新教材高中数学第四章指数函数与对数函数4.3.2对数的运算讲义新人教A版必修第一册
数学人教A版必修第一册4.3.2对数的运算课件

(2)lg
2
2
5 + lg
3
8+lg 5·lg 20+(lg 2)2
24 ×53
解:原式=lg
1
5
1
5-lg
5
=lg 104=4
【跟踪训练】
(2)lg
2
2
5 + lg
3
8+lg 5·lg 20+(lg 2)2
解:原式=2lg 5+2lg 2+lg 5×(1+lg 2)+(lg 2)2
如果a 0, 且a 1, M 0, N 0, 那么
(1)log(
log a M log a N;
a MN)
M
(2)log a
log a M - log a N;
N
n
(3)log a M n log a M .
对数的运算性质把乘积转化为加法,把商转化为减法,
把乘方转化为乘法,降低了运算级别,简化了运算。
的运算性质.你认为可以怎样研究?
我们知道了对数与指数间的
关系,能否利用指数幂运算性
质得出相应的对数运算性质呢?
(1)a r a s a r s (a 0, r , s R);
(2)(a r ) s a rs (a 0, r , s R);
(3)(ab) r a r b r (a 0, r R);
创始,微积分的建立并称为17世纪数学的三大成就。
2024年11月10日星期日11时4分32秒
课程标准:掌握积、商、幂的对数运算性质,理解
其推导过程和成立的条件.
教学重点:对数的运算性质
新教材2024高中数学第四章指数函数与对数函数4.3对数4.3.1对数的概念课件新人教A版必修第一册

3.指数式与对数式的互化
1.(题型1)有下列说法:①只有正数有对数;②任何一个指数式都
可以化成对数式;③log525=±2;④3log3(-5)=-5成立.其中正确的
2.常用对数与自然对数 通常将以10为底的对数叫做常用对数,并把log10N记作_l_g_N___;以 无 理 数 e = 2.718 28… 为 底 的 对 数 称 为 自 然 对 数 , 并 且 把 logeN 记 为 __l_n_N____.
【预习自测】
在对数概念中,为什么规定a>0,且a≠1呢? 【提示】(1)若a<0,则N取某些数值时,logaN不存在,因此规定a 不能小于0. (2)若a=0,则当N≠0时,logaN不存在,当N=0时,则logaN有无数 个值,与对数定义不符,因此规定a≠0. (3)若a=1,当N≠1时,则logaN不存在,当N=1时,则logaN有无数 个值,与对数定义不符,因此规定a≠1.
所以 x=±5.
因为 52=25>0,(-5)2=25>0,
所以 x=5 或 x=-5.
题型3 利用对数的性质及对数恒等式求值 方向1 利用对数的性质求值
(1)计算log3[log3(log28)]=________. (2)若log2[log4(log3x)]=0,则x=________. 【答案】(1)0 (2)81 【解析】(1)令log28=x,则2x=8,所以x=3.所以 log3[log3(log28)]=log3(log33)=log31=0. (2)因为log2[log4(log3x)]=0,可得log4(log3x)=1,所以log3x=4,所 以x=34=81.
2019-2020学年新教材高中数学 第四章 指数函数与对数函数 4.3.1 对数的概念讲义 新人教A版必修第一册

4.3.1 对数的概念知识点对数1.对数的概念(1)定义如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N.(2)相关概念①底数与真数其中,a叫做对数的底数,N叫做真数.②常用对数与自然对数通常将以10为底的对数叫做常用对数,并把log10N记作lg_N;以无理数e=2.718 28…为底数的对数称为自然对数,并且把log e N记为ln N.状元随笔log a N是一个数,是一种取对数的运算,结果仍是一个数,不可分开书写.2.对数与指数间的关系当a>0,a≠1时,a x=N⇔x=log a N.前者叫指数式,后者叫对数式.3.对数的性质状元随笔指数式、对数式中各个字母的名称变化如下表:[教材解难]对数式与指数式的关系(1)对数式是指数式的另一种表达形式,对数运算是指数运算的逆运算,常用符号“log”表示对数.(2)对数的概念中出现了两个等式:指数式a x=N和对数式x=log a N,这两个等式是等价的,它们之间的关系如图所示.根据这个关系可以将指数式化成对数式,也可将对数式化成指数式.[基础自测]1.把指数式a b=N 化为对数式是( ) A .log b a =N B .log a N =b C .log N b =a D .log N a =b解析:根据对数定义知a b=N ⇔log a N =b . 答案:B2.把对数式log a 49=2写成指数式为( ) A .a 49=2 B .2a=49 C .492=a D .a 2=49解析:根据指数式与对数式的互化可知,把log a 49=2化为指数式为a 2=49. 答案:D3.已知log x 16=2,则x 等于( ) A .±4 B .4 C .256 D .2解析:由log x 16=2可知x 2=16,所以x =±4, 又x >0且x ≠1,所以x =4. 答案:B 4.下列各式: ①lg(lg 10)=0; ②lg(ln e)=0;③若10=lg x ,则x =10; ④由log 25x =12,得x =±5.其中,正确的是________.(把正确的序号都填上)解析:因为lg 10=1,所以lg(lg 10)=lg 1=0,①正确; 因为ln e =1,所以lg(ln e)=lg 1=0,②正确; 若10=lg x ,则x =1010,③错误;由log 25x =12,得x =2512=5,④错误.答案:①②题型一 指数式与对数式互化[教材P 122例1]例1 把下列指数式化为对数式,对数式化为指数式: 利用a b =N ⇔log a N =b(1)54=625; (2)2-6=164;(3)⎝ ⎛⎭⎪⎫13m=5.73; (4)log 1216=-4;(5)lg 0.01=-2; (6)ln 10=2.303.【解析】 (1)log 5625=4;(2)log 2164=-6;(3)log 135.73=m ;(4)⎝ ⎛⎭⎪⎫12-4=16;(5)10-2=0.01;(6)e 2.303=10. 教材反思指数式与对数式互化的思路(1)指数式化为对数式将指数式的幂作为真数,指数作为对数,底数不变,写出对数式. (2)对数式化为指数式将对数式的真数作为幂,对数作为指数,底数不变,写出指数式. 跟踪训练1 将下列指数式与对数式互化:(1)25=32; (2)⎝ ⎛⎭⎪⎫12-2=4;(3)log 381=4; (4)log 134=m .解析:(1)log 232=5;(2)log 124=-2;(3)34=81;(4)⎝ ⎛⎭⎪⎫13m =4.底数不变,指数与对数,幂与真数相对应. 题型二 对数基本性质的应用 例2 求下列各式中的x 的值.利用性质log a a=1,log a1=0求值.(1)log2(log3x)=0;(2)log5(log2x)=1;(3)log(3+1)23-1=x.【解析】(1)因为log2(log3x)=0,所以log3x=1,所以x=3.(2)因为log5(log2x)=1,所以log2x=5,所以x=25=32.(3)23-1=2(3+1)2=3+1,所以log(3+1)23-1=log(3+1)(3+1)=1,所以x=1.方法归纳利用对数性质求值的方法(1)求多重对数式的值的解题方法是由内到外,如求log a(log b c)的值,先求log b c的值,再求log a(log b c)的值.(2)已知多重对数式的值,求变量值,应从外到内求,逐步脱去“log”后再求解.跟踪训练2 求下列各式中的x的值.(1)log8[log7(log2x)]=0;(2)log2[log3(log2x)]=1.解析:(1)由log8[log7(log2x)]=0得log7(log2x)=1,所以log2x=7,所以x=27=128.(2)由log2[log3(log2x)]=1得log3(log2x)=2,所以log2x=32,所以x=29=512.已知多重对数式的值求变量,先外到内,利用性质逐一求值.题型三 对数恒等式a log a N =N (a >0,且a ≠1,N >0) 的应用例3 求下列各式的值: (1)22log 3+33log 2;(2)22+log 213;(3)101+lg 2; (4)e-1+ln 3.【解析】 (1)因为22log 3=3,33log 2=2,所以原式=3+2=5.(2)原式=22×221log 3=4×13=43.(3)原式=10×10lg 2=10×2=20.(4)原式=e -1×eln 3=1e ×3=3e. 化成a log a N =N 形式,再求值. 方法归纳利用对数恒等式化简的关键是利用指数幂的相关运算性质把式子转化为a log a N的形式.跟踪训练3 计算:(1)931log 42=________;(2)⎝ ⎛⎭⎪⎫1331log 2-+=________. 解析:(1)931log 42=(912)3log 4=33log 4=4.(2)原式=⎝ ⎛⎭⎪⎫13-1×⎝ ⎛⎭⎪⎫133log 2=3×(3-1)3log 2=3×(33log 2)-1=3×2-1=32.答案:(1)4 (2)32不同底的先化成同底,再利用对数恒等式求值.一、选择题 1.对于下列说法: (1)零和负数没有对数;(2)任何一个指数式都可以化成对数式; (3)以10为底的对数叫做自然对数; (4)以e 为底的对数叫做常用对数. 其中错误说法的个数为( ) A .1 B .2 C .3 D .4解析:只有符合a >0,且a ≠1,N >0,才有a x=N ⇔x =log a N ,故(2)错误.由定义可知(3)(4)均错误.只有(1)正确.答案:C2.将⎝ ⎛⎭⎪⎫13-2=9写成对数式,正确的是( )A .log 913=-2 B .log 139=-2C .log 13(-2)=9 D .log 9(-2)=13解析:根据对数的定义,得log 139=-2,故选B.答案:B 3.若log a2b =c 则( )A .a 2b=c B .a 2c=b C .b c =2a D .c 2a=b解析:log a 2b =c ⇔(a 2)c=b ⇔a 2c=b .答案:B4.33log 4-2723-lg 0.01+ln e 3等于( )A .14B .0C .1D .6解析:33log 4-2723-lg 0.01+ln e 3=4-3272-lg 1100+3=4-32-(-2)+3=0.选B.答案:B 二、填空题5.求下列各式的值: (1)log 636=________. (2)ln e 3=________. (3)log 50.2=________.(4)lg 0.01=________. 解析:(1)log 636=2. (2)ln e 3=3.(3)log 50.2=log 55-1=-1. (4)lg 0.01=lg 10-2=-2. 答案:(1)2 (2)3 (3)-1 (4)-2 6.ln 1+log (2-1)=________.解析:ln 1+log (2-1)=0+1=1. 答案:1 7.10lg 2-ln e=________.解析:ln e =1, 所以原式=10lg2-1=10lg 2×10-1=2×110=15.答案:15三、解答题8.将下列指数式与对数式互化: (1)log 216=4; (2)log 1327=-3;(3)log3x =6; (4)43=64;(5)3-2=19; (6)⎝ ⎛⎭⎪⎫14-2=16.解析:(1)24=16; (2)⎝ ⎛⎭⎪⎫13-3=27;(3)(3)6=x; (4)log 464=3; (5)log 319=-2; (6)log 1416=-2.9.求下列各式中x 的值: (1)log 3(log 2x )=0; (2)log 2(lg x )=1; (3)552log 3-=x .解析:(1)∵log 3(log 2x )=0,∴log 2x =1.∴x =21=2. (2)∵log 2(lg x )=1,∴lg x =2.∴x =102=100. (3)x =552log 3-=5255log 3=253.[尖子生题库]10.计算下列各式: (1)2ln e +lg 1+33log 2; (2)33log 4lg 10-+2ln 1.解析:(1)原式=21+0+2=2+2=4.(2)原式=33log 41-+20=33log 4÷31+1=43+1=73.。
新教材2024高中数学第四章指数函数与对数函数4.3对数4.3.2对数的运算课件新人教A版必修第一册

【预习自测】
(1)log32×log29=________. (2)lg 2+lg 5+log23×log34=________. 【答案】(1)2 (2)3
【解析】(1)原式=llgg
2 lg 3·lg
92=2.
(2)原式可化为
lg
10+llgg
3 lg 2·lg
34=3.
|课堂互动|
题型 1 利用对数的运算性质化简、求值 计算下列各式的值:
(方法二)因为 log189=a,18b=5,所以 log185=b.
于是 log3645=lolgo1g8(1981×9825)=2lloogg118891+8-lolgo1g81589=a2+-ba.
(方法三)因为 log189=a,18b=5,所以 lg 9=a lg 18,lg 5=b lg 18.
() ()
【解析】(1)根据对数的运算性质可知(1)正确;
(2)loga(xy)=logax+logay,只有x>0,y>0时才成立; (3)公式logaMn=nlogaM(n∈R)中的M应为大于0的数.
换底公式
logcb logab=__l_o_g_ca___(a>0,且a≠1;c>0,且c≠1;b>0).
|素养达成|1.换底公式可成不同底数的对数式之间的转化,可正用、逆 用.使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进 行对数式的化简(体现了数学运算核心素养).
2.运用对数的运算性质应注意: (1)在各对数有意义的前提下才能应用运算性质. (2)根据不同的问题选择公式的正用或逆用. (3)在运算过程中避免出现以下错误: ①logaNn=(logaN)n; ②loga(MN)=logaM·logaN; ③logaM±logaN=loga(M±N).
新教材高中数学第四章指数函数与对数函数函数模型的应用课件新人教A版必修第一册ppt

并按你的方案求出该经营者下月可获得的最大纯利润(结
果保留两位有效数字).
解:以投入额为横坐标,纯利润为纵坐标,在平面直角坐标系中作出散
点图,如图所示(图①为 A 商品,图②为 B 商品).
①
②
由散点图可以看出,A 种商品所获纯利润 y 与投入额 x 之间的变化规
较为接近,
所以用 g(x)= ×( )x-3 作为模拟函数较好.
方法规律
选择函数模型的标准
函数模型的优劣,一般可用其他数据进行验证,若差
距较小,则说明选择正确,主要考查数学抽象、数学建模
的核心素养.
【跟踪训练】
4.某农产品从 5 月 1 日起开始上市,通过市场调查,得
到该农产品种植成本 Q(单位:元/百千克)与上市时间 t(单
据如下表:
x
0.50
0.99
2.01
3.98
y -0.99 0.01 0.98
则对 x,y 最适合的拟合函数是 (
A.y=2x
B.y=x2-1
C.y=2x-2
D.y=log2x
2.00
)
解析:将x=0.50,y=-0.99代入计算可以排除选项A.
将x=2.01,y=0.98代入计算可以排除选项B,C,故选D.
所以
x
g(x)= ×( ) -3.
利用 f(x),g(x)对 2019 年的 CO2 浓度比 2015 年增加的
单位数作估算,
则其数值分别为 f(4)=10,g(4)=10.5.
因为|f(4)-12|>|g(4)-12|,
故 g(x)= ×( )x-3 作为模拟函数与 2019 年的实际数据
新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数指数函数的概念讲义

最新课程标准:(1)通过具体实例,了解指数函数的实际意义,理解指数函数的概念.(2)能用描点法或借助计算工具画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.知识点一指数函数的定义函数y=a x(a>0且a≠1)叫做指数函数,其中x是自变量.定义域为R.错误!指数函数解析式的3个特征(1)底数a为大于0且不等于1的常数.(2)自变量x的位置在指数上,且x的系数是1.(3)a x的系数是1.知识点二指数函数的图象与性质a>10<a<1图象定义域R值域(0,+∞)性质过定点过点(0,1),即x=0时,y=1函数值的变化当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1单调性是R上的增函数是R上的减函数错误!底数a与1的大小关系决定了指数函数图象的“升”与“降”.当a>1时,指数函数的图象是“上升”的;当0<a<1时,指数函数的图象是“下降”的.[教材解难]规定底数a>0且a≠1的理由(1)如果a=0,则错误!(2)如果a<0,比如y=(—2)x,这时对于x=错误!,错误!,错误!,错误!,…在实数范围内函数值不存在.(3)如果a=1,那么y=1x=1是常量,对此就没有研究的必要.[基础自测]1.下列各函数中,是指数函数的是()A.y=(—3)xB.y=—3xC.y=3x—1D.y=错误!x解析:根据指数函数的定义y=a x(a>0且a≠1)可知只有D项正确.答案:D2.函数f(x)=错误!的定义域为()A.RB.(0,+∞)C.[0,+∞)D.(—∞,0)解析:要使函数有意义,则2x—1>0,∴2x>1,∴x>0.答案:B3.在同一坐标系中,函数y=2x与y=错误!x的图象之间的关系是()A.关于y轴对称B.关于x轴对称C.关于原点对称D.关于直线y=x对称解析:由作出两函数图象可知,两函数图象关于y轴对称,故选A.答案:A4.函数f(x)=错误!的值域为________.解析:由1—e x≥0得e x≤1,故函数f(x)的定义域为{x|x≤0},所以0<e x≤1,—1≤—e x<0,0≤1—e x<1,函数f(x)的值域为[0,1).答案:[0,1)题型一指数函数概念的应用[经典例题]例1(1)若函数f(x)=(2a—1)x是R上的减函数,则实数a的取值范围是()A.(0,1)B.(1,+∞)C.错误!D.(—∞,1)(2)指数函数y=f(x)的图象经过点错误!,那么f(4)·f(2)等于________.【解析】(1)由已知,得0<2a—1<1,则错误!<a<1,所以实数a的取值范围是错误!.(2)设y=f(x)=a x(a>0,a≠1),所以a—2=错误!,所以a=2,所以f(4)·f(2)=24×22=64.【答案】(1)C (2)64(1)根据指数函数的定义可知,底数a>0且a≠1,a x的系数是1.(2)先设指数函数为f(x)=a x,借助条件图象过点(—2,错误!)求a,最后求值.方法归纳(1)判断一个函数是指数函数的方法1看形式:只需判定其解析式是否符合y=a x(a>0,且a≠1)这一结构特征.2明特征:指数函数的解析式具有三个特征,只要有一个特征不具备,则不是指数函数.(2)已知某函数是指数函数求参数值的基本步骤跟踪训练1(1)若函数y=(3—2a)x为指数函数,则实数a的取值范围是________;(2)下列函数中是指数函数的是________.(填序号)1y=2·(错误!)x2y=2x—13y=错误!x4y=x x5y=31x⑥y=x13.解析:(1)若函数y=(3—2a)x为指数函数,则错误!解得a<错误!且a≠1.(2)1中指数式(错误!)x的系数不为1,故不是指数函数;2中y=2x—1=错误!·2x,指数式2x的系数不为1,故不是指数函数;4中底数为x,不满足底数是唯一确定的值,故不是指数函数;5中指数不是x,故不是指数函数;⑥中指数为常数且底数不是唯一确定的值,故不是指数函数.故填3.答案:(1)(—∞,1)∪错误!(2)31.指数函数系数为1.2.底数>0且≠1.题型二指数函数[教材P114例1]例2已知指数函数f(x)=a x(a>0,且a≠1),且f(3)=π,求f(0),f(1),f(—3)的值.【解析】因为f(x)=a x,且f(3)=π,则a3=π,解得a=π13,于是f(x)=π3x.所以,f(0)=π0=1,f(1)=π13=错误!,f(—3)=π—1=错误!.错误!要求f(0),f(1),f(—3)的值,应先求出f(x)=a x的解析式,即先求a的值.教材反思求指数函数的解析式时,一般采用待定系数法,即先设出函数的解析式,然后利用已知条件,求出解析式中的参数,从而得到函数的解析式,其中掌握指数函数的概念是解决这类问题的关键.因为底数a是大于0且不等于1的实数,所以a=—3应舍去.跟踪训练2若指数函数f(x)的图象经过点(2,9),求f(x)的解析式及f(—1)的值.解析:设f(x)=a x(a>0,且a≠1),将点(2,9)代入,得a2=9,解得a=3或a=—3(舍去).所以f(x)=3x.所以f(—1)=3—1=错误!.设f(x)=a x,代入(2,9)求出A.一、选择题1.下列函数中,指数函数的个数为()1y=错误!x—1;2y=a x(a>0,且a≠1);3y=1x;4y=错误!2x—1.A.0 B.1C.3D.4解析:由指数函数的定义可判定,只有2正确.答案:B2.已知f(x)=3x—b(b为常数)的图象经过点(2,1),则f(4)的值为()A.3B.6C.9 D.81解析:由f(x)过定点(2,1)可知b=2,所以f(x)=3x—2,f(4)=9.可知C正确.答案:C3.当x∈[—1,1]时,函数f(x)=3x—2的值域是()A.错误!B.[—1,1]C.错误!D.[0,1]解析:因为指数函数y=3x在区间[—1,1]上是增函数,所以3—1≤3x≤31,于是3—1—2≤3x—2≤31—2,即—错误!≤f(x)≤1.故选C.答案:C4.在同一平面直角坐标系中,函数f(x)=ax与g(x)=a x的图象可能是()解析:需要对a讨论:1当a>1时,f(x)=ax过原点且斜率大于1,g(x)=a x是递增的;2当0<a<1时,f(x)=ax过原点且斜率小于1,g(x)=a x是减函数,显然B正确.答案:B二、填空题5.下列函数中:1y=2·(错误!)x;2y=2x—1;3y=错误!x;4y=31x-;5y=x13.是指数函数的是________(填序号).解析:1中指数式的系数不为1;2中y=2x—1=错误!·2x的系数亦不为1;4中自变量不为x;5中的指数为常数且底数不是唯一确定的值.答案:36.若指数函数y=f(x)的图象经过点错误!,则f错误!=________.解析:设f(x)=a x(a>0且a≠1).因为f(x)过点错误!,所以错误!=a—2,所以a=4.所以f(x)=4x,所以f错误!=432-=错误!.答案:错误!7.若关于x的方程2x—a+1=0有负根,则a的取值范围是________.解析:因为2x=a—1有负根,所以x<0,所以0<2x<1.所以0<a—1<1.所以1<a<2.答案:(1,2)三、解答题8.若函数y=(a2—3a+3)·a x是指数函数,求a的值.解析:由指数函数的定义知错误!由1得a=1或2,结合2得a=2.9.求下列函数的定义域和值域:(1)y=21x—1;(2)y=错误!222x-.解析:(1)要使y=21x—1有意义,需x≠0,则21x≠1;故21x—1>—1且21x—1≠0,故函数y=21x—1的定义域为{x|x≠0},函数的值域为(—1,0)∪(0,+∞).(2)函数y=错误!222x-的定义域为实数集R,由于2x2≥0,则2x2—2≥—2.故0<错误!222x-≤9,所以函数y=错误!222x-的值域为(0,9].[尖子生题库]10.设f(x)=3x,g(x)=错误!x.(1)在同一坐标系中作出f(x),g(x)的图象;(2)计算f(1)与g(—1),f(π)与g(—π),f(m)与g(—m)的值,从中你能得到什么结论?解析:(1)函数f(x)与g(x)的图象如图所示:(2)f(1)=31=3,g(—1)=错误!—1=3;f(π)=3π,g(—π)=错误!—π=3π;f(m)=3m,g(—m)=错误!—m=3m.从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y轴对称.。
高中数学第四章4.3.2对数的运算讲义新人教A版必修第一册

4.3.2 对数的运算知识点一 对数的运算性质若a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=log a M +log a N , (2)log a M N=log a M -log a N , (3)log a M n=n log a M (n ∈R ).状元随笔 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立 . 例如,log 2[(-3)·(-5)]=log 2(-3)+log 2(-5)是错误的.知识点二 对数换底公式log a b =log c blog c a (a >0,a ≠1,c >0,c ≠1,b >0).特别地:log a b ·log b a =1(a >0,a ≠1,b >0,b ≠1). 状元随笔 对数换底公式常见的两种变形 (1)log a b·log b a =1,即1log a b=log b a ,此公式表示真数与底数互换,所得的对数值与原对数值互为倒数 .(2)log N n M m=m n log N M ,此公式表示底数变为原来的n 次方,真数变为原来的m 次方,所得的对数值等于原来对数值的mn倍.[教材解难]换底公式的推导设x =log a b ,化为指数式为a x=b ,两边取以c 为底的对数,得log c a x=log c b ,即x log c a =log c b .所以x =log c b log c a ,即log a b =log c b log c a.[基础自测]1.下列等式成立的是( ) A .log 2(8-4)=log 28-log 24B.log 28log 24=log 284C .log 28=3log 22D .log 2(8+4)=log 28+log 24解析:由对数的运算性质易知C 正确. 答案:C 2.log 49log 43的值为( ) A.12 B .2 C.32 D.92解析:原式=log 39=2. 答案:B3.2log 510+log 50.25=( ) A .0 B .1 C .2 D .4解析:原式=log 5102+log 50.25 =log 5(102×0.25)=log 525=2. 答案:C4.已知ln 2=a ,ln 3=b ,那么log 32用含a ,b 的代数式表示为________. 解析:log 32=ln 2ln 3=a b .答案:a b题型一 对数运算性质的应用[教材P 124例3] 例1 求下列各式的值: (1)lg 5100; (2)log 2(47×25).【解析】 (1)lg 5100=lg 10015=15lg 100=25; (2)log 2(47×25)=log 247+log 225=7log 24+5log 22=7×2+5×1 =19.利用对数运算性质计算. 教材反思1.对于同底的对数的化简,常用方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对数式的化简、求值一般是正用或逆用公式,要养成正用、逆用、变形应用公式的习惯,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.跟踪训练1 (1)计算:lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.(2)求下列各式的值. ①log 53+log 513②(lg 5)2+lg 2·lg 50③l g 25+23lg 8+lg 5·lg 20+(lg 2)2.解析:(1)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1.(2)①log 53+log 513=log 5⎝ ⎛⎭⎪⎫3×13=log 51=0.②(lg 5)2+lg 2·lg 50 =(lg 5)2+(1+lg 5)lg 2 =(lg 5)2+lg 2+lg 2·lg 5 =lg 5(lg 5+lg 2)+lg 2 =lg 5+lg 2=lg 10=1.③原式=lg 25+lg 823+lg 102·lg(10×2)+(lg 2)2=lg 25+lg 4+(lg 10-lg 2)(lg 10+lg 2)+(lg 2)2=lg 100+(lg 10)2-(lg 2)2+(lg 2)2=2+1=3. 答案:(1)-1 (2)见解析 利用对数运算性质化简求值.题型二 对数换底公式的应用[经典例题]例2 (1)已知2x =3y=a ,1x +1y=2,则a 的值为( )A .36B .6C .2 6 D. 6 (2)计算下列各式: ①log 89·log 2732.②2lg 4+lg 5-lg 8-⎝ ⎛⎭⎪⎫3382-3.③6413+lg 4+2lg 5.【解析】 (1)因为2x =3y=a , 所以x =log 2a ,y =log 3a ,所以1x +1y =1log 2a +1log 3a =log a 2+log a 3=log a 6=2,所以a 2=6,解得a =± 6. 又a >0,所以a = 6.(2)①log 89·log 2732=lg 9lg 8·lg 32lg 27=lg 32lg 23·lg 25lg 33=2lg 33lg 2·5lg 23lg 3=109. ②2lg 4+lg 5-lg 8-⎝ ⎛⎭⎪⎫3382-3=lg 16+lg 5-lg 8-1⎝⎛⎭⎪⎫32782=lg 16×58-1⎝ ⎛⎭⎪⎫322=1-49=59. ③6413+lg 4+2lg 5=4+lg(4×52)=4+2=6.【答案】 (1)D (2)见解析状元随笔 1.先把指数式化为对数式,再用换底公式,把所求式化为同底对数式,最后用对数的运算性质求值.2.先用换底公式将式子变为同底的形式,再用对数的运算性质计算并约分. 方法归纳(1)换底公式中的底可由条件决定,也可换为常用对数的底,一般来讲,对数的底越小越便于化简,如a n为底的换为a 为底.(2)换底公式的派生公式:log a b =log a c ·log c b ;log an b m=mnlog a b . 跟踪训练2 (1)式子log 916·log 881的值为( ) A.18 B.118C.83D.38(2)(log 43+log 83)(log 32+log 98)等于( ) A.56 B.2512C.94D .以上都不对 解析:(1)原式=log 3224·log 2334=2log 32·43log 23=83.(2)原式=⎝ ⎛⎭⎪⎫log 33log 34+log 33log 38·⎝ ⎛⎭⎪⎫log 32+log 38log 39=⎝ ⎛⎭⎪⎫12log 32+13log 32·⎝ ⎛⎭⎪⎫log 32+3log 322 =56log 32×52log 32=2512. 答案:(1)C (2)B 利用换底公式化简求值. 题型三 用已知对数表示其他对数例3 已知log 189=a,18b=5,用a ,b 表示log 3645. 解析:方法一 因为log 189=a ,所以9=18a. 又5=18b,所以log 3645=log 2×18(5×9)=log 2×1818a +b=(a +b )·log 2×1818.又因为log 2×1818=1log 18(18×2)=11+log 182=11+log 18189=11+1-log 189=12-a,所以原式=a +b 2-a.方法二 ∵18b=5,∴log 185=b . ∴log 3645=log 1845log 1836=log 18(5×9)log 18(4×9)=log 185+log 1892log 182+log 189=a +b2log 18189+log 189=a +b2-2log 189+log 189=a +b 2-a.状元随笔 方法一 对数式化为指数式,再利用对数运算性质求值. 方法二 先求出a 、b ,再利用换底公式化简求值. 方法归纳用已知对数的值表示所求对数的值,要注意以下几点: (1)增强目标意识,合理地把所求向已知条件靠拢,巧妙代换; (2)巧用换底公式,灵活“换底”是解决这种类型问题的关键; (3)注意一些派生公式的使用.跟踪训练3 (1)已知log 62=p ,log 65=q ,则lg 5=________;(用p ,q 表示) (2)①已知log 147=a,14b=5,用a ,b 表示log 3528. ②设3x =4y=36,求2x +1y的值.解析:(1)lg 5=log 65log 610=q log 62+log 65=qp +q .(2)①∵log 147=a,14b=5, ∴b =log 145.∴log 3528=log 1428log 1435=log 141427log 14(5×7)=log 14142-log 147log 145+log 147=2-a a +b . ②∵3x=36,4y=36, ∴x =log 336,y =log 436, ∴1x =1log 336=1log 3636log 363=log 363, 1y=1log 436=1log 3636log 364=log 364, ∴2x +1y=2log 363+log 364=log 36(9×4)=1.答案:(1)qp +q (2)①2-aa +b②1 (1)利用换底公式化简.(2)利用对数运算性质化简求值.课时作业 22一、选择题1.若a >0,a ≠1,x >y >0,下列式子:①log a x ·log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .其中正确的个数为( )A .0个B .1个C .2个D .3个解析:根据对数的性质知4个式子均不正确. 答案:A2.化简12log 612-2log 62的结果为( )A .6 2B .12 2C .log 6 3 D.12解析:12log 612-2log 62=12(1+log 62)-log 62=12(1-log 62)=12log 63=log 6 3.答案:C3.设lg 2=a ,lg 3=b ,则lg 12lg 5=( )A.2a +b 1+aB.a +2b1+a C.2a +b 1-a D.a +2b1-a解析:lg 12lg 5=lg 3+lg 4lg 5=lg 3+2lg 21-lg 2=2a +b 1-a .答案:C4.若log 34·log 8m =log 416,则m 等于( ) A .3 B .9 C .18 D .27解析:原式可化为log 8m =2log 34,lg m 3lg 2=2lg 4lg 3,即lg m =6lg 2·lg 32lg 2,lg m =lg 27,m =27.故选D. 答案:D 二、填空题5.lg 10 000=________;lg 0.001=________.解析:由104=10 000知lg 10 000=4,10-3=0.001得lg 0.001=-3,注意常用对数不是没有底数,而是底数为10.答案:4 -36.若log 513·log 36·log 6x =2,则x 等于________.解析:由换底公式, 得-lg 3lg 5·lg 6lg 3·lg xlg 6=2, lg x =-2lg 5,x =5-2=125.答案:1257.lg 2+lg 5-lg 12lg 12+lg 8·(lg 32-lg 2)=________.解析:原式=lg (2×5)-0lg ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122×8×lg 322=1lg 2·lg 24=4.答案:4 三、解答题8.化简:(1)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27;(2)(lg 5)2+lg 2lg 50+211+log252.解析:(1)方法一 (正用公式): 原式=lg 3+45lg 3+910lg 3-12lg 34lg 3-3lg 3=⎝ ⎛⎭⎪⎫1+45+910-12lg 3lg 3=115. 方法二 (逆用公式):原式=lg ⎝⎛⎭⎪⎫3×925×2712×35×3-12lg 8127=lg 3115lg 3=115. (2)原式=(lg 5)2+lg 2(lg 5+1)+21·22log =lg 5·(lg 5+lg 2)+lg 2+25=1+2 5.9.计算:(1)log 1627log 8132; (2)(log 32+log 92)(log 43+log 83). 解析:(1)log 1627log 8132=lg 27lg 16×lg 32lg 81=lg 33lg 24×lg 25lg 34=3lg 34lg 2×5lg 24lg 3=1516. (2)(log 32+log 92)(log 43+log 83) =⎝ ⎛⎭⎪⎫log 32+log 32log 39⎝ ⎛⎭⎪⎫log 23log 24+log 23log 28 =⎝ ⎛⎭⎪⎫log 32+12log 32⎝ ⎛⎭⎪⎫12log 23+13log 23 =32log 32×56log 23=54×lg 2lg 3×lg 3lg 2=54. [尖子生题库]10.已知2x =3y =6z≠1,求证:1x +1y =1z.证明:设2x =3y =6z=k (k ≠1), ∴x =log 2k ,y =log 3k ,z =log 6k ,∴1x =log k 2,1y =log k 3,1z=log k 6=log k 2+log k 3,∴1z =1x +1y.。
高中数学第四章指数函数与对数函数对数函数及其性质的应用学案新人教A版必修第一册

第2课时 对数函数及其性质的应用课程标准(1)进一步理解对数函数的性质.(2)能运用对数函数的性质解决相关问题.新知初探·课前预习——突出基础性教材要点要点 对数型复合函数的单调性❶复合函数y=f[g(x)]是由y=f(x)与y=g(x)复合而成,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为________;若f(x)与g(x)的单调性相反,则其复合函数f[g(x)]为_ _______.对于对数型复合函数y=log a f(x)来说,函数y=log a f(x)可看成是y=log a u与u=f(x)两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.助学批注批注❶ 三看:(1)看底数是否大于1,(2)看函数的定义域,(3)看复合函数的构成.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)函数y=log a x(a>0,且a≠1)在(0,+∞)上是单调函数.( )(2)若函数y=a x(a>0,且a≠1)在R上是增函数,则函数y=log a x在(0,+∞)上也是增函数.( )(3)ln x<1的解集为(-∞,e).( )(4)y=log2[(x-1)(x-2)]的增区间是(-∞,1)∪(2,+∞).( )2.已知a=log20.6,b=log20.8,c=log21.2,则( ) A.c>b>a B.c>a>bC.b>c>a D.a>b>c3.函数f(x)=log12(2-x)的单调递增区间是( ) A.(-∞,2) B.(-∞,0)C.(2,+∞) D.(0,+∞)4.不等式log4x≤12的解集为________.题型探究·课堂解透——强化创新性题型 1 比较对数值的大小例1 (多选)下列各组的大小关系正确的是( )A.log230.5.log230.6B.log1.51.6>log1.51.4C.log0.57<log0.67D.log3π>log20.8方法归纳比较对数值大小的三种常用方法巩固训练1 若4x=5y=20,z=log x y,则x,y,z的大小关系为( ) A.x<y<z B.z<x<yC.y<x<z D.z<y<x题型 2 解对数不等式例2 已知log0.3(3x)<log0.3(x+1),则x的取值范围为( )A .(12,+∞)B .(-∞,12)C .(-12,12) D .(0,12)方法归纳对数不等式的2种类型及解法巩固训练2 已知log a 12>1,则a 的取值范围为________.题型 3 对数型复合函数的单调性例3 若函数f (x )=ln (ax -2)在(1,+∞)单调递增,则实数a 的取值范围为( )A .(0,+∞)B .(2,+∞)C .(0,2]D .[2,+∞)方法归纳已知对数型函数的单调性求参数的取值范围一要结合复合函数的单调性规律,二要注意函数的定义域.巩固训练3 函数f (x )=ln (x 2-2x -8)的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)题型 4 对数型函数性质的综合应用例4 已知函数f (x )=log a 4−x 4+x (a >0,且a ≠1).(1)判断函数f (x )的奇偶性;(2)判断函数f (x )的单调性.方法归纳解决对数型函数性质的策略巩固训练4 已知奇函数f (x )=ln ax +1x −1.(1)求实数a 的值;(2)判断函数f (x )在(1,+∞)上的单调性,并利用函数单调性的定义证明.第2课时 对数函数及其性质的应用新知初探·课前预习[教材要点]要点增函数 减函数[基础自测]1.答案:(1)√ (2)√ (3)× (4)×2.解析:∵y=log2x在定义域上单调递增,∴log20.6<log20.8<log21.2,即c>b>a.答案:A3.解析:函数的定义域为(-∞,2)因为函数y=2-x在(-∞,2)上为减函数.又0<12<1,所以函数f(x)=log12(2-x)的单调增区间是(-∞,2).答案:A4.解析:由题设,可得:log4x≤log4412,则0<x≤412=2,∴不等式解集为(0,2].答案:(0,2]题型探究·课堂解透例1 解析:A中,因为函数y=log23x是减函数,且0.5<0.6,所以log230.5>log230.6,A错;B中,因为函数y=log1.5x是增函数,且1.6>1.4,所以log1.51.6>log1.51.4,B正确;C中,因为0>log70.6>log70.5,所以1log70.6<1log70.5,即log0.67<log0.57,C不正确;D中,因为log3π>log31=0,log20.8<log21=0,所以log3π>log20.8,D正确.答案:BD巩固训练1 解析:∵4x=5y=20,根据指数与对数的关系和y=log a x(a>1)为增函数:x=log420>log416=2,y=log520,由log55<log520<log525,即1<log520<2,故1<y<2.∴1<y<x.可得log x y<log x x=1,即z<1综上:z<y<x.答案:D例2 解析:因为函数y=log0.3x是(0,+∞)上的减函数,所以原不等式等价于{3x>0,x+1>0,3x>x+1,解得x>12.答案:A巩固训练2 解析:由log a 12>1得log a12>log a a.①当a>1时,有a<12,此时无解.②当0<a<1时,有12<a,从而12<a<1.∴a的取值范围是(12,1).答案:(12,1)例3 解析:函数f(x)=ln (ax-2)中,令u=ax-2,函数y=ln u在(0,+∞)上单调递增,而函数f(x)=ln (ax-2)在(1,+∞)上单调递增,则函数u=ax-2在(1,+∞)上单调递增,且∀x>1,ax-2>0,因此,{a>0a−2≥0,解得a≥2,所以实数a的取值范围为[2,+∞).答案:D巩固训练3 解析:要使函数有意义,则:x2-2x-8>0,解得:x<-2或x>4,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则,可得函数的单调增区间为(4,+∞).答案:D例4 解析:(1)由4−x4+x>0,∴f(x)的定义域为(-4,4),关于原点对称,又f(-x)=log a 4+x4−x=log a(4−x4+x)-1=-log a4−x4+x=-f(x),∴f(x)是奇函数;(2)∵t=4−x4+x=-1+84+x在(-4,4)上单调递减,又当0<a<1时,y=log a t在(0,+∞)上单调递减,当a>1时,y=log a t在(0,+∞)上单调递增,∴当0<a<1时,f(x)=log a 4−x4+x在(-4,4)上单调递增,当a>1时,f(x)=log a 4−x4+x在(-4,4)上单调递减.巩固训练4 解析:(1)∵f(x)是奇函数,∴f(-x)=-f(x),即ln −ax+1−x−1=-lnax+1x−1.∴ax−1x+1=x−1ax+1,即(a2-1)x2=0,得a=±1,经检验a=-1时不符合题意,∴a=1.(2)f(x)在(1,+∞)上单调递减.证明:由(1)得f(x)=ln x+1x−1,x∈(-∞,-1)∪(1,+∞),任取x1,x2∈(1,+∞),且x1<x2,f(x1)-f(x2)=ln x1+1x1−1-ln x2+1x2−1=ln (x1+1x1−1·x2−1x2+1)=ln x1x2+x2−x1−1x1x2+x1−x2−1.∵1<x1<x2,∴x2-x1>0,x1x2+x2−x1−1x1x2+x1−x2−1>1,∴f(x1)-f(x2)>0,f(x1)>f(x2),∴f(x)在(1,+∞)上单调递减.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新教材高中数学第四章指数函数与对数函数4.3.2对数的运算讲义新人教A 版必修第一册4.3.2 对数的运算知识点一 对数的运算性质若a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=log a M +log a N , (2)log a M N=log a M -log a N , (3)log a M n=n log a M (n ∈R ).状元随笔 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立 . 例如,log 2[(-3)·(-5)]=log 2(-3)+log 2(-5)是错误的.知识点二 对数换底公式log a b =log c blog c a (a >0,a ≠1,c >0,c ≠1,b >0).特别地:log a b ·log b a =1(a >0,a ≠1,b >0,b ≠1). 状元随笔 对数换底公式常见的两种变形 (1)log a b·log b a =1,即1log a b=log b a ,此公式表示真数与底数互换,所得的对数值与原对数值互为倒数 .(2)log N n M m=m n log N M ,此公式表示底数变为原来的n 次方,真数变为原来的m 次方,所得的对数值等于原来对数值的mn倍.[教材解难]换底公式的推导设x =log a b ,化为指数式为a x=b ,两边取以c 为底的对数,得log c a x=log c b ,即x log c a =log c b .所以x =log c b log c a ,即log a b =log c b log c a.[基础自测]1.下列等式成立的是( ) A .log 2(8-4)=log 28-log 24 B.log 28log 24=log 284C .log 28=3log 22D .log 2(8+4)=log 28+log 24解析:由对数的运算性质易知C 正确. 答案:C 2.log 49log 43的值为( ) A.12 B .2 C.32 D.92解析:原式=log 39=2. 答案:B3.2log 510+log 50.25=( ) A .0 B .1 C .2 D .4解析:原式=log 5102+log 50.25 =log 5(102×0.25)=log 525=2. 答案:C4.已知ln 2=a ,ln 3=b ,那么log 32用含a ,b 的代数式表示为________. 解析:log 32=ln 2ln 3=a b .答案:a b题型一 对数运算性质的应用[教材P 124例3] 例1 求下列各式的值: (1)lg 5100; (2)log 2(47×25).【解析】 (1)lg 5100=lg 10015=15lg 100=25; (2)log 2(47×25)=log 247+log 225=7log 24+5log 22 =7×2+5×1 =19.利用对数运算性质计算. 教材反思1.对于同底的对数的化简,常用方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对数式的化简、求值一般是正用或逆用公式,要养成正用、逆用、变形应用公式的习惯,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.跟踪训练1 (1)计算:lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.(2)求下列各式的值. ①log 53+log 513②(lg 5)2+lg 2·lg 50③lg 25+23lg 8+lg 5·lg 20+(lg 2)2.解析:(1)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1.(2)①log 53+log 513=log 5⎝ ⎛⎭⎪⎫3×13=log 51=0.②(lg 5)2+lg 2·lg 50 =(lg 5)2+(1+lg 5)lg 2 =(lg 5)2+lg 2+lg 2·lg 5 =lg 5(lg 5+lg 2)+lg 2 =lg 5+lg 2=lg 10=1.③原式=lg 25+lg 823+lg 102·lg(10×2)+(lg 2)2=lg 25+lg 4+(lg 10-lg 2)(lg 10+lg 2)+(lg 2)2=lg 100+(lg 10)2-(lg 2)2+(lg 2)2=2+1=3.答案:(1)-1 (2)见解析 利用对数运算性质化简求值.题型二 对数换底公式的应用[经典例题]例2 (1)已知2x =3y=a ,1x +1y=2,则a 的值为( )A .36B .6C .2 6 D. 6 (2)计算下列各式: ①log 89·log 2732.②2lg 4+lg 5-lg 8-⎝ ⎛⎭⎪⎫3382-3.③6413+lg 4+2lg 5.【解析】 (1)因为2x =3y=a , 所以x =log 2a ,y =log 3a ,所以1x +1y =1log 2a +1log 3a =log a 2+log a 3=log a 6=2,所以a 2=6,解得a =± 6. 又a >0,所以a = 6.(2)①log 89·log 2732=lg 9lg 8·lg 32lg 27=lg 32lg 23·lg 25lg 33=2lg 33lg 2·5lg 23lg 3=109. ②2lg 4+lg 5-lg 8-⎝ ⎛⎭⎪⎫3382-3=lg 16+lg 5-lg 8-1⎝⎛⎭⎪⎫32782=lg 16×58-1⎝ ⎛⎭⎪⎫322=1-49=59. ③6413+lg 4+2lg 5=4+lg(4×52)=4+2=6.【答案】 (1)D (2)见解析状元随笔 1.先把指数式化为对数式,再用换底公式,把所求式化为同底对数式,最后用对数的运算性质求值.2.先用换底公式将式子变为同底的形式,再用对数的运算性质计算并约分.方法归纳(1)换底公式中的底可由条件决定,也可换为常用对数的底,一般来讲,对数的底越小越便于化简,如a n为底的换为a 为底.(2)换底公式的派生公式:log a b =log a c ·log c b ;log an b m=mnlog a b . 跟踪训练2 (1)式子log 916·log 881的值为( ) A.18 B.118C.83D.38(2)(log 43+log 83)(log 32+log 98)等于( ) A.56 B.2512C.94D .以上都不对 解析:(1)原式=log 3224·log 2334=2log 32·43log 23=83.(2)原式=⎝ ⎛⎭⎪⎫log 33log 34+log 33log 38·⎝ ⎛⎭⎪⎫log 32+log 38log 39=⎝ ⎛⎭⎪⎫12log 32+13log 32·⎝ ⎛⎭⎪⎫log 32+3log 322 =56log 32×52log 32=2512. 答案:(1)C (2)B 利用换底公式化简求值. 题型三 用已知对数表示其他对数例3 已知log 189=a,18b=5,用a ,b 表示log 3645. 解析:方法一 因为log 189=a ,所以9=18a. 又5=18b,所以log 3645=log 2×18(5×9)=log 2×1818a +b=(a +b )·log 2×1818.又因为log 2×1818=1log 18(18×2)=11+log 182=11+log 18189=11+1-log 189=12-a,所以原式=a +b 2-a.方法二 ∵18b=5,∴log 185=b .∴log 3645=log 1845log 1836=log 18(5×9)log 18(4×9)=log 185+log 1892log 182+log 189=a +b2log 18189+log 189=a +b2-2log 189+log 189=a +b 2-a.状元随笔 方法一 对数式化为指数式,再利用对数运算性质求值. 方法二 先求出a 、b ,再利用换底公式化简求值. 方法归纳用已知对数的值表示所求对数的值,要注意以下几点: (1)增强目标意识,合理地把所求向已知条件靠拢,巧妙代换; (2)巧用换底公式,灵活“换底”是解决这种类型问题的关键; (3)注意一些派生公式的使用.跟踪训练3 (1)已知log 62=p ,log 65=q ,则lg 5=________;(用p ,q 表示) (2)①已知log 147=a,14b=5,用a ,b 表示log 3528. ②设3x =4y=36,求2x +1y的值.解析:(1)lg 5=log 65log 610=q log 62+log 65=qp +q .(2)①∵log 147=a,14b=5, ∴b =log 145.∴log 3528=log 1428log 1435=log 141427log 14(5×7)=log 14142-log 147log 145+log 147=2-a a +b . ②∵3x=36,4y=36, ∴x =log 336,y =log 436, ∴1x =1log 336=1log 3636log 363=log 363, 1y=1log 436=1log 3636log 364=log 364, ∴2x +1y=2log 363+log 364=log 36(9×4)=1.答案:(1)qp +q (2)①2-aa +b②1 (1)利用换底公式化简. (2)利用对数运算性质化简求值.课时作业 22一、选择题1.若a >0,a ≠1,x >y >0,下列式子:①log a x ·log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .其中正确的个数为( )A .0个B .1个C .2个D .3个解析:根据对数的性质知4个式子均不正确. 答案:A2.化简12log 612-2log 62的结果为( )A .6 2B .12 2C .log 6 3 D.12解析:12log 612-2log 62=12(1+log 62)-log 62=12(1-log 62)=12log 63=log 6 3.答案:C3.设lg 2=a ,lg 3=b ,则lg 12lg 5=( )A.2a +b 1+aB.a +2b1+a C.2a +b 1-a D.a +2b1-a解析:lg 12lg 5=lg 3+lg 4lg 5=lg 3+2lg 21-lg 2=2a +b 1-a .答案:C。