑结构具有灵活性和可扩展性,可以根据需求自由组合不同的拓扑结构。
除了以上几种常见的拓扑结构,还有其他一些特殊的拓扑结构,如部分网状拓扑结构、簇状拓扑结构等。
网络体系结构

一.网络体系结构
1.c/s结构:client/server 客户端与服务器结构,如QQ、微信手机APP。
2.b/s结构:browser/server 浏览器与服务器结构通过浏览器访问软件系统
的web展示信息,并通过web server与服务器进行信息交互,业务逻辑处理信息在服务器端完成。
3.P2P结构:point to point 通过直接的点对点通信交换实现数据信息资源、
服务共享。
C/S、B/S模式的系统以应用为核心,通信交互过程中必须有应用服务器,用户请求必须通过应用服务器来完成,用户同创新也必须通过应用服务器完成。
在P2P对等网络中,用户之间可以直接通信、共享资源,无需常规服务器的中转处理。
二.特点和区别
1.灵活性B/S结构灵活性高,因其浏览器是标准的、规范的,使用起来方
便灵活。
C/S结构灵活性差,当访问服务器时必须安装客户端在操作系统上面。
2.部署浏览器部署比较方便,兼容性强。
因为浏览器只要能正常解析
HTML标签,处理HTTP协议数据包就可以。
C/S结构客户端必须进行升级重新安装客户端软件。
3.系统的设计与开发
B/S开发效率高
C/S开发效率低
4.在系统性能方面
B/S就没那么明显。
互联网网络结构解析

互联网网络结构解析互联网已经成为人们生活中不可或缺的一部分,而对于互联网这一庞大而复杂的系统来说,它的网络结构也是相当重要的,决定了互联网的运行方式和效率。
在这篇文章中,我们将对互联网网络结构进行深入解析。
互联网网络结构是指互联网中各个网络之间的连接方式和层次结构。
互联网的网络结构通常可以被划分为三个层次:核心层、骨干层和接入层。
首先,核心层是互联网中最重要的部分,它负责将各个骨干网络连接起来,是整个互联网的核心承载网络。
核心层的网络结构常常采用分层结构,由多个路由器和交换机组成。
这些路由器和交换机负责转发和路由互联网上的数据包,将数据包从源网络传送到目标网络。
核心层的网络结构设计得非常精细,以确保高效的数据传输和网络连接。
接下来是骨干层,它是连接核心层与接入层的中间层次。
骨干层的网络结构通常由较大的网络服务提供商(ISP)和主干网构成。
这些ISP和主干网负责将数据从核心层传送到接入层,并将数据从接入层传送到核心层。
骨干层的网络结构设计要考虑到传输容量、速度和可靠性等因素,以满足大量数据的传输需求。
最后是接入层,它是连接个人用户和组织的网络设备。
接入层的网络结构多种多样,包括ADSL、光纤和无线网络等。
接入层的网络结构需要根据用户的需求和地理位置来设计,以提供稳定的网络连接和高速的数据传输。
此外,接入层还要考虑到用户的安全和隐私需求,采取相应的安全措施,以确保用户数据的安全性。
除了以上三个层次,互联网的网络结构还包括一些其他的组成部分,如边界网关协议(BGP)、域名系统(DNS)和网络交换点(IXP)等。
这些组成部分在互联网的运行和连接上起着重要的作用。
总结起来,互联网的网络结构决定了互联网的运行方式和效率。
核心层、骨干层和接入层构成了互联网的主要框架,各自承担着不同的功能和任务。
同时,其他的组成部分也为互联网的正常运行提供了保障。
在未来,随着科技的不断发展,互联网的网络结构也会不断演进和完善,以适应人们日益增长的互联网使用需求。
名词解释网络的体系结构

名词解释网络的体系结构网络的体系结构是指网络中各种设备和组件按照一定的结构和关系组合在一起的方式。
在计算机网络发展的过程中,经历了多种不同的体系结构,每一种体系结构都有其独特的特点和用途。
本文将对常见的网络体系结构进行解释和探讨。
第一阶段:集线式体系结构网络的最早体系结构被称为集线式体系结构。
这种体系结构采用了集中式的拓扑结构,即所有的计算机都连接到一个中央的主机上。
主机负责管理网络中的所有数据传输和协调各个节点之间的通信。
这种体系结构的优点是简单易用,但是容易出现单点故障和容量限制的问题。
第二阶段:总线式体系结构随着计算机网络的发展,总线式体系结构逐渐取代了集线式体系结构。
总线式体系结构是指将所有计算机连接到一个共享的传输介质上,通过总线来传递数据。
这种体系结构解决了集线式体系结构中的单点故障和容量限制问题,同时减少了对主机的依赖。
然而,总线式体系结构的缺点是节点之间的通信冲突可能导致传输效率的下降。
第三阶段:星型体系结构星型体系结构在总线式体系结构的基础上进行了改进。
它采用了一个中心节点(通常是交换机或路由器),将所有计算机连接到这个节点上。
所有的数据传输都通过中心节点进行转发和处理,节点之间的通信不再冲突。
这种体系结构具有良好的可扩展性和可靠性,但是中心节点的故障可能导致整个网络的瘫痪。
第四阶段:树状体系结构树状体系结构是星型体系结构的一种扩展形式。
在树状体系结构中,存在多个中心节点,每个中心节点都连接到一组子节点。
这种体系结构使得网络可以划分为多个子网,每个子网可以有自己的中心节点。
树状体系结构能够实现更大规模的网络,并且在某些情况下能够提供更好的性能和可靠性。
第五阶段:网状体系结构网状体系结构是当前最常见和广泛应用的网络体系结构。
它采用了多个中心节点之间的互联,形成一个复杂的网状结构。
这种体系结构具有高度的可扩展性和冗余性,可以实现更好的负载均衡和容灾能力。
然而,网状体系结构的管理和维护成本较高,需要较多的网络设备和带宽资源。
计算机网络的结构组成

计算机网络的结构组成计算机网络已经成为了当今社会不可或缺的一部分,它为人们的生活提供了许多便利。
计算机网络的发展离不开一个稳定、安全和高效的网络结构。
本文将介绍计算机网络的结构组成,并探讨其中的每个组成部分。
一、物理层物理层是计算机网络中最基础的一层。
它主要负责传输比特流(0和1)的信号以及数据的物理连接。
在网络中,物理层通过电缆、光纤、无线信号等传输媒介将数据从一个地方传输到另一个地方。
物理层的主要设备包括集线器、中继器和传输介质等。
二、数据链路层数据链路层负责将物理层传输的比特流组织为数据帧,并通过校验和纠错等技术确保数据的可靠传输。
此外,数据链路层还负责网络节点之间的数据链路管理和数据帧的流控制等任务。
典型的数据链路层设备包括网桥和交换机。
三、网络层网络层是计算机网络中的核心层,它负责将数据从源节点传输到目的节点。
网络层通过路由选择算法确定最佳路径,并将数据划分为数据包进行传输。
网络层还可以实现数据的拥塞控制和分组的重组等功能。
路由器是网络层的主要设备。
四、传输层传输层负责在源节点和目的节点之间提供端到端的可靠通信。
它通过将数据划分为数据段并为每个数据段编号,以便在网络中的不同路径上进行传输。
传输层还可以实现流量控制和拥塞控制等功能。
传输层的典型协议包括TCP(传输控制协议)和UDP(用户数据报协议)。
五、会话层会话层负责在网络中的不同节点之间建立、维护和终止会话。
它提供了建立连接、数据传输和关闭连接的功能。
会话层还可以处理多个应用程序之间的并发会话。
在OSI模型中,会话层通常与传输层一起合并。
六、表示层表示层负责将数据转换为计算机可识别的格式,并提供数据加密和解密等功能。
它还可以处理数据的压缩和解压缩。
表示层可以确保数据在源节点和目的节点之间的正确解释和传递。
七、应用层应用层是计算机网络中最高层的一层,它直接为用户提供网络服务。
应用层包括各种应用程序,例如电子邮件、文件传输和远程登录等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络拓扑结构拓扑这个名词是从几何学中借用来的.网络拓扑是网络形状,或者是它在物理上的连通性.构成网络的拓扑结构有很多种。
网络拓扑结构是指用传输媒体互连各种设备的物理布局,就是用什么方式把网络中的计算机等设备连接起来。
拓扑图给出网络服务器、工作站的网络配置和相互间的连接,它的结构主要有星型结构、环型结构、总线结构、分布式结构、树型结构、网状结构、蜂窝状结构等。
星型拓扑结构星型结构是最古老的一种连接方式,大家每天都使用的电话属于这种结构。
星型结构是指各工作站以星型方式连接成网。
网络有中央节点,其他节点(工作站、服务器)都与中央节点直接相连,这星型拓扑结构种结构以中央节点为中心,因此又称为星型拓扑结构是最古老的一种连接方式,大家每天都使用的电话属于这种结构。
星型结构是指各工作站以星型方式连接成网。
网络有中央节点,其他节点(工作站、服务器)都与中央节点直接相连,这种结构以中央节点为中心,因此又称为集中式网络。
星型拓扑结构便于集中控制,因为端用户之间的通信必须经过中心站。
由于这一特点,也带来了易于维护和安全等优点。
端用户设备因为故障而停机时也不会影响其它端用户间的通信。
同时星型拓扑结构的网络延迟时间较小,传输误差较低。
但这种结构非常不利的一点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。
对此中心系统通常采用双机热备份,以提高系统的可靠性。
在星型拓扑结构中,网络中的各节点通过点到点的方式连接到一个中央节点(又称中央转接站,一般是集线器或交换机)上,由该中央节点向目的节点传送信息。
中央节点执行集中式通信控制策略,因此中央节点相当复杂,负担比各节点重得多。
在星型网中任何两个节点要进行通信都必须经过中央节点控制。
现有的数据处理和声音通信的信息网大多采用星型网,目前流行的专用小交换机PBX(Private Branch Exchange),即电话交换机就是星型网拓扑结构的典型实例。
它在一个单位内为综合语音和数据工作站交换信息提供信道,还可以提供语音信箱和电话会议等业务,是局域网的一个重要分支。
在星型网中任何两个节点要进行通信都必须经过中央节点控制。
因此,中央节点的主要功能有三项:当要求通信的站点发出通信请求后,控制器要检查中央转接站是否有空闲的通路,被叫设备是否空闲,从而决定是否能建立双方的物理连接;在两台设备通信过程中要维持这一通路;当通信完成或者不成功要求拆线时,中央转接站应能拆除上述通道。
由于中央节点要与多机连接,线路较多,为便于集中连线,目前多采用一种成为集线器(HUB)或交换设备的硬件作为中央节点。
目前一般网络环境都被设计成星型拓朴结构。
星型网是目前广泛而又首选使用的网络拓朴设计之一。
[1]集中式网络这种结构便于集中控制,因为端用户之间的通信必须经过中心站。
由于这一特点,也带来了易于维护和安全等优点。
端用户设备因为故障而停机时也不会影响其它端用户间的通信。
同时它的网络延迟时间较小,传输误差较低。
但这种结构非常不利的一点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。
对此中心系统通常采用双机热备份,以提高系统的可靠性。
环型网络拓扑结构环型结构在LAN中使用较多。
这种结构中的传输媒体从一个端用户到另一个端用户,直到将所有的端用户连成环型。
数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到网络拓扑结构另一个节点。
这种结构显而易见消除了端用户通信时对中心系统的依赖性。
环行结构的特点是:每个端用户都与两个相临的端用户相连,因而存在着点到点链路,但总是以单向方式操作,于是便有上游端用户和下游端用户之称;信息流在网中是沿着固定方向流动的,两个节点仅有一条道路,故简化了路径选择的控制;环路上各节点都是自举控制,故控制软件简单;由于信息源在环路中是串行地穿过各个节点,当环中节点过多时,势必影响信息传输速率,使网络的响应时间延长;环路是封闭的,不便于扩充;可靠性低,一个节点故障,将会造成全网瘫痪;维护难,对分支节点故障定位较难。
[1]总线拓扑结总线型拓扑结构总线上传输信息通常多以基带形式串行传递,每个节点上的网络接口板硬件均具有收、发功能,接收器负责接收总线上的串行信息并转换成并行信息送到PC工作站;发送器是将并行信息转换成串行信息后广播发送到总线上,总线上发送信息的目的地址与某节点的接口地址相符合时,该节点的接收器便接收信息。
由于各个节点之间通过电缆直接连接,所以总线型拓扑结构中所需要的电缆长度是最小的,但总线只有一定的负载能力,因此总线长度又有一定限制,一条总线只能连接一定数量的节点。
因为所有的节点共享一条公用的传输链路,所以一次只能由一个设备传输。
需总线拓扑结构要某种形式的访问控制策略、来决定下一次哪一个站可以发送.通常采取分布式控制策略。
发送时,发送站将报文分成分组.然后一次一个地依次发送这些分组。
有时要与其它站来的分组交替地在介质上传输。
当分组经过各站时,目的站将识别分组的地址。
然后拷贝下这些分组的内容。
这种拓扑结构减轻了网络通信处理的负担,它仅仅是一个无源的传输介质,而通信处理分布在各站点进行。
在总线两端连接有端结器(或终端匹配器),主要与总线进行阻抗匹配,最大限度吸收传送端部的能量,避免信号反射回总线产生不必要的干扰。
总线结构是使用同一媒体或电缆连接所有端用户的一种方式,也就是说,连接端用户的物理媒体由所有设备共享,各工作站地位平等,无中央节点控制,公用总线上的信息多以基带形式串行传递,其传递方向总是从发送信息的节点开始向两端扩散,如同广播电台发射的信息一样,因此又称广播式计算机网络。
各节点在接受信息时都进行地址检查,看是否与自己的工作站地址相符,相符则接收网上的信息。
使用这种结构必须解决的一个问题是确保端用户使用媒体发送数据时不能出现冲突。
在点到点链路配置时,这是相当简单的。
如果这条链路是半双工操作,只需使用很简单的机制便可保证两个端用户轮流工作。
在一点到多点方式中,对线路的访问依靠控制端的探询来确定。
然而,在LAN环境下,由于所有数据站都是平等的,不能采取上述机制。
对此,研究了一种在总线共享型网络使用的媒体访问方法:带有碰撞检测的载波侦听多路访问,英文缩写成CSMA/CD。
这种结构具有费用低、数据端用户入网灵活、站点或某个端用户失效不影响其它站点或端用户通信的优点。
缺点是一次仅能一个端用户发送数据,其它端用户必须等待到获得发送权;媒体访问获取机制较复杂;维护难,分支节点故障查找难。
尽管有上述一些缺点,但由于布线要求简单,扩充容易,端用户失效、增删不影响全网工作,所以是LAN技术中使用最普遍的一种。
分布式拓扑结构分布式结构的网络是将分布在不同地点的计算机通过线路互连起来的一种网络形式。
分布式结构的网络具有如下特点:由于采用分散控制,即使整个网络中的某个局部出现故障,也不会影响全网的操作,因而具有很高的可靠性;网中的路径选择最短路径算法,故网上延迟时间少,传输速率高,但控制复杂;各个节点间均可以直接建立数据链路,信息流程最短;便于全网范围内的资源共享。
缺点为连接线路用电缆长,造价高;网络管理软件复杂;报文分组交换、路径选择、流向控制复杂;在一般局域网中不采用这种结构。
树型拓扑结构树型结构是分级的集中控制式网络,与星型相比,它的通信线路总长度短,成本较低,节点易于扩充,寻找路径比较方便,但除了叶节点及其相连的线路外,任一节点或其相连的线路故障都会使系统受到影响。
网状拓扑结构网状拓扑结构主要指各节点通过传输线互联连接起来,并且每一个节点至少与其他两个节点相连.网状拓扑结构具有较高的可靠性,但其结构复杂,实现起来费用较高,不易管理和维护,不常用于局域网!网络拓扑结构将多个子网或多个网络连接起来构成网状拓扑结构。
在一个子网中,集线器、中继器将多个设备连接起来,而桥接器、路由器及网关则将子网连接起来。
根据组网硬件不同,主要有三种网状拓扑:网状网:在一个大的区域内,用无线电通信链路连接一个大型网络时,网状网是最好的拓扑结构。
通过路由器与路由器相连,可让网络选择一条最快的路径传送数据,如图5-4所示。
主干网:通过桥接器与路由器把不同的子网或LAN连接起来形成单个总线或环型拓扑结构,这种网通常采用光纤做主干线。
星状相连网:利用一些叫做超级集线器的设备将网络连接起来,由于星型结构的特点,网络中任一处的故障都可容易查找并修复蜂窝拓扑结构蜂窝拓扑结构是无线局域网中常用的结构。
它以无线传输介质(微波、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。
混合型拓扑结构将两种或几种网络拓扑结构混合起来构成的一种网络拓扑结构称为混合型拓扑结构(也有的称之为杂合型结构)。
网络拓扑结构这种网络拓扑结构是由星型结构和总线型结构的网络结合在一起的网络结构,这样的拓扑结构更能满足较大网络的拓展,解决星型网络在传输距离上的局限,而同时又解决了总线型网络在连接用户数量的限制。
这种网络拓扑结构同时兼顾了星型网与总线型网络的优点,在缺点方面得到了一定的弥补。
这种网络拓扑结构主要用于较大型的局域网中,如果一个单位有几栋在地理位置上分布较远(当然是同一小区中),如果单纯用星型网来组整个公司的局域网,因受到星型网传输介质--双绞线的单段传输距离(100m)的限制很难成功;如果单纯采用总线型结构来布线则很难承受公司的计算机网络规模的需求。
结合这两种拓扑结构,在同一栋楼层我们采用双绞线的星型结构,而不同楼层我们采用同轴电缆的总线型结构,而在楼与楼之间我们也必须采用总线型,传输介质当然要视楼与楼之间的距离,如果距离较近(500m以内)我们可以采用粗同轴电缆来作传输介质,如果在180m 之内还可以采用细同轴电缆来作传输介质。
但是如果超过500m我们只有采用光缆或者粗缆加中继器来满足了。
这种布线方式就是我们常见的综合布线方式。
无线电通信拓扑结构传输线系统除同轴电缆、双绞线、和光纤外,还有一种手段是根本不使用导线,这就是无线电通信,无线电通信利用电磁波或光波来传输信息,利用它不用敷设缆线就可以把网络连接起来。
无线电通信包括两个独特的网络:移动网络和无线LAN网络。
利用LAN网,机器可以通过发射机和接收机连接起来;利用移动网,机器可以通过蜂窝式通信系统连接起来,该通信系统由无线电通信部门提供。
网络可采用以太网的结构,物理上由服务器,路由器,工作站,操作终端通过集线器形成星型结构共同构成局域网。
网吧网络拓朴结构网吧网络拓朴结构:网吧采用的是星型拓扑结构的网络。
使用特点网吧这个新兴的产业,带动了很多业务的发展,网吧路由器作为网吧的关键接入设备,必须要非常适合网吧使用的特点,具体情况如下:一般的网吧机器数量少则一百多台,多则几百台,而运营商给的接入带宽在很多地方都不大,需要精打细算使用。