初中数学规律探究题的解题方法

合集下载

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析数学规律探究是初中数学中的重要内容,它能够帮助学生更好地理解数学知识,提高数学思维能力和解题能力。

在数学规律探究中,问题的类型和解题技巧对于学生的学习非常重要。

本文将对初中数学规律探究问题的类型及解题技巧进行详细分析。

一、问题的类型1. 数列规律问题数列规律问题是指给出一个数列,要求学生按照一定的规律计算出下一个数或者找出规律并求出第n项。

这类问题需要学生熟悉各种数列的特点及规律,能够灵活运用等差数列、等比数列等知识,且需要在解题过程中发现规律,掌握归纳思维的方法。

几何规律问题是指在图形中出现一定的规律,学生要求找出规律并利用规律解决问题。

这类问题需要学生熟悉几何图形的属性及性质,在解题过程中需要运用几何推理和证明的方法。

3. 数学化问题数学化问题是指一些日常生活中难以直接用数学方法解决的问题,需要学生将这些问题数学化,通过分析和求解数学模型得到答案。

这类问题需要学生具备一定的数学建模能力和实际问题解决能力,需要运用代数、函数等数学工具。

统计规律问题是指在一定的数据或样本中,出现某些规律或者需要通过数据分析得到结论。

这类问题需要学生掌握各种统计方法和数据分析能力,能够在解题过程中运用平均数、中位数、众数等统计概念。

二、解题技巧1. 观察性能力解决规律性问题首先需要学生良好的观察能力,能够从数据中发现规律,捕捉事物的本质特征,从而归纳总结出规律规则。

2. 用词准确解决规律性问题需要学生清晰准确地描述规律,学生需要用精准的数学语言描述规律的特点和具体过程。

3. 思维灵活解决规律性问题需要学生具备灵活的思维能力,能够将问题从不同的角度看待,想到不同的解法和思路。

4. 阅读理解能力解决规律性问题需要学生具备良好的阅读理解能力,能够准确读懂题意,在解题过程中准确把握问题的关键点。

5. 归纳思维综上所述,规律性问题是初中数学教学中的重要内容。

在解题过程中需要学生具备较强的观察性能力、数学语言描述能力、灵活的思维能力、阅读理解能力和归纳思维能力等技能。

完整版)初中数学规律探究题的解题方法

完整版)初中数学规律探究题的解题方法

完整版)初中数学规律探究题的解题方法初中数学规律探究题的解法指导在新课标中,要求用代数式表达数量关系及规律,培养学生的抽象思维能力。

规律探究常常要求通过归纳特例,猜想一般规律,并列出通用的代数式。

这种问题在中考或学业水平考试中频繁出现,考生往往感到困难。

然而,只要细心观察,大胆猜想,精心验证,就能解决这类问题。

一、数式规律探究数式规律探究通常给定一些数字、代数式、等式或不等式,要求猜想其中的规律。

这种问题考查了学生的分析、归纳、抽象、概括能力。

一般解法是先写出数式的基本结构,然后通过横比或纵比找出各部分的特征,改写成要求的格式。

数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:1.常用字母n表示正整数,从1开始。

2.在数据中,分清奇偶,记住常用表达式。

正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3.熟记常见的规律n(n+1)/2、n(n+1)、1、4、9、16.n、1、3、6、10……2、1+3+5+…+(2n-1)=n²、1+2+3….+n=n(n+1)/2、2+4+6+…+2n=n(n+1)数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1.观察法例1.观察下列等式:①1×1=1-。

②2×2=2-。

③3×3=3-。

④4×4=4-……猜想第几个等式为(用含n的式子表示)分析:将等式竖排:4545111-2222②2×=2-3333③3×=3-44①1×1④4×=4-n×n+1通过观察相应位置上变化的数字与序列号,易得到结果为:n²-n+1.规律,第①个正多边形需要用4个黑色棋子,第②个需要用8个黑色棋子,第③个需要用12个黑色棋子,依次类推,第n个需要用(4n)个黑色棋子。

)探索图形结构成元素的规律是数学中的一个重要主题。

初中数学规律探究问题题型梳理

初中数学规律探究问题题型梳理

初中数学规律探究题型“规律探究类问题”是中考中的一棵常青树,一直受到命题者的青睐。

这类试题要求学生有一定的数感与符号感,学生通过观察、分析、比较、概括、推理、判断等探索活动,得到图形或数式内在规律的一般通式。

不仅有利于促进数学知识和数学方法的巩固和提高,也有利于自主探索,创新精神的培养。

因此规律探究类问题一直成为命题的热点。

题型一、一阶等差规律一阶等差规律意思是第一次做差差为常数。

主要考察对图形变化的规律观察,从图形变化转化为数字变化,从数字变化中去发掘规律。

这部分内容相对简单,可以直接观察图形得出规律,也可以通过套通项公式的方法找出规律,考试中单独考察这部分的概率很小,往往与其它形式一起结合考察。

1、规律分析:问题本质:前后的图形相比较,每一幅图形以恒定不变的速度保持图形增加(减少)的个数。

2、首差法通项公式(通法)(1)将题目的已知转为一组数据,第一个数记为1a 以此第n 个数记为n a (2)对这组数据两两之间做差,差为一个固定常数记为d ,即=d 后项—前项 (3)则该类型的规律为:任意的第n 项满足:d n a a n )1(1-+=(4)若记不住公式,上述数据转化为坐标点),(n a n ,设通项公式为:b kn a n +=,代入前2组数据,通过解一次函数方法,即可得到通项公式;例1、如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要( )枚棋子.【解析】用一阶等差实质进行分析。

根据题意分析可得:第1个图案中棋子的个数5个. 第2个图案中棋子的个数5611+=个.⋯.每个图形都比前一个图形多用6个.∴第30个图案中棋子的个数为5296179+⨯=个.答案:179例2、观察下列数:14,39,516,725,936⋯,它们按一定规律排列,那么这一组数第n 个数是( ) A .221n n - B .221n n + C .221(1)n n ++ D .221(1)n n -+ 【解析】法一:观察分析。

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题广泛存在于各种数学题型中,包括数列、几何、方程等多个方面。

解决这类问题需要灵活运用数学知识和思维方法,下面将就规律探究问题的类型及解题技巧进行分析。

(一)数列型规律探究问题1. 根据已知的数列前几项,找出数列的通项公式。

首先观察数列的前几项,如果发现相邻两项之间的差或比具有规律性,那么可以尝试构建通项公式。

对于等差数列,可以通过计算相邻两项的差值来确定数列的公差,从而得到通项公式。

同理,对于等比数列,可以通过计算相邻两项的比值来确定数列的公比,从而得到通项公式。

2. 根据数列的规律,推断数列中某一位置上的数值。

有时候,问题并没有直接给出数列的前几项,而是给出了数列的规律,并要求求解数列中某一位置上的数值。

这时候,可以根据已知的规律,通过迭代或递推的方式来推断数列中任意位置上的数值。

1. 根据已知的图形形状,找出图形的特点。

有时问题给出了一个图形,需要根据图形的特点找到规律。

这时可以通过观察图形的边数、角度等特征来确定规律。

正多边形的内部角度和是固定的,可以根据这个规律,计算某个正多边形的内部角度和。

2. 根据图形的特点,求解未知的参数。

有时问题给出了一个图形的部分信息,需要求解图形的某些未知参数。

问题给出了一个三角形的三个角度,需要求解这个三角形的形状。

根据三角形的内角和等于180°的性质,可以得到这个三角形的剩余角度,从而确定三角形的形状。

1. 根据已知的关系式,建立方程解决问题。

有时问题给出了一个数学关系,需要找到满足这个关系的解。

问题可能给出了两个数的和或差,需要求解这两个数。

可以通过设一元方程,利用方程的解来求解这个问题。

在解决规律探究问题时,可以运用以下一些技巧:1. 观察法:通过观察题目给出的信息或图形,找出规律,再推测未知的信息或图形。

2. 假设法:根据已知条件进行一些假设,然后进行推理、计算,最后验证假设的结果是否符合题目要求。

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析作者:李春月来源:《新课程·中旬》2019年第02期摘要:初中数学重要组成部分就是规律探究类的题目。

学生学习规律探究类的题目可以增强自身思维的灵敏性,对于智力的提高和思维意识的发散有重要的意义。

规律探究类的提问也是历年来中考考查的重点问题。

因此加强对此类问题的研究和分析是非常有必要的。

主要对初中数学规律探究问题中几个重点题型和解题技巧进行分析。

关键词:初中数学;规律探究;题型;解题方法新人教版初中数学中规律探究类的题目是考查学生的重点问题。

通常情况下,解决规律探究题的关键是让学生根据已知条件,如有规律的图表、算式等,进行观察、分析、总结,最后得出需要的答案[1]。

此类问题需要学生勇于大胆地推测和想象。

在历年来的中考数学试卷中,规律探究类问题占有较大的分值。

下面是笔者根据多年教学经验归纳总结的几个重点题型。

内容如下。

一、类型一:数字排列探究类题型二、类型二:数字规律探究类题型三、类型三:文字型探究题综上所述,规律探究类问题是初中数学中重要的组成部分,伴随新课改的推进,初中教学需要加强对学生思维意识能力的培养,全面提高学生的创新能力[3]。

而规律探究类的问题可以发散学生的思维意识,对于学生智力的开发和创新精神的培养有重要意义。

因此,需要在今后的教学中加强学生在规律探究方面的指导,以便促进学生的全面发展。

参考文献:[1]张懿.探索初中数学探索规律题型新解[J].科学时代,2013(7).[2]范小震.规律探索题的解答策略:从特殊出发[J].初中生世界(九年级),2018(7):100-102.[3]吴健.中考数学探索规律题型探究[J].数理化学习(初中版),2017(2):20-24.。

几种实例探究初中数学证明题解题思路方法

几种实例探究初中数学证明题解题思路方法

几种实例探究证明题解题思路方法几种实例探究证明题解题思路方法习题思路分析三种方法:习题思路分析三种方法:逆向分析法、正向推导法和综逆向分析法、正向推导法和综合 法 1、等量代换转化规则。

、等量代换转化规则。

2、只具部分全等条件需引辅助线构造全等三角形规则;、只具部分全等条件需引辅助线构造全等三角形规则;3、取近求远规则;、取近求远规则;4、截长法和补短法;、截长法和补短法;5、只具部分全等条件需引辅助线构造全等三角形规则;、只具部分全等条件需引辅助线构造全等三角形规则;6、取近求远规则;、取近求远规则;7、截长法和补短法;、截长法和补短法; 1、逆向分析法:从命题的结论出发,找出结论成立所需要的条件,如果所找到的条件不是题中所给的已知条件,再把所找到的条件作为结论,再找新结论成立所需要的条件,这样继续下去,一直推到题中所给的已知条件为止.逆向分析法就是从求证推到已知的逻辑思维方法.证(解)题时的顺序与逆向分析的推理顺序相反。

解)题时的顺序与逆向分析的推理顺序相反。

2.正向推导法:从命题的已知条件出发,根据已学过的定义、公理、定理等进行逻辑推理与判断得出新结论,如果新结论不是题中要证的结论,再用已知条件与新结论进行逻辑推理与判断,再得新结论,这样继续下去,一直到得出的新结论就是所要证的结论为止。

正向推导法就是从已知条件推到求证的逻辑思维方法。

证(解)题的顺序与正向推导的推理顺序相同的.3.综合法:就是逆向分析与正向推导同时并用的思维方法,也可以说是“两头凑”的思维方法.说明:在使用逆向分析法图解时要加“?”,因为结论的成立尚需证明,因此它的成立还是个问号.当最后推到已知条件或公理,定理等时,因为它是成立的,所以“?”才可以终止.而使用正向推导法图解时,就不加“?”了,因为它是从已知条件出发,推出的结论都是成立的.典例剖析典例剖析例1:如图,P 为△ ABC 内任一点,求证:PA+PB+PC>1:PA+PB+PC>1/2(AB+BC+AC)./2(AB+BC+AC).思路探索:在证明线段和(或差)的不等式时,总是把各有关线段“等代转化”在一个或几个三角形中,然后用三角形三边关系定理来解决.现将用逆向分析一正向推导法结合的综合法探索证题思路的过程用图解表示如下:等量代换转化规则等量代换转化规则在探索证(解)题途径的过程中,当停滞不前时,一旦能找到等量可代,总是使审题发生转折性的变化,而大大前进一步,称为“等量代换转化”,简称“等代转化”“等代规则”是具有普遍性的规则,它是探索较复杂命题的证(解)题途径的一个非赏重要的不可缺少的有力工具和手段希望同学们要特别注意掌握和自觉应用。

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题是一类需要通过观察、归纳、推理等方法来找出数学规律的问题。

这类问题通常涉及数字序列、图形变换、等式变形等方面,要求学生在探究规律的过程中培养逻辑思维能力和数学思维方式,提高解决问题的能力。

一、数字序列类问题数字序列类问题是初中数学中最常见的规律探究问题。

这类问题通常要求学生根据给定的数字序列找出其中的规律,并推算出下一个数字或几个数字。

解决这类问题的关键是观察敏锐和逻辑推理能力。

具体的解题技巧如下:1.观察数字序列中的差值:有些数字序列是等差数列,差值相等;有些数字序列是等比数列,比值相等;有些数字序列可能是其他规律,需要用其他方法来找出。

2.找出数字序列中的特殊数字:有些数字序列中会有特殊的数字,比如首项为1的斐波那契数列,第三个数字开始,每个数字是前两个数字之和。

3.归纳误差法:当已知前几个数字后无法确定规律时,可以假设一个规律并进行验证,找出规律的特点和一般性质,再用这个规律来验证后续数字。

二、图形变换类问题图形变换类问题通常涉及图形的旋转、翻转、平移、缩放等操作,要求学生根据给定的图形或一系列图形的变换找出其中的规律。

解决这类问题的关键是观察图形的形状和位置的变化,利用几何知识进行分析。

具体的解题技巧如下:1.观察图形的对称性:有些图形在某种变换后会保持对称,比如旋转180度后还是原来的图形。

2.观察图形的放大缩小关系:有些图形在变换后会变成原来的图形的倍数,比如放大或缩小一定的倍数。

3.观察图形的平移关系:有些图形在变换后会平移一定的距离,比如向左或向右平移一定的格数。

三、等式变形类问题等式变形类问题通常要求学生通过等式的变形推导出另一个等式,并验证等式的等价性。

解决这类问题的关键是掌握等式变形的基本方法和技巧。

具体的解题技巧如下:1.使用性质和定理:根据等式的性质和定理进行变形,如分配律、合并同类项等;2.开展移项、约去等操作:通过移动变量的位置、约去相同因式等操作推导出新的等式;3.代入数值验证等式的等价性:可以代入一些具体的数值来验证等式是否成立。

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题是指通过分析数列、图形或公式等数学对象的特点,寻找其中隐藏的规律并加以运用来解决问题的一类问题。

这类问题需要学生具备分析能力、抽象能力、推理能力等多方面的综合能力。

初中数学规律探究问题的类型较为多样,常见的有以下几类:1. 数列问题:通过观察数列中的数字之间的规律,找出数列的通项公式或下一个数字,进而解决问题。

已知数列1、2、4、7、11、16的通项公式是多少?解题技巧:观察数列中相邻数字之间的差或比例是否存在固定规律,如果存在,可通过运算找出通项公式;如果不存在,则考虑是否可以构造新的数列来寻找规律。

2. 图形问题:通过观察图形中的形状、边长、角度等特点,找出图形的规律并解决问题。

已知一个正方形从第一阶到第四阶的边长依次为1、2、3、4,第十个阶的边长是多少?解题技巧:观察图形中相邻部分之间的关系,寻找存在的等差、等比、对称等规律;如果能够构造新的图形来辅助分析,更容易找出规律。

3. 公式问题:通过观察公式中的变量、系数等特点,推测出公式的规律并解决问题。

已知一个等差数列的公差是d,前n项的和为Sn,求第n项的值。

1. 观察法:通过观察数列、图形或公式等数学对象的特点,寻找其中存在的规律。

2. 归纳法:通过观察到的规律,总结规律的表达式或公式。

3. 推理法:通过观察到的规律,根据数学常识进行推理和证明。

4. 验证法:通过代入具体数值,验证所得的规律是否成立。

5. 构造法:通过构造新的数列、图形或公式等,辅助分析和解题。

除了以上解题技巧外,良好的数学基础知识和逻辑思维能力也是解决规律探究问题的重要因素。

平时要加强基础知识的学习,培养逻辑思维能力,多进行思维训练和思维导图的绘制,提高解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学规律探究题的
解题方法
TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-
初中数学规律探究题的解法指导
一、数式规律探究
1.一般地,常用字母n表示正整数,从1开始。

2.在数据中,分清奇偶,记住常用表达式。

正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…
3.熟记常见的规律
① 1、4、9、16......n2② 1、3、6、10……
(1)
2
n n+
③ 1、3、7、15……2n -1 ④ 1+2+3+4+…n=
(1)
2
n n+
⑤ 1+3+5+…+(2n-1)= n2 ⑥ 2+4+6+…+2n=n(n+1)
⑦ 12+22+32….+n2=1
6
n(n+1)(2n+1) ⑧ 13+23+33….+n3=
1
4
n2(n+1)(...... 2n
数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:3.观察法
例1.观察下列等式:①1×1
2
=1-
1
2
②2×
2
3
=2-
2
3
③3×
3
4
=3-
3
4
④4×4
5
=4-
4
5
……猜想第几个等式为(用含n的式子表示)
分析:将等式竖排:
①1×1
2
=1-
1
2
观察相应位置上变化的数字与序列号
②②2×2
3
=2-
2
3
的对应关系(注意分清正整数的奇偶)
③3×3
4
=3-
3
4
易观察出结果为:
③4×4
5
=4-
4
5
例2.探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么32009的个位数字
是。

3200 的个位数字是。

分析:这类问题,主要是通过观察末位数字,找出其循环节共几位,然后用指数除以循环节的位数,结果余几,就和第几个数的末位数字相同,易得出本题结果为:
4.作差法
例3.将一正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成更小的正三角形…,如此继续下去,结果如下表:
则a
n
= (用含n的代数式表示)
分析:对结果数据做求差处理(相邻两数求差,大数减小数)
例4.有一组数:1、2、5、10、17、26……请观察这组数的构成规律,用你发现的规律确定第8个数为。

尝试练习:
1.观察下列等式:1×3=12+2×1;
2×4=22+2×2;3×5=3
2+2×3……请将
你猜想到的规律用含自然数n(n≥
1)的代数式表示出来:。

2.观察下列各式:
2
1
×2=
2
1
+2;
3
2
×3=
3
2
+3;
4
3
×4=
4
3
+4;
5
4
×5=
5
4
+5……
设n为正整数,用关于n的等式表示这个规律为。

3.
正整数n(n≥1)的代数式表示出来为。

4.已知:2+
2
3
=22×
2
3
;3+
3
8
=32×
3
8
;4+
4
15
=42×
4
15
;5+
5
24
=52×
5
24
…,若
10+
b
a
=102×
b
a
符合前面式子的规律,则a+b= 。

5.已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102…由此规律可推出
第n
等式:。

二、图形规律探究
解决思路有两种:一种是数图形,将图形转化为数字规律,用作差法看能否解决
另一种在过程中找规律(图形的构成或者是作差法的过程)例5.如图,由若干火柴棒摆成的正方形,第①图用了4根火柴,第②图用了7根火柴棒,第③图用了10根火柴棒,依次类推,第⑩图用
根火柴棒,摆第n个图时,要用根火柴棒。

例6.按如下规律摆放三角形:则第④堆三角形的个数为;第(n)堆三角形的个数为。

△△△
△△

(1)(2)(3)
△△△ △ △ △△△△△ △
△△△△△△△
① ② ③ 尝试练习:
1.如图7-①,图7-②,图7-③,图7-④,,是用围棋棋子按照某种规律摆成的一行“广”
字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________
2.观察图中每一个大三角形中白色三角形的排
列规律,则第5个大三角形中白色三角形有 个 .
3.图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍
的根数为s ,则s = . (用n 的代数式表示s ) 4.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示). 5.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .
三、课外拓展: 1.探索规律:31=3,32=9,33=27,34=81,35=243,36=729……那么32008的个位数字是 。

2.观察下列等式:71=7,72=49,73=343,74=2041……由此可判断7100的个位数字是 。

3.瑞士中学教师巴尔末成功地从光谱数据95,1612,2521,36
32……中得到巴尔末公式,从而打开了光
谱奥妙的大门,按此规律第七个数据是 。

4.已知a 1=1123⨯⨯+12=23,a 2=1234⨯⨯+13=38,a 3=1345⨯⨯+14=4
15……按此规律,则a 99= 。

5.已知112⨯=1-12,123⨯=12-13,134⨯=13-14……,则112⨯+123⨯+1
34⨯+
…+
1(1)n n += ;用相同思路探究:113⨯+135⨯+1
57
⨯…+1(21)(21)n n -+= 。

6.如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.
7.如图,由等圆组成的一组图中,第1个图由
1个圆组成,第2个图由7个圆组成,第3个图由19个第1个
第2个
第3个
… … 第1幅 第2幅 第3幅 第n
幅 图5

n =n =n =
(((
圆组成,,按照这样的规律排列下去,则第9个图形由_______个圆组成.
8.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.
9.用边长为1cm 的小正方形搭成如下的塔状图形,则第n 次所搭图形的周长是_______________cm (用含n 的代数式表示)。

第1个图形
第2个图形
第3个图形
第4个图形

第1次 第2次 第3次 第4
·。

相关文档
最新文档