第三章:转子、叶轮结构和强度计算_最终
第三章 泵与风机的叶轮理论

g
(u 2 u1 ) 2g
说明
式中 u 1 u 2----叶轮叶片进口、出口处的圆周速度 上式表明:当离心式泵与风机旋转叶轮外缘封闭, 即相当于出口阀门关闭,流体在流道内不流动时,单 位重量流体在叶轮出口与进口处的压力能差与叶轮旋 转角速度的平方成正比,与叶轮内、外直径有关。 即叶轮尺寸一定,旋转角速度增大,或叶轮内径 一定,外径增大,叶轮出口与进口处的流体压力能差 也增大。
返回
第五节 轴流式泵与风机的叶轮理论 特点(与离心式相比较) 翼型及叶栅 翼型及叶栅的空气动力特性 能量方程式
特点(与离心式相比较)
性能:流量大、扬程(全压)低。多用于大 型机组的循环水泵、送风机、引风机等。 调节:采用动叶调节,变工况由叶片对流体 作用的升力对流体做功。 流动方向:流体沿轴向进入并流出叶轮。 结构:结构简单,尺寸小,重量轻。
轴流叶轮中由于流体沿相同半径的流面流动所以流面进出口的圆周速度相同u叶轮进出口过流断面面积相等对不可压缩流体进出口的轴向速度相同能量方程式叶片式式泵与风机的能量方程式也适用于轴流式所不同的是叶轮进出口处圆周速度轴面速度相cotcotcotcotu故流体在轴流叶轮中获得的能量远小于离心式这就是轴流式泵与风机的扬程全压远低于离心式的原因
制作者:赵小燕
第三章 泵与风机的叶轮理论
第一节 第二节 第三节 第四节 第五节 流体在离心式封闭叶轮中获能分析 流体在叶轮中的运动及速度三角形 叶片式泵与风机的基本方程式 离心式叶轮的叶片型式 轴流式泵与风机的叶轮理论
第一节 流体在封闭式叶轮中的获能分析
泵与风机是由原动机拖动叶轮旋转,叶轮上的叶片对流 体做功,从而使流体获得压力能及动能。因此,叶轮是 实现机械能转换为流体能量的主要部件。
汽轮机叶片强度计算.

高频激振力
(1) 全周进汽的级 fex=znn 式中,zn是级的喷嘴数,一般zn=40~90
(2) 部分进汽的级 fex=1/T=znn 式中,zn为当量喷嘴数,相当于按部分进汽喷嘴数的节距, 把喷嘴片布满全周的喷嘴数。
叶片的自振频率的计算
单个叶片
先用叶片弯曲振动的微分方程计算自振频率 再对自振频率理论计算值进行修正(温度修正,叶片根 部牢固修正) 以上是静频率,考虑离心力的影响,用能量法计算动频 率。
蒸汽弯曲应力计算
(1)等截面叶片弯曲应力计算 蒸汽作用在每个叶片上的圆周力和轴向作用 力 Fu1与 Fz1 分别为
Fu1 G Ght u 1000Pu (c1 cos 1 c2 cos 2 ) Zb e uzb e uzb e
Fz1
G (c1 sin 1 c2 sin 2 ) ( P1 P 2)tbl Zb e
叶片动强度
叶片动强度概念 运行实践证明:汽轮机叶片除了承受静压力外,还 受到因气流不均匀产生的激振力作用。该力是由结 构因素、制造和安装误差及工况变化等原因引起的。 对旋转的叶片来说,激振力对叶片的作用是周期性 的,导致叶片振动,所以叶片是在振动状态下工作 的。当叶片的自振频率等于脉冲激振力频率或为其 整数倍时,叶片发生共振,振幅增大,并产生很大 的交变动应力。为保证叶片安全工作,必须研究激 振力和叶片振动特性,以及叶片在动应力作用下的 承载能力等问题,这些属于叶片动强度范畴。
重新安装叶片,改善安装质量 增加叶片与围带或拉筋的连接牢固度 加大拉筋直径或改用空心拉筋 增加拉筋数 改变成组叶片数目 增设拉筋或围带 采用长弧围带 叶顶钻孔
叶片动强度指标
汽轮机叶片除受到静应力作用外,还受到叶片震动 是的动应力的作用。评价叶片在静动应力复合作用 下的安全性是,必须知道叶片材料在静动应力联合 作用下的机械性能。用耐振强度表示叶片材料在静 动应力复合作用下的动强度指标,它由材料试验确 定。叶片所受的动应力应该小于该工作条件下的耐 振强度才安全。对于不调频叶片,对振动频率没有 限制,允许在共振下运行,它主要判断动应力是否 在许用耐振值内,而调频叶片不允许共振下长期运 行。
汽轮机叶轮强度计算方法

r
式 (8) 、 式 (9)是用位移表示应变的几何方程 ,将它们代 入式 (7)后得 : σr =
E
1 -ν
2
du u +ν dR R
u du +ν R dR
E σt = 2 1 -ν
( 10 )
式 ( 10 )就是从微元体变形角度找到的 σr 和 σt 的另一 组方程 ,它是用未知量 u 来表示 σr 和 σt 的 。与平衡微分方 程 ( 5 )一起 ,共有 3 个方程式和 3 个未知数 , 可以解出 σr 和 σt。 如考虑叶轮温度不均匀对叶轮径向应力 σr 和切向应力 σt 的影响时 ,则由于温差在半径 R 处引起的径向变形为 ΔR ′ = aR t,相对变形为 ε = a t,式中 , a 为叶轮材料的线膨胀系数 ;
矿用主通风机动叶片的强度计算

矿用主通风机动叶片的强度校核叶片叶柄强度校核原理轴流通风机的叶轮在旋转时,叶片上受到离心力和气流流动压力;前者造成拉伸,后者导致弯曲。
在扭曲叶片中,离心力也会造成弯曲。
离心力和由它所引起的应力在叶片顶端为零,向叶根逐步增大,到叶片根部时达到最大值。
作用在叶片上的总离心力P (见图五)为:P c =m ω2r式中 m ——叶片质量(kg );r c ——叶片重心至叶轮中心之距离(m );ω——叶轮角速度(s -1)ω=30n 叶片根部的拉伸应力σc (Pa )为:σc =S P c 式中S ——对于叶片焊接在轮毂上的叶轮,S 为焊缝面积;对于叶片通过叶轮固定在轮毂上的叶轮,S 指叶柄的横截面积(m 2)。
ωcP c图6 轴流通风机叶片拉伸计算图图五 轴流通风机受拉伸应力图气流流动压力引起的荷载力P h 可以分解为切向力P u 和轴向力P z(见图六)。
计算中假设荷载力作用在叶片平均半径的位置上。
θpθhω图六 叶片受气流压力分析图切向力P u (N )决定于传动功率、叶片数和叶片平均半径处的圆周速度:P u =msh Zu P 1000 式中 P sh ——轴功率(kW );Z —— 叶片数(个);u m —— 叶片平均半径处的圆周速度(m/s )。
轴向力P z 决定于叶轮产生的静压差、叶片长度和叶片平均半径圆周上的节距:P z =ΔP st lt式中ΔP st ——叶轮产生的静压差(N/m 2);l ——叶片全长(m );t ——叶片平均半径圆周上的节踞荷载力P h (N )就等于切向力P u 和轴向力P z 的合力为: 22z u h P P P +=为了求得气流荷载力P h 引起的弯矩,先要根据叶轮图确定叶片根部截面的法线与圆周切线之间的夹角θh ,以及荷载力P h 与圆周切线之夹角θp ,如图所示。
在叶片长度L 方向上受到的弯矩为:)cos(2p h h h L P M θθ-= 其中 k h θθ-=90 (k θ为叶片安装角) )arctan(u z p P P =θ叶片离心力产生的附加弯距:1PcL Mc = 式中 L1——叶片重心处弦长的10% 。
第一章叶片结构和强度计算

第一章叶片结构和强度计算叶片是风力发电机的核心组成部分之一,其结构和强度的设计对于风力发电机的性能和安全性至关重要。
本文将介绍叶片的结构和强度计算的基本原理和方法。
一、叶片的结构叶片是风力发电机的转动部分,其结构设计要考虑到受力情况和减小气动阻力等因素。
一般叶片由叶片轴、叶片桁架和托盘等组成。
1.叶片轴:叶片轴是叶片的主轴,承受着叶片所受的扭转力。
其直径和强度需根据风力机的功率和设计风速来确定。
2.叶片桁架:叶片桁架是支撑叶片表面的骨架结构,主要承受气动力和重力。
叶片桁架的设计要考虑到受力情况和材料的强度。
3.托盘:托盘是连接叶片和风力机轴的部分,其承受着叶片受到的拉力和剪力。
托盘的设计和材料的选择将影响叶片的安全性和可靠性。
二、叶片强度计算叶片强度计算是确定叶片结构是否能够承受风力荷载的一项重要任务。
一般叶片强度计算分为静态强度计算和动态强度计算两部分。
1.静态强度计算静态强度计算是指在风力荷载作用下,叶片不发生振动时的强度计算。
静态强度计算主要考虑叶片的抗弯强度和抗剪强度。
抗弯强度计算需要考虑叶片的自重和气动力对叶片产生的弯曲力矩。
弯曲应力可以通过弯曲应力公式计算得到,然后与叶片材料的弯曲强度进行比较,从而确定叶片的抗弯强度。
抗剪强度计算需要考虑叶片的自重和气动力对叶片产生的剪切力。
剪切应力可以通过剪切应力公式计算得到,然后与叶片材料的剪切强度进行比较,从而确定叶片的抗剪强度。
2.动态强度计算动态强度计算是指叶片在风力荷载作用下,发生振动时的强度计算。
动态强度计算主要考虑叶片的自然频率和振动模态。
叶片的自然频率可以通过有限元分析或模态分析得到,然后与设计要求进行比较,从而确定叶片的振动状况。
叶片的振动模态的分析可以通过有限元分析或模态分析得到,振动模态的结果可以用于优化叶片结构和减小振动幅值,提高叶片的工作效率和安全性。
三、叶片强度计算的优化叶片强度计算的优化需要考虑到叶片的结构和材料的优化,以实现叶片的轻量化和高强度设计。
汽轮机主轴结构详解

汽轮机主轴结构详解
汽轮机主轴是汽轮机中的重要部件,其结构通常包括以下几个部分:
1. 转子:转子是汽轮机的核心部件,由主轴、叶轮、叶片和联轴器等组成。
主轴通过叶轮和叶片将蒸汽的热能转化为转子的机械能。
2. 叶轮:叶轮安装在主轴上,叶片安装在叶轮上。
当转子旋转时,叶轮和叶片一起带动汽轮机转动,将蒸汽的热能转化为机械能。
3. 叶片:叶片安装在叶轮上,设计成一定的形状和角度,以充分利用蒸汽的热能。
叶片的材质通常为合金钢或不锈钢,具有较高的强度和耐腐蚀性。
4. 联轴器:联轴器是连接汽轮机与发电机的重要部件,它将汽轮机的输出轴与发电机的输入轴连接起来。
联轴器有多种形式,如刚性联轴器、弹性联轴器和膜片联轴器等。
5. 主轴承:主轴承安装在汽轮机的两端,用于支撑汽轮机的重量和承受转子的径向力和轴向力。
主轴承的材质通常为耐磨铸铁或高级合金钢,具有较高的承载能力和耐磨损性。
6. 润滑系统:润滑系统用于为主轴承提供润滑油,以减少摩擦和磨损,延长轴承寿命。
润滑油通常为矿物油或合成油,具有较高的粘度和耐高温性能。
总之,汽轮机主轴结构是汽轮机的重要组成部分,其各个部件都有其独特的作用和特点。
在设计和制造过程中,需要充分考虑各部件的材质、加工精度、热处理和装配等方面的因素,以确保汽轮机的正常运转和长期寿命。
矿用主通风机动叶片的强度计算

矿用主通风机动叶片的强度校核一、 原始数据通风机的转子直径:2.5m ;通风机的主轴转数:750rpm ;通风机的全压:2100Pa通风机的流量:100m 3/s叶片的安装角:37-50度,任选其一叶片数:12-22片,任选其一通风机的效率:0.75-0.86,任选其一动叶片的结构尺寸如附图所示(图另附)。
二、 设计任务校核叶片支杆根部断面的强度;校核支杆第一铆钉处断面的强度。
安全系数要求大于或等于2。
三、 叶片叶柄强度校核原理轴流通风机的叶轮在旋转时,叶片上受到离心力和气流流动压力;前者造成拉伸,后者导致弯曲。
在扭曲叶片中,离心力也会造成弯曲。
离心力和由它所引起的应力在叶片顶端为零,向叶根逐步增大,到叶片根部时达到最大值。
作用在叶片上的总离心力P (见图五)为:P c =m ω2r式中 m ——叶片质量(kg );r c ——叶片重心至叶轮中心之距离(m );ω——叶轮角速度(s -1)ω=30n叶片根部的拉伸应力σc (Pa )为:σc =SP c 式中S ——对于叶片焊接在轮毂上的叶轮,S 为焊缝面积;对于叶片通过叶轮固定在轮毂上的叶轮,S 指叶柄的横截面积(m 2)。
气流流动压力引起的荷载力P h可以分解为切向力P u和轴向力P z(见图六)。
P u =m shZu P1000式中 P sh ——轴功率(kW );Z —— 叶片数(个);u m —— 叶片平均半径处的圆周速度(m/s )。
轴向力P z 决定于叶轮产生的静压差、叶片长度和叶片平均半径圆周上的节距:P z =ΔP st lt式中ΔP st ——叶轮产生的静压差(N/m 2);l ——叶片全长(m );t ——叶片平均半径圆周上的节踞荷载力P h (N )就等于切向力P u 和轴向力P z 的合力为: 22z u h P P P +=为了求得气流荷载力P h 引起的弯矩,先要根据叶轮图确定叶片根部截面的法线与圆周切线之间的夹角θh ,以及荷载力P h 与圆周切线之夹角θp ,如图所示。
转子平衡临界转速与强度

端面Ⅱ半径R处钻孔,去掉质量为 mⅡ ,则
也可在相反的方向加配重,这样转子就可达到刚性动平衡。如 F1 , F2 不垂直,则可将 它们分解到垂直与水平方向,而后如上所算。
化工机械强度与振动
二、转子柔性动平衡(高速动平衡) 由离心惯性力引起的动挠度是和转速有关的。因此,在低速时平衡(又称刚性平衡) 的转子,到高速时又可能会失稳而剧烈振动。校正这种动不平衡必须把离心惯性力 引起的动挠度影响考虑进去,故称为柔性动平衡或高速动平衡。
2
薄圆盘装斜了也可产生动不平衡。在转速较高的情况下,只要有很小的偏斜(约 1°),就会引起超过静反力百倍以上的反力。 现有如图4-3所示长转子,长度为l,半径为R。在距左端l/3的平面内垂直方向有偏心 2 量 m1e1,在中间平面内水平方向有偏心量 m2 e2 m1e1
3
化工机械强度与振动
偏心质量产生的离心惯性力总可以合成一通过旋转轴并与之垂直的合力和一个合力偶, 要平衡它们一般可选转子的两个端面和加配重或钻削掉一些重量。重量的大小和方位 很容易确定。
式中
r
k c , n , n m 2 mk
化工机械强度与振动
O’(x,y)点的运动轨迹是一个圆,其半径即转轴的动挠度
OO R x y
2 2
er 2
1 r 2 r
2 2
2
(4-7)
从以上两式可见动挠度R随频率比r的变化而变化。当r值较小时(r<<1),线段O‘C=e 比盘心位移段OO’=R导前的相位角 / 2 ,动挠度R值亦较小。当r=1,即 n 时, / 2,如在无阻尼情况下,此时动挠度趋于无限大,实际上由于阻尼的作用, 动挠度为有限值。这个较大的动挠度仍将会导致转子的破坏,并使机组受到巨大的激振 力而剧烈振动。这时的转速称为临界转速,以k nk 表示,及临界转速 k 在数值上 等于转子横振动的固有频率,所以它的数值可以用计算转子横振动固有频率的方法来计 算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LABORATORY OF INTENSITY AND VIBRATION
HIT
9FA重型燃气轮机拉杆转子
LABORATORY OF INTENSITY AND VIBRATION
HIT
二、叶轮结构设计
从叶轮的工作条件和受力情况方面分析,叶轮是处在高温工质内并以高速 旋转,叶轮用来承装叶片。叶轮工作时,承受的力如下: (1) 叶轮自身质量引起的离心力; (2) 叶片引起的离心力,一般称为叶轮外部径向载荷,通常包括叶片(包括 围 带、拉金)、叶根联结部分(叶根和轮缘)的离心力; (3) 由于叶轮红套在轴上的过盈产生的接触压力(对于套装叶轮而言)。 以上三项载荷引起的应力与叶轮旋转速度有关称为转动应力; (4) 在较高温度区域内以及透平起动过程中,叶轮受到温度沿径向分布不均 匀引起的温度应力; (5) 由于叶轮轴向振动将产生振动应力。 着手设计叶轮时,先必须考虑叶轮与透平轴的联结方法。 对套装叶轮,通常是用键来联结,同时为了使叶轮与轴可靠的联结, 也就是说要保证在叶轮工作时,叶轮与轴保持对中(同心),且相对于轴的位 置不变,还必须把叶轮红套在轴上。
LABORATORY OF INTENSITY AND VIBRATION
HITLeabharlann 第三章 转子、叶轮结构和强度计算
1. 2. 3. 4. 5. 6. 7. 8. 9. 转子和叶轮结构 旋转薄圆环应力计算 叶轮应力状态和基本计算公式 等厚度叶轮应力分析 实际叶轮应力计算 套装叶轮按松动转速计算过盈和应力 叶轮温度应力计算 整锻转子强度计算 叶轮、转子材料和许用应力
dC R 2 dm R 2 b Rd
式中 ρ—材料密度; R—旋转圆环的平均半径;
ω—旋转角速度。
LABORATORY OF INTENSITY AND VIBRATION
HIT
切向力dT等于纵向截面的应力σθ乘以面 积
dT b
根据微元体径向分力平衡:
将dT与dC的值代入上式:
LABORATORY OF INTENSITY AND VIBRATION
HIT
叶轮设计步骤: 1.由叶根联结部的型式选择适当的轮缘形状与尺寸,进行轮缘强度 计算,并确定轮缘上的外载荷; 2.选择轮面型线和轮毂尺寸(对套装叶轮)。一般轮毂的宽度约为与 轮面交界处宽度的1.5-2.5倍。在选择叶轮型线时,应综合考虑叶轮的应力 状态、叶轮振动特性、叶轮结构工艺性能以及叶轮型线的标准化等问题。 3. 选出合适的叶轮型线和结构,并预先确定叶轮各部分尺寸后,下 一步是进行叶轮应力计算。
焊接转子
LABORATORY OF INTENSITY AND VIBRATION
HIT
焊接转子焊接过程
焊接转子热处理过程
LABORATORY OF INTENSITY AND VIBRATION
HIT
燃气轮机主要采用以下几种型式转子:整锻转子、焊接转子、拉杆转子。
LABORATORY OF INTENSITY AND VIBRATION
LABORATORY OF INTENSITY AND VIBRATION
HIT
在微元体的四个截面上只有 两个方向的主应力: 径向方向的径向应力,用σr表示; 圆周方向的切向应力,用σθ表示。
由于叶轮应力随半径 而变化,在微元体 AB 截面上 的径向应力比 CD 截面上的径 向应力大dσr, dσr为径向应 力增量。在不同径向截面 AD 和BC上的切向应力是相等的。
LABORATORY OF INTENSITY AND VIBRATION
HIT
在高温、高压区域内工作的转子,最好采用整锻转子。因为整锻转 子的叶轮与轴是一整体,解决了高温条件下叶轮与轴连接可能松动的问题。 此外,整锻转子强度和刚度比同一外形尺寸的套装转子大,机械加工和装 配工作量小,而且结构紧凑(轴向尺寸短 );但是整锻转子的锻件大,需要 大型锻造设备,而且大锻件的质量较难保证,它的检验比较复杂。 整锻转子有两种型式:一种是转鼓式,另一种是轮盘式。 用于反 击式汽轮机中, 制造简单,刚度 很大,但强度较 低。只能用于圆 周速度较小的情 况。
LABORATORY OF INTENSITY AND VIBRATION
HIT
广泛采用的是轮式整锻转子。由于采用叶轮弥补了上述空心鼓 式转子强度不足的缺点,其圆周速度容许达到170-200米/秒以上。
LABORATORY OF INTENSITY AND VIBRATION
HIT
整锻转子加工过程
d dC 2dT sin dTd 2
R 2 b Rd b d
圆环的应力
2 R 2 u 2
式中 u—旋转圆环圆周速度(m/s)
LABORATORY OF INTENSITY AND VIBRATION
HIT
2 R 2 u 2
LABORATORY OF INTENSITY AND VIBRATION
HIT
第三章 转子、叶轮结构和强度计算
1. 2. 3. 4. 5. 6. 7. 8. 9. 转子和叶轮结构 旋转薄圆环应力计算 叶轮应力状态和基本计算公式 等厚度叶轮应力分析 实际叶轮应力计算 套装叶轮按松动转速计算过盈和应力 叶轮温度应力计算 整锻转子强度计算 叶轮、转子材料和许用应力
LABORATORY OF INTENSITY AND VIBRATION
HIT
借过盈和键联结叶轮与轴的方法,不能用于高 温区域内工作的叶轮,因为高温蠕变会使过盈降低, 或者由于透平快速起动过程中叶轮迅速加热亦会使过 盈消失。因此在这种情况下应采用销钉、轴套来联结 叶轮与轴,如右图 为了保证叶轮与轴之间轴向位置不变,并保持 叶轮之间有一定的轴向间隙,应该采用轴向定位环。
LABORATORY OF INTENSITY AND VIBRATION
HIT
图3-11用键和过盈联结叶轮与轴。扭矩 借接触摩擦力和键来传递。
对于承受较重载荷的叶轮 (低压转子的叶轮),由于强度不允许 在叶轮内孔开轴向键槽,因为在叶轮 内孔键槽周围要引起应力集中。此时 键应装在叶轮或特置的中间环的端面 上,这种键称为径向键(端面键)。
HIT
LABORATORY OF INTENSITY AND VIBRATION
空心鼓式转子接近于旋转圆环,这种转子的特点是转鼓壁厚δ比它 的直径D小得多,可 以当作旋转圆环来计算。 从圆环中切出一宽度为 b ,且 以两径向截面为界的微元体,两径向 截面之间的夹角为dθ,如图所示。 在微元体上作用有三个力: 一是微元体质量dm的离心力;其余两 个是大小相等的切向力dT。 离心力:
LABORATORY OF INTENSITY AND VIBRATION
HIT
一、转子结构型式
现代蒸汽轮机主要采用以下几种型式的转子:整锻转子、焊接转子、 套装转子以及上述两种型式组合的转子,譬如整锻转子上套装几个叶轮。 中压机组广泛采用套装转子,套装转子加工方便,生产周期短;材 料可以合理利用;叶轮、主轴等锻件尺寸小,易保证质量,且供应方便。 但套装转子在高温条件下,由于产生蠕变会使叶轮与轴之间产生松动。因 此不宜作为高压、高温汽轮机的高压转子。
LABORATORY OF INTENSITY AND VIBRATION
HIT
为了保证锻件的良好质量,整锻转子的尺寸是受到一定限制的。如 果转子有几级叶轮直径过大而锻造困难而且由于后面低压级蒸汽温度低,叶 轮可用低一级的材料。此时亦可以采用组合转子,即在整锻转子轴上套上几 级叶轮。如图3-5所示为整锻和套装组合的转子,高压部份的前11级叶轮是 整锻,后面低压部分7级叶轮为套装。
LABORATORY OF INTENSITY AND VIBRATION
HIT
焊接转子具有整锻转子所有的许多优点,但它比整锻转子重量轻;特别 是锻件小容易获得高质量锻件。它比套装转子结构紧凑,而且刚度大。此外,焊 接转子的显著优点是强度大。焊接转子适于作为高温和高速条件下工作的转子型 式,而转子的重量和尺寸几乎不受限制。
HIT
LABORATORY OF INTENSITY AND VIBRATION
为了提高转子强度,应以叶轮代替圆环组成转子,因为圆盘的 强度比圆环的强度好。圆盘的受力情况与自由圆环不同,在圆盘中的任 一圆环,外层把它向外拉,里层把它向里拉,即在径向方向存在径向应 力,此外也同样存在切向应力。 叶轮的应力状态是轴对称平面应力状态: 叶轮主平面内只有径向应力和切向应力,且同一半径上各点的 径向应力、切向应力各自相等,即叶轮任一过轴线的径向截面(子午面) 上的应力可以代表其他径向截面上的应力状态。 从叶轮中切出一块微元体,分析微元体的受力平衡。为了表示 叶轮各点的应力状态,在叶轮任意部位上,取半径相距dR的两个圆弧 面和夹角为dθ的两个径向截面所切出的无穷小微元体。
HIT
由于燃气轮机转子尺寸较小,容易获得所需尺寸的整锻转子锻件。燃 气轮机整锻转子也有轮式和鼓式两种型式。但在燃气轮机中多半采用实心鼓 式整锻转子。 其优点是刚度大,强度较好,结构简单;但重量较大,变工况时温度 应力较大。 焊接转子在燃气轮机中得到广泛应用。这种型式的转子除了刚度 和强度大外;由于转子轻巧,温度应力小,适应燃气轮机启动快的要求。
LABORATORY OF INTENSITY AND VIBRATION
HIT
叶轮结构设计的下一步骤是选择叶轮型线。 决定叶轮型线的方法有两种: 1. 一种是按给定应力曲线设计叶轮型线; 2. 一种方法是先选好一种叶轮型线算出它的应力,再来修改叶轮型线。 整个叶轮型线由下列几部分组成:(1)轮缘,(2)轮面,(3) 轮毂(对套装叶轮而言)。 轮缘是为了安置叶片,轮缘的形状与叶根的形状有关,一般 它是等厚度的。 轮毂的形状都是等厚度的。 轮面的型线有下述几种型式: (1)等厚度型; (2)锥形; (3)双曲线型; (4)等强度型。 实际叶轮的轮缘与轮面以及轮面与轮毂连接处均用圆弧或者 其他曲线圆滑地连接。