对数函数讲义

合集下载

对数与对数函数教师讲义

对数与对数函数教师讲义

名思教育辅导讲义所以函数y =log 5(2x +1)的单调增区间是(-,+∞).5.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f =0,则不等式f (18logx )>0的解集为________________.答案 ∪(2,+∞)解析 ∵f (x )是R 上的偶函数, ∴它的图象关于y 轴对称. ∵f (x )在[0,+∞)上为增函数, ∴f (x )在(-∞,0]上为减函数, 由f =0,得f =0. ∴f (18logx )>0?18log x <-或18log x >x >2或0<x <, ∴x ∈∪(2,+∞). 题型一 对数式的运算例1 (1)若x =log 43,则(2x -2-x )2等于( )A.B.C.D.(2)已知函数f (x )=则f (f (1))+f (log 3)的值是 ( )A .5B .3C .-1D.思维启迪 (1)利用对数的定义将x =log 43化成4x =3; (2)利用分段函数的意义先求f (1),再求f (f (1)); f (log 3)可利用对数恒等式进行计算. 答案 (1)D (2)A解析 (1)由x =log 43,得4x =3,即2x =, 2-x =,所以(2x -2-x )2=()2=.(2)因为f (1)=log 21=0,所以f (f (1))=f (0)=2. 因为log 3<0,所以f (log 3)=31log 231-+=3log 23+1=2+1=3.所以f (f (1))+f (log 3)=2+3=5.思维升华 在对数运算中,要熟练掌握对数式的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量化成同底的形式.已知函数f (x )=则f (2+log 23)的值为________.答案解析 因为2+log 23<4,所以f (2+log 23)=f (3+log 23),而3+log 23>4,所以f (3+log 23)=()323log +=×()32log =×=.题型二 对数函数的图象和性质例2 (1)函数y =2log 4(1-x )的图象大致是( )(2)已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (12log 3),c =f (0.2-0.6),则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .b <c <aD .a <b <c思维启迪 (1)结合函数的定义域、单调性、特殊点可判断函数图象; (2)比较函数值的大小可先看几个对数值的大小,利用函数的单调性或中间值可达到目的.答案 (1)C (2)B解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ; 又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C.(2)log3=-log23=-log49,12b=f(log3)=f(-log49)=f(log49),12log47<log49,0.2-0.6=35 =>=2>log49,又f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,故f(x)在[0,+∞)上是单调递减的,∴f(0.2-0.6)<f(log3)<f(log47),即c<b<a.12思维升华(1)函数的单调性是函数最重要的性质,可以用来比较函数值的大小,解不等式等;(2)函数图象可以直观表示函数的所有关系,充分利用函数图象解题也体现了数形结合的思想.(1)已知a=21.2,b=-0.8,c=2log52,则a,b,c的大小关系为() A.c<b<a B.c<a<bC.b<a<c D.b<c<a(2)已知函数f(x)=log a(x+b)(a>0且a≠1)的图象过两点(-1,0)和(0,1),则a =________,b=________.答案(1)A(2)2 2解析(1)b=-0.8=20.8<21.2=a,c=2log52=log522<log55=1<20.8=b,故c<b<a.(2)f(x)的图象过两点(-1,0)和(0,1).则f(-1)=log a(-1+b)=0且f(0)=log a(0+b)=1,∴,即.题型三对数函数的应用例3已知函数f(x)=log a(3-ax).(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围;(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.思维启迪f(x)恒有意义转化为“恒成立”问题,分离参数a来解决;探究a 是否存在,可从单调性入手.解(1)∵a>0且a≠1,设t(x)=3-ax,则t(x)=3-ax为减函数,x∈[0,2]时,t(x)最小值为3-2a,当x∈[0,2]时,f(x)恒有意义,即x∈[0,2]时,3-ax>0恒成立.∴3-2a>0.∴a<.又a>0且a≠1,∴a∈(0,1)∪.(2)t(x)=3-ax,∵a>0,∴函数t(x)为减函数,∵f(x)在区间[1,2]上为减函数,∴y=log a t为增函数,∴a>1,x∈[1,2]时,t(x)最小值为3-2a,f(x)最大值为f(1)=log a(3-a),∴,即,故不存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1.思维升华解决对数函数综合问题时,无论是讨论函数的性质,还是利用函数的性质(1)要分清函数的底数是a∈(0,1),还是a∈(1,+∞);(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行;(3)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.已知f(x)=log4(4x-1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)求f(x)在区间[,2]上的值域.解(1)由4x-1>0,解得x>0,因此f(x)的定义域为(0,+∞).(2)设0<x1<x2,则0<4x1-1<4x2-1,因此log4(4x1-1)<log4(4x2-1),即f(x1)<f(x2),故f(x)在(0,+∞)上递增.(3)f(x)在区间[,2]上递增,又f()=0,f(2)=log415,因此f(x)在[,2]上的值域为[0,log415].利用函数性质比较幂、对数的大小典例:(15分)(1)设a=0.50.5,b=0.30.5,c=log0.30.2,则a,b,c的大小关系是() A.a>b>c B.a<b<cC.b<a<c D.a<c<b(2)已知a=2log 3.45,c=()3log0.3,则()5,b=2log 3.6A.a>b>c B.b>a>cC.a>c>b D.c>a>b(3)已知函数y=f(x)的图象关于y轴对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立,a=(20.2)·f(20.2),b=(logπ3)·f(logπ3),c=(log39)·f(log39),则a,b,c的大小关系是()A .b >a >cB .c >a >bC .c >b >aD .a >c >b思维启迪 (1)利用幂函数y =x 0.5和对数函数y =log 0.3x 的单调性,结合中间值比较a ,b ,c 的大小;(2)化成同底的指数式,只需比较log 23.4、log 43.6、-log 30.3=log 3的大小即可,可以利用中间值或数形结合进行比较;(3)先判断函数φ(x )=xf (x )的单调性,再根据20.2,log π3,log 39的大小关系求解.解析 (1)根据幂函数y =x 0.5的单调性,可得0.30.5<0.50.5<10.5=1,即b <a <1; 根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c . (2)c =()3log 0.3=53log 0.3=5310log 3.方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知: log 23.4>log 3>log 43.6.方法二 ∵log 3>log 33=1,且<3.4, ∴log 3<log 33.4<log 23.4. ∵log 43.6<log 44=1,log 3>1, ∴log 43.6<log 3. ∴log 23.4>log 3>log 43.6. 由于y =5x为增函数,∴2log 3.45>5310log 3>5log 43.6.即2log 3.45>()3log 0.3>2log 3.65,故a >c >b .教研主任签字:________。

6对数函数 - 中等 - 讲义

6对数函数 - 中等 - 讲义

对数函数知识讲解一、对数1.定义:一般地,对于指数式b a N =,我们把“以a 为底N 的对数b ”记作,即log a b N=(0a >且1a ¹),其中,数a 叫做对数底数,N 叫做真数.2.对数运算1)对数的运算性质:如果0a >,且1,0,0a M N ≠>>,那么:i. log log log ()a a a M N M N +=⋅;(对数的和等于积的对数) ii. 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ iii. log log log a a aMM N N-=;(商的对数等于对数的差) iv. log log (R)a a M M ααα=∈ v. 1log log naa N N n=2)换底公式:log log log a b a NN b=(,0,,1,0a b a b N >≠>) 3)关于对数的恒等式log a NaN =log n a a n = 1log log a b b a=log log n m a a mM M n= log log log log a b a b M MN N=二、对数函数1.定义:函数log a y x =(0a >且1a ≠)叫做对数函数,其中x 是自变量,函数的定义域是(0,)+∞,值域为实数集R .2.对数函数log (0a y x a =>且1a ≠)的图象和性质:3.根据图像比较对数函数底数的大小曲线1234C C C C ,,,分别是指函log log log log a b c d y x y x y x y x ====,,,的图像. 1)由图像得01a b d c <<<<<.2)当底数大于1时,底数越大图像越靠近x 轴,当底数小于1时,底数越小于靠近x 轴. 3)指数函数log a y x =与1log ay x =(0a >且1a ≠)的图像关于x 轴对称.4)函数值的大小比较①底数相同真数不同:当底数大于1数小于1时真数越大函数值越小.②指数相同真数不同:可采用函数图像法,底数大于1同底数越大函数值越小,底数小于1时,真数相同底数越小函数值越小.③底数不同真数不同:找中间值(一般为1值比较.经典例题一.选择题(共12小题)1.(2016秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是( ) A .(﹣∞,5) B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【解答】解:要使对数式b=log (a ﹣2)(5﹣a )有意义,则{a −2>05−a >0a −2≠1,解得a ∈(2,3)∪(3,5),故选:C .2.在M=log (x ﹣3)(x +1)中,要使式子有意义,x 的取值范围为( ) A .(﹣∞,3] B .(3,4)∪(4,+∞)C .(4,+∞)D .(3,4)【解答】解:由函数的解析式可得 {x +1>0x −3>0x −3≠1,解得3<x <4,或x >4.故选:B .3.(2017春•杭州期末)若a 2017=b (a >0,且a ≠1),则( ) A .log a b=2017 B .log b a=2017C .log 2017a=bD .log 2017b=a【解答】解:若a 2017=b (a >0,且a ≠1),则2017=log a b ,故选:A.4.(2015秋•高密市期中)若0<a<1,实数x,y满足|x|=log a 1y,则该函数的图象是()A.B.C.D.【解答】解:由|x|=log a1y,得,∴y=1a|x|={a x,x≤0a−x,x>0,又0<a<1,∴函数在(﹣∞,0]上递j减,在(0,+∞)上递增,且y≥1,故选:A.5.(2018•安庆二模)设x,y,z均大于一,且log√2x=log√3y=log√5z,令a=x12,b=y13,c=z14则a,b,c的大小关系是()A.a>b>c B.b>c>a C.c>a>b D.c>b>a【解答】解:法一:令log√2x=log√3y=log√5z=k,则x12=(214)k,y13=(316)k,z14=(518)k将它们分别24次方,得a 24=(x 12)24,b 24=(y 13)24=81k ,c 24=(z 14)24=125k ,法二:取特殊值法:取x=√2,y=√3,z=√5,符合题意, 易验证c >a >b , 故选:D .6.(2018•潮南区模拟)若log 2(log 3a )=log 3(log 4b )=log 4(log 2c )=1,则a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >cC .a >c >bD .b >c >a【解答】解:由log 2(log 3a )=1,可得log 3a=2,lga=2lg3,故a=32=9, 由log 3(log 4b )=1,可得log 4b=3,lgb=3lg4,故b=43=64, 由log 4(log 2c )=1,可得log 2c=4,lgc=4lg2,故c=24=16, ∴b >c >a . 故选:D .7.(2014•苏州校级学业考试)化简log 38log 32可得( ) A .log 34 B .32C .3D .4【解答】解:log 38log 32=log 28=log 223=3.故选:C .8.(2014秋•喀什地区月考)log29×log34=()A .14B .12C .2D .4【解答】解:原式=2lg3lg2×2lg2lg3=4.故选:D .9.(2016秋•南岗区校级期末)函数y =√x−1x−2+log 2(−x 2+2x +3)的定义域为( ) A .{x |1≤x <3}B .{x |1<x <2}C .{x |1≤x <2或2<x <3}D .{x |1≤x <2}【解答】解:要使函数有意义,则{x −1≥0x −2≠0−x 2+2x +3>0,即{x ≥1x ≠2x 2−2x −3<0,∴{x ≥1x ≠2−1<x <3解得1≤x <3且x ≠2,即1≤x <2或2<x <3. ∴函数的定义域为{x |1≤x <2或2<x <3}. 故选:C .10.(2016秋•东莞市校级期末)函数y=log 5x 的定义域( ) A .(﹣∞,0) B .(﹣∞,0]C .(0,+∞)D .[0,+∞)【解答】解:根据题意,函数y=log 5x 的是对数函数, 则有x >0,即其定义域为(0,+∞);故选:C .11.(2017秋•南涧县校级月考)函数f (x )对于任意实数x 满足条件f(x +4)=1f(x),且当x ∈[2,10)时,f (x )=log 2(x ﹣1),则f (2010)+f (2011)的值为( ) A .﹣2 B .﹣1C .1D .2【解答】解:由f (x +4)=1f(x)得f [(x +8)]=1f(x+4)=f (x ),T=8 ∵x ∈[2,10),f (x )=log 2(x ﹣1) ∴f (2010)+f (2011)=f (2)+f (3) =log 21+log 2(3﹣1)=1. 故选:C .12.(2014•陕西二模)函数g (x )=log 22x x+1(x >0),关于方程|g (x )|2+m |g(x )|+2m +3=0有三个不同实数解,则实数m 的取值范围为( )A .(﹣∞,4﹣2√7)∪(4+2√7,+∞)B .(4﹣2√7,4+2√7)C .(﹣34,﹣23)D .(﹣32,﹣43]【解答】解:∵2x x+1=2(x+1)−2x+1=2﹣2x+1,∴当x >0时,0<2﹣2x+1<2,即g (x )<1,则y=|g (x )|大致图象如图所示,设|g (x )|=t ,则|g (x )|2+m |g (x )|+2m +3=0有三个不同的实数解, 即为t 2+mt +2m +3=0有两个根,且一个在(0,1)上,一个在[1,+∞)上,当t=0时,2m +3=0,得m=﹣32,此时方程为t 2﹣32t=0,解得t=0或t=32,当t=0时,g (x )=0有一个根x=1,当t=32时,由|g (x )|=32,此时也只有一个根,此时方程共有2个根,不满足条件.设h (t )=t 2+mt +2m +3, ①当有一个根为1时,h (1)=12+m +2m +3=0,解得m=﹣43,此时另一根为13,满足条件.②根不是1时,则满足{ℎ(0)>0ℎ(1)<0,∴{2m +3>01+m +2m +3<0,即{m >−32m <−43,∴﹣32<m <−43.综上﹣32<m ≤﹣43,即实数m 的取值范围为(﹣32,﹣43],故选:D .二.填空题(共4小题)13.(2016秋•曲阜市校级期末)若4x =9y =6,则1x+1y= 2 .【解答】解:∵4x =9y =6,∴x=lg6lg4,y=lg6lg9.则1x +1y =lg4lg6+lg9lg6=lg62lg6=2. 故答案为:2.14.(2018•黑龙江模拟)设2x =5y =m ,且1x+1y=2,则m 的值是 √10 .【解答】解:由2x =5y =m , 得x=log 2m ,y=log 5m ,由1x +1y =2,得1log 2m +1log 5m =2, 即log m 2+log m 5=2, ∴log m 10=2, ∴m=√10. 故答案为:√10.15.(2015秋•汉阳区校级期末)已知log 23=t ,则log 4854=1+3t 4+t(用t 表示)【解答】解:log 23=t ,则log 4854=log 254log 248=1+3log 234+log 23=1+3t4+t.故答案为:1+3t4+t.16.(2013秋•缙云县校级期末)已知函数f (x )=log a [mx 2+(m ﹣1)x +14]的值域为R ,则实数m 的取值范围是 [0,3−√52]∪[3+√52,+∞) .【解答】解:令g (x )=mx 2+(m −1)x +14的值域为A ,∵函数f(x)=log a [mx 2+(m −1)x +14]的值域为R ,∴(0,+∞)⊂A ,当m=0时,g (x )=−x +14值域为R ,满足条件;当m ≠0时,{m >0(m −1)2−m ≥0,解得:m ∈(0,3−√52]∪[3+√52,+∞),故实数m 的取值范围是[0,3−√52]∪[3+√52,+∞),故答案为:[0,3−√52]∪[3+√52,+∞).三.解答题(共2小题)17.已知函数f (x )=lg [(m 2﹣3m +2)x 2+2(m ﹣1)x +5], (1)若函数f (x )的定义域为R ,求实数m 的取值范围; (2)若函数f (x )的值域为R ,求实数m 的取值范围.【解答】解:函数f (x )=lg [(m 2﹣3m +2)x 2+2(m ﹣1)x +5], (1)∵f (x )的定义域为R ,∴g (x )=(m 2﹣3m +2)x 2+2(m ﹣1)x +5的图象恒在x 轴上方, (m 2﹣3m +2)x 2+2(m ﹣1)x +5>0恒成立, 当m=1时,5>0恒成立, 当m=2时2x +5>0不恒成立,当{m 2−3m +2>0△<0时,不等式恒成立.即m >94或m <1,所以实数m 的取值范围为:m >94或m ≤1,(2)∵f (x )的值域为R ,∴g (x )=(m 2﹣3m +2)x 2+2(m ﹣1)x +5图象不能在x 轴下方, 当m=2时g (x )=2x +5,符合题意,当{m 2−3m +2>0△≥0时,即2<m ≤94 实数m 的取值范围:2≤m ≤9418.(2015•湘西州校级一模)已知函数f (x )=log a (1﹣x )+log a (x +3)(0<a <1)(1)求函数f (x )的定义域;(2)求函数f (x )的零点;(3)若函数f (x )的最小值为﹣4,求a 的值.【解答】解:(1)要使函数有意义:则有{1−x >0x +3>0,解之得:﹣3<x <1, 则函数的定义域为:(﹣3,1)(2)函数可化为f (x )=log a (1﹣x )(x +3)=log a (﹣x 2﹣2x +3) 由f (x )=0,得﹣x 2﹣2x +3=1,即x 2+2x ﹣2=0,x =−1±√3∵−1±√3∈(−3,1),∴函数f (x )的零点是−1±√3(3)函数可化为:f (x )=log a (1﹣x )(x +3)=log a (﹣x 2﹣2x +3)=log a [﹣(x +1)2+4] ∵﹣3<x <1,∴0<﹣(x +1)2+4≤4,∵0<a<1,∴log a[﹣(x+1)2+4]≥log a4,即f(x)min=log a4,由log a4=﹣4,得a﹣4=4,∴a=4−14=√22。

对数函数(汇报课)课件

对数函数(汇报课)课件
挑战练习题3
请计算log(5) (125)。
挑战练习题2
请计算log(3) (27)。
挑战练习题4
请计算log(6) (729)。
感谢观看
THANKS
总结词
对数函数图像与指数函数图像的关系
详细描述
对数函数和指数函数互为反函数,它们的图像关于直线 y=x对称。因此,可以通过指数函数的图像得到对数函数 的图像。
对数函数的单调性
总结词
对数函数的单调性判定
详细描述
对于底数大于1的对数函数,它在定义域内是单调递增的 ;对于底数在(0,1)之间的对数函数,它在定义域内是单调 递减的。
总结词
对数函数单调性的应用
详细描述
单调性在对数函数的应用中非常重要,例如在解决不等式 问题、求最值问题以及解决一些实际问题中都有广泛的应 用。
总结词
如何利用对数函数的单调性解题
详细描述
利用对数函数的单调性可以简化不等式的解法,也可以通 过求导等方式来求解最值问题。同时,在解决一些实际问 题时,也可以利用对数函数的单调性来简化问题的求解过 程。
基础练习题3
请计算以5为底7的对数。
基础练习题4
请计算以6为底8的对数。
进阶练习题
进阶练习题1
请计算log(2) (32)。
进阶练习题2
请计算log(3) (9)。

进阶练习题3
请计算log(5) (25)。
进阶练习题4
请计算log(6) (36)。
挑战练习题
挑战练习题1
请计算log(2) (8)。
对数函数的奇偶性
总结词
对数函数的奇偶性判定
详细描述
对于底数为正数的对数函数,它是非奇非偶函数;对于 底数为负数的对数函数,它是奇函数。

对数函数及其性质知识点总结讲义

对数函数及其性质知识点总结讲义

对数函数及其性质知识点总结讲义一、对数基本概念1.对数的定义:对数是数学中的一种运算,用一个数的指数表示另一个数。

2. 对数的表示方法:如果a^x = b,则记作x = loga(b)。

3.对数函数:对数函数是指以对数的形式来表示函数的函数。

二、对数函数的性质1.定义域和值域:-对数函数的定义域为正实数集,即x>0。

-对数函数的值域为实数集,即y∈R。

2.对称性:- 设a > 1,则loga(x) = y当且仅当a^y = x。

- 设0 < a < 1,则loga(x) = y当且仅当a^y = x。

3.基本性质:- loga(1) = 0,其中a ≠ 0。

- loga(a) = 1,其中a ≠ 1- loga(x · y) = loga(x) + loga(y),其中x > 0,y > 0。

- loga(x / y) = loga(x) - loga(y),其中x > 0,y > 0。

- loga(x^p) = p · loga(x),其中x > 0,p ∈ R。

- loga(b) = logc(b) / logc(a),其中a,b > 0,且a ≠ 1,c ≠14.基本图像:- 对数函数y = loga(x)的图像为一条曲线,也称为对数曲线。

-当0<a<1时,对数曲线在第一象限上严格递减。

-当a>1时,对数曲线在第一象限上严格递增。

5.特殊对数函数:- 以2为底的对数函数y = log2(x)常用于衡量信息的位数及计算机科学中。

- 自然对数函数y = ln(x)常用于微积分和其它分支的数学中。

三、对数函数的应用1.指数增长与对数函数:对数函数的性质使得它在描述指数增长的问题中非常有用。

-对数函数可以用来模拟人口增长、投资收益、疾病传播等指数增长的过程。

2.对数函数在数据处理中的应用:-对数函数可以用来处理大量数据、极大值、极小值等情形。

人教版高一数学对数函数讲义

人教版高一数学对数函数讲义

第五节、对数函数 幂函数
一、基本概念
1.对数的概念 一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以a 为底N 的
对数,记作:
N
x a log =
a — 底数,N — 真数,N a log — 对数式
说明: 注意底数的限制0>a ,且1≠a ;
x N N a a x
=⇔=log ;
思考: 为什么对数的定义中要求底数0>a ,且1≠a ;
是否是所有的实数都有对数呢? 两个重要对数:
常用对数:以10为底的对N lg 数;
自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 2.
对数式与指数式的互化 x N a =log ⇔N a x = 对数式

指数式
对数底数 ← a → 幂底数 对数 ← x → 指数 真数 ← N → 幂
3.
对数的性质
对数的性质
在同一坐标系中画出下列对数函数的图象;
A. Q<T<P
B. T<Q<P
C. P<Q<T
D. P<T<Q X k
的定义域为
定义域为(
A. 2
B.
C.。

对数函数及其性质知识点总结经典讲义

对数函数及其性质知识点总结经典讲义

对数函数及其性质知识点总结经典讲义对数函数是指以一些正数b为底的函数,表示为logb(x),其中x为自变量,b为底数。

对数函数是指数函数的逆运算,可以用于解决指数方程和指数不等式问题。

对数函数的一些重要性质如下:1.对数函数的定义域是正实数集R+。

2.对数函数的值域是实数集R。

3.对数函数的自变量必须大于0,即x>0。

4.底数b必须大于0且不等于1,即b>0,b≠15.对数函数的图像在直线y=x左侧,与x轴交于点(1,0)。

6. 对数函数是单调递增函数,即当自变量x1 > x2时,有logb(x1) > logb(x2)。

7. 对数函数的特殊值:logb(1) = 0,logb(b) = 18. 对数函数的运算规则:logb(x·y) = logb(x) + logb(y),logb(x/y) = logb(x) - logb(y),logb(x^n) = n·logb(x),其中x、y 为正实数,n为任意实数。

9. 对数函数的函数性质:logb(1/x) = -logb(x),logb√x =(1/2)·logb(x)。

10. 对数函数的性质:logb(m/n) = logb(m) - logb(n),logb(m^n) = n·logb(m),logb(m) = (logc(m))/(logc(b)),其中b、c为正实数,m、n为正实数。

11. 对数函数的解析式:logb(x) = logc(x)/logc(b),其中c为任意正实数,c ≠ 112. 对数函数的性质:logb(x) = 1/(logx(b))。

13. 对数函数与指数函数的关系:y = logb(x)是函数y = b^x的反函数,两者互为反函数。

对数函数在数学、科学和工程等领域中具有广泛的应用。

它可以用于求解指数方程和指数不等式,简化复杂的计算和求解过程。

在数学中,对数函数是指数函数的重要补充,它们互为反函数,可以相互转化,应用更加灵活。

对数函数讲义

对数函数讲义

对数函数教学设计一、 问题情境1、情境:我们研究指数函数时,曾经讨论过细胞分裂问题.某种细胞分裂时,得到的细胞的个数y 是分裂次数x 的函数,这个函数可以用指数函数y =2x表示.2、问题:现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞?这个问题就相当于已知y =2x 中的y 求x ,我们将y =2x改写成对数式为y =log 2x ,对于每一个给定的y 值,都有唯一的x 值与之相对应。

把y 看作自变量,分裂次数x 就是细胞个数y 的函数。

这样就得到了一个新的函数。

习惯上,仍用x 表示自变量,用y 表示它的函数。

上面的这个函数就写成y =log 2x 。

二、 新授:1、对数函数概念: 一般地,函数x y alog =(a >0且a ≠1)叫做对数函数.思考1:函数x y alog=(a >0且a ≠1)与函数xa y =(a >0且a ≠1)的定义域、值域之间有什么关系? (函数x y alog=(a >0且a ≠1)的定义域、值域分别是函数xa y =(a>0且a ≠1)的值域和定义域)2、对数函数的图像与性质: ①学生自主活动探究 在同一坐标轴下画出对数函数x y 2log=与指数函数xy 2=的图像观察图像有什么特征?思考2:一般地,当a >0且a ≠1时,函数x y alog =与函数xa y =的图像有什么关系?(函数x y alog=与函数xa y =的图像关于直线y=x 对称)总结:我们发现函数x y alog=(a >0且a ≠1)的定义域、值域分别是函数xa y =(a >0且a ≠1)的值域和定义域,它们的图像关于直线y=x 对称。

这样我们把xa y =称为x yalog=的反函数,同样x y alog=称为xa y =的反函数。

一般地,如果函数)(x f y =存在反函数,那么它的反函数记作)(1x fy -=在同一坐标轴下画出对数函数x y 3log =与x y 31log=的图像,并观察函数图像,说说图像的特征。

对数函数PPT课件

对数函数PPT课件

04 对数函数与其他函数的比 较
与指数函数的比较
指数函数和对数函数是互为反函数, 它们的图像关于直线y=x对称。
当a>1时,指数函数和对数函数都是 增函数,但它们的增长速度不同,对 数函数的增长速度更慢。
指数函数y=a^x(a>0且a≠1)的图 像总是经过点(0,1),而对数函数 y=log_a x(a>0且a≠1)的图像则 总是经过点(1,0)。
对数函数和三角函数的应用领域也不同。对数函数主要用于解决与对数运算相关的问题,如 对数的换底公式、对数的运算性质等;而三角函数则主要用于解决与三角形的边角关系、周 期性等问题相关的问题。
05 对数函数的学习方法与技 巧
学习方法
1 2 3
理解对数函数的定义
首先需要理解对数函数的基本定义,包括对数函 数的定义域、值域以及其变化规律。
对数函数ppt课件
目录
• 对数函数的定义与性质 • 对数函数的运算性质 • 对数函数的应用 • 对数函数与其他函数的比较 • 对数函数的学习方法与技巧
01 对数函数的定义与性质
定义
自然对数
以e为底的对数,记作lnx,其中e是自然对数的底数,约等于 2.71828。
常用对数
以10为底的对数,记作lgx。
当0<a<1时,指数函数和对数函数都 是减函数,但它们的下降速度也不同, 对数函数的下降速度更快。
与幂函数的比较
幂函数y=x^n(n为实数)的图像在 第一象限和第三象限都存在,而对数 函数y=log_a x(a>0且a≠1)的图像 只存在于第一象限。
幂函数的增长速度与指数和对数函数 不同,当n>0时,幂函数的增长速度 比对数函数更快;当n<0时,幂函数 的增长速度比对数函数更慢。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、教学目标:1.理解对数的概念,掌握对数的运算性质;2.掌握对数函数的概念、图象和性质;能利用对数函数的性质解题.二、教学重、难点:运用对数运算性质进行求值、化简、证明、运用对数函数的定义域、单调性解题三、命题规律:主要考察指数式ba N =与对数式log a Nb =的互化,对数函数的图像和性质或由对数函数复合成的函数,主要涉及比较大小、奇偶性、过定点、单调区间以及运用单调性求最值等,主要以填空为主。

四、教学内容:【知识回顾】 1.对数的概念如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。

即指数式与对数式的互化:log ba aN b N =⇔=2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。

自然对数:通常将以无理数 2.71828e =⋅⋅⋅为底的对数叫做自然对数,记作ln N 。

3.对数的性质及对数恒等式、换底公式(1)对数恒等式:①log Na a = (01,0)a a N >≠>且②log N a a =(01,0)a a N >≠>且(2)换底公式:log a N =log log b b Na(3)对数的性质:①负数和零没有对数 ② 1的对数是零,即log 10a =③底的对数等于1,即log 1a a = ④log log log a b c b c d ⋅⋅=log a d4.对数的运算性质如果01,0,0a a M N >≠>>且,那么(1)log ()a MN = ; (2)log aMN= ; (3)log na M = ; (4)logn a mM = 。

(5)log log a b b a ⋅= ; (6)log a b =1log b a5.对数函数函数log (01)a y x a a =>≠且做对数函数,其定义域为(0,+∞),值域为(-∞,+∞).、 6.对数函数图像与性质注:对数函数1log log (01)a ay x y x a a ==>≠与且的图像关于x 轴对称。

7.同真数的对数值大小关系如图在第一象限内,图像从左到右相应的底逐渐增大, 即01c d a b <<<<<8.对数式、对数函数的理解① 应重视指数式与对数式的互化关系,它体现了数学的转化思想,也往往是解决“指数、对数”问题的关键。

② 在理解对数函数的概念时,应抓住定义的“形式”,像2log 2,log 2,3ln x y y x y x ===等函数均不符合形式log (01)a y x a a =>≠且,因此,它们都不是对数函数 ③ 画对数函数log a y x =的图像,应抓住三个关键点1(,1),(1.0),(,1)a a-【例题精讲】考点一:对数式的运算例1.计算(1)(22lg5+(2)()(21lg5lg8lg1000lg lg lg0.066++++【反思归纳】运用对数的运算法则时,要注意各字母的取值范围,只有所得结果中的对数和所给出的数的对数都存在时才成立,同时不要将积商幂的对数与对数的积商幂混淆起来。

【举一反三】1.求值:(1)2221log log12log4212--(2)()2lg2lg2lg50lg25+⋅+(3)()()3948log2log2log3log3+⋅+练习:1=29=3(log3log3)=1248.化简..计算..计算+·.lg lglglglog23939123-+-4log(6+42642)=5log2=1aalog3=32...已知,则.---6.若log π(log 3(lnx))=0,则x=________. 7.化简lg 25+lg2·lg50=________.8log500lg 85lg6450(lg2lg5)2.计算+++=.-12考点二:对数值的大小比较比较大小常用的方法有:①做差比较法 ②做商比较法 ③函数单调性法 ④中间值法, 在比较两个幂的大小时,除上述一般方法外,还应注意以下情况:1) 对于底数相同,真数不同的两个对数的大小比较,直接利用对数函数的单调性来判断。

2) 对于底数不同,真数相同的两个对数的大小比较,可利用对数函数的图像来判断。

3) 对于底数和真数均不同的两个对数的大小比较,可以利用中间值来比较4) 对于三个及以上的数进行大小比较,则应先根据值的大小,(特别是0和1)进行分组,再比 较各组的大小。

5) 对于含有参数的两个对数进行大小比较时,要注意对底数进行讨论。

例2.比较大小(1)22log 3.4log 8.5与 (2)23log 3log 3与(3)76log 6log 7与 (4)()()21log 1log 2a ab b b R -+∈与【举一反三】(1)3.0log 7.0log 4.03.0与 (2) 214.36.0317.0log ,8.0log -⎪⎭⎫ ⎝⎛和 (3)1.0log 1.0log 2.03.0和解:(1) ∵13.0log 7.0log 3.03.0=< 14.0log 3.0log 4.04.0=>∴3.0log 7.0log 4.03.0<(2) ∵18.0log 06.0<< 07.0log 4.3< 13121>⎪⎭⎫⎝⎛-∴216.04.3318.0log7.0log -⎪⎭⎫ ⎝⎛<<(3) 解: 03.0log 11.0log 1.03.0>=02.0log 11.0log 1.02.0>=∵2.0log 3.0log 1.01.0< ∴1.0log 1.0log 2.03.0> 考点三:与对数函数有关的定义域问题求与对数函数有关的复合函数的定义域的方法与前面所讲到的求定义域解法一样,但应注意真数大于0且不等于1,若遇到底数含有参数,则应对参数进行讨论。

例3. 求下列函数的定义域()21log a y x =;(2)2log (4)a y x =-;(3)log 4a xy x=-. 解(1)因为20x >,即0x ≠,所以函数2log a y x =的定义域是()(),00,-∞+∞.(2)因为240x ->,即240x -<,所以函数2log (4)a y x =-的定义域是()2,2-.(3)因为04x x >-,即()40x x -<,所以函数log 4axy x=-的定义域是()0,4. 考点四:与对数函数有关的值域问题(1) 型如(log )a y f x =:采用换元法,令log a t x =,根据定义域先求log a t x =值域,再求()y f t =的值域。

(2) 型如log ()a y f x =:由真数()0f x >求出定义域,再求出()y f x =的值域,再根据a 的值确定复合函数的值域.例4.求下列函数的定义域、值域: (1)41212-=--xy (2) )52(log 22++=x x y (3) )54(log 231++-=x x y (4) )(log 2x x y a --=解(1):要使函数有意义,必须:041212≥---x 即:11212≤≤-⇒-≥--x x 值域:∵11≤≤-x ∴012≤-≤-x 从而 1122-≤--≤-x ∴2124112≤≤--x ∴41412012≤-≤--x ∴210≤≤y (2)∵522++x x 对一切实数都恒有4522≥++x x ∴函数定义域为R从而24log )52(log 222=≥++x x 即函数值域为2≥y (3)函数有意义,必须:5105405422<<-⇒<--⇒>++-x x x x x由51<<-x ∴在此区间内 9)54(max 2=++-x x∴ 95402≤++-≤x x从而 29log )54(log 31231-=≥++-x x 即:值域为2-≥y(4)要使函数有意义,必须: 02>--x x ①0)(log 2≥--x x a ②由①:01<<-x由②:当1>a 时 必须 12≥--x x φ∈x当10<<a 时 必须 12≤--x x R x ∈综合①②得 1001<<<<-a x 且 当01<<-x 时 41)(max 2=--x x ∴4102≤--<x x ∴41log )(log 2aa x x ≥-- 41log a y ≥ )10(<<a考点五:定义域或值域为R 的问题(1) 若[]log ()a y x ϕ=的定义域为R,则对任意实数x ,恒有()0x ϕ>。

特别地,当2()(0)x ax bx c a ϕ=++≠时,要使定义域为R ,则必须00a >∆<且 (2) 若[]log ()a y x ϕ=的值域为R ,则()x ϕ必需取遍()0+∞,内所有的数。

特别地,当2()(0)x ax bx c a ϕ=++≠时,要使值域为R ,则必须00a >∆≥且 例5. 对于函数)32(log )(221+-=ax x x f ,解答下述问题:(1)若函数的定义域为R ,求实数a 的取值范围; (2)若函数的值域为R ,求实数a 的取值范围;(3)若函数在),1[+∞-内有意义,求实数a 的取值范围; (4)若函数的定义域为),3()1,(+∞-∞ ,求实数a 的值; (5)若函数的值域为]1,(--∞,求实数a 的值; (6)若函数在]1,(-∞内为增函数,求实数a 的取值范围.考点六:对数函数的综合问题 例1、设121()log 1axf x x -=-为奇函数, a 为常数. ⑴求a 的值;⑵求证:()f x 在(1)∞,+内单调递增;⑶若对于[3,4]上的每一个x 的值,不等式1()()2xf x m >+恒成立,求实数m 的取值范围。

解:⑴因为()f x 是奇函数,所以()()f x f x -=-,112211log log 11ax axx x ∴+-=----,1111ax x x ax∴+-=---,22211a x x ∴-=-,1a ∴±,经检验1a =-⑵121()log 1x f x x +=- 定义法:任取121x x >>,所以12110x x >>--,1222011x x ∴<<--,12121111x x x x ∴<++--,1211122211log log 11x x x x ∴>++--,所以12()()f x f x >,所以()f x 在(1)∞,+内单调递增.导数法:1211()()log ()11x x f x e x x '⋅⋅'-+=+-()112222121log log 111x e e x x x ⋅⋅⋅--==-+--,因为1x >,所以2101x >,-又12log 0e >-,所以()0f x '>,所以所以()f x 在(1)∞,+内单调递增.⑶对于[3,4]上的每一个x 的值,不等式1()()2xf x m >+恒成立,所以1()()2xf x m>-恒成立,令1()()()2xg x f x =-,由知⑵,()g x 在[3,4]上是单调递增函数,所以9(3)8m g <=-,所以m 的取值范围是9()8∞-,-.例2、已知()log (01,0)ax bf x a a b x b+>≠>=且- ⑴求函数()f x 的定义域; ⑵讨论函数()f x 的奇偶性; ⑶讨论函数()f x 的单调性.析:由真数大于0,可求定义域,按奇偶性的定义判断其奇偶性,单调性可按复合函数的单调性的规律判断。

相关文档
最新文档