第4章 确定型时间序列预测方法-思考与练习
《统计预测与决策》讲课资料

前言参考书目第一章统计预测概述第二章定性预测法第三章回归预测法第四章时间序列分解法和趋势外推法 4.2 趋势外推法第十三章统计决策概述第十四章风险型决策方法第十六章不确定型决策方法 13.3 决策的公理和原则一.决策的公理定义:是指所有理智健全的决策者都能接受或承认的基本原理,它们是许多决策者长期决策实践经验的总结.两个基本点: 1、决策者通常对自然状态出现的可能性有一个大致的估计,即存在着“主观概率”; 2、决策者对于每一行动方案的结果根据自己的兴趣、爱好等价值标准有自己的评价,即行动方案的“效用”. 六个公理: 1、方案的优劣是可比较和判别的; 2、方案必须具有独立存在的价值; 3、在分析方案时只有不同的结果才需要加以比较; 4、主观概率和方案结果之间不存在联系; 5、效用的等同性; 6、效用的替代性.二. 决策的原则 1、可行性原则;2、经济性原则;3、合理性原则回本章目录本章小结1、决策是对未来行动作出决定;具有三个特征、四个要素. 2、决策可从不同的角度进行分类. 3、一个完整的决策包括四个过程.4、决策的六个基本公理和决策时应遵守的三条原则.作业:第270页:1、2、3 回总目录 14.1 风险型决策的基本问题 14.2 不同标准的决策方法 14.3 决策树 14.4 风险决策的敏感性分析 14.5 完全信息价值 14.6 效用概率决策方法 14.7 连续型变量的风险型决策方法 14.8 马尔科夫决策方法小结 14.1 风险型决策的基本问题不确定型决策举例:有一工程,下月开工后如果天气好,可按期完工获利140万元,若开工后天气不好,则损失120万元. 若不开工,则无论天气如何都将窝工损失20万元. 自然状态发生的概率已知自然状态发生的概率完全未知完全不确定型决策风险型决策贝叶斯决策一. 概念所谓的风险型决策,是指根据预测各种事件可能发生的先验概率,然后再采用期望效果最好的方案作为最优方案.先验概率:根据过去经验或主观判断而形成的对各自然状态的风险程度的测算值. 简言之,原始的概率就称为先验概率. 二. 损益矩阵有三部分组成:1、可行方案; 2、自然状态及其发生的概率; 3、各种行动方案的可能结果. 11.1 预测精度的测定一. 预测精度的测定 1、预测精度的一般含义预测精度:预测模型拟合的好坏程度,即由预测模型所产生的模拟值与历史实际值拟合程度的优劣.如何提高预测精度是预测研究的一项重要任务。
统计学各章计算题公式及解题方法

统计学各章计算题公式及解题方法第四章数据的概括性度量1.组距式数值型数据众数的计算:确定众数组后代入公式计算:下限公式:;上限公式:,其中,L为众数所在组下限,U为众数所在组上限,为众数所在组次数与前一组次数之差,为众数所在组次数与后一组次数之差,d为众数所在组组距2.中位数位置的确定:未分组数据为;组距分组数据为3.未分组数据中位数计算公式:4.单变量数列的中位数:先计算各组的累积次数(或累积频率)—根据位置公式确定中位数所在的组-对照累积次数(或累积频率)确定中位数(该公式假定中位数组的频数在该组内均匀分布)5.组距式数列的中位数计算公式:下限公式:;上限公式:,其中,为中位数所在组的频数,为中位数所在组前一组的累积频数,为中位数所在组后一组的累积频数6.四分位数位置的确定:未分组数据:;组距分组数据:7.简单均值:8.加权均值:,其中,为各组组中值统计学各章计算题公式及解题方法9.几何均值(用于计算平均发展速度):10.四分位差(用于衡量中位数的代表性):11.异众比率(用于衡量众数的代表性):12.极差:未分组数据:;组距分组数据:13.平均差(离散程度):未分组数据:;组距分组数据:14.总体方差:未分组数据:;分组数据:15.总体标准差:未分组数据:;分组数据:16.样本方差:未分组数据:;分组数据:17.样本标准差:未分组数据:;分组数据:18.标准分数:19.离散系数:第七章参数估计1.的估计值:置信水平α90%0.1 0。
05 1.65495% 0。
05 0.025 1.9699% 0.01 0。
005 2。
58统计学各章计算题公式及解题方法2.不同情况下总体均值的区间估计:总体分布样本量σ已知σ未知大样本(n≥30)正态分布小样本(n<30)非正态分布大样本(n≥30)其中,查p448 ,查找时需查n—1的数值3.大样本总体比例的区间估计:4.总体方差在置信水平下的置信区间为:5.估计总体均值的样本量:,其中,E为估计误差6.重复抽样或无限总体抽样条件下的样本量:,其中π为总体比例第八章假设检验1.总体均值的检验(已知或未知的大样本)[总体服从正态分布,不服从正态分布的用正态分布近似]假设双侧检验左侧检验右侧检验假设形式已知统计量未知拒绝域值决策,拒绝2.总体均值检验(未知,小样本,总体正态分布)假设双侧检验左侧检验右侧检验统计学各章计算题公式及解题方法假设形式已知统计量未知拒绝域值决策,拒绝注:已知的拒绝域同大样本3.一个总体比例的检验(两类结果,总体服从二项分布,可用正态分布近似)(其中为假设的总体比例)假设双侧检验左侧检验右侧检验假设形式统计量拒绝域值决策,拒绝4.总体方差的检验(检验)假设双侧检验左侧检验右侧检验假设形式统计量拒绝域值决策,拒绝5.统计量的参考数值0.1 0。
时间序列分析讲义

– 在SAS系统中有一个专门进行计量经济与时间序列分析 的模块:SAS/ETS。SAS/ETS编程语言简洁,输出功能强 大,分析结果精确,是进行时间序列分析与预测的理 想的软件
– 由于SAS系统具有全球一流的数据仓库功能,因此在进 行海量数据的时间序列分析时它具有其它统计软件无 可比拟的优势
例2.3自相关图
时间序列分析讲义
例2.4时序图
时间序列分析讲义
例2.4 自相关图
时间序列分析讲义
例2.5时序图
时间序列分析讲义
例2.5自相关图
时间序列分析讲义
• 例2.3时序为非平稳的,有趋势; • 例2.4时序非平稳性,有趋势 • 例2.5时序是一个平稳的
时间序列分析讲义
非平稳性序列的平稳化
时间序列分析讲义
2020/11/16
时间序列分析讲义
第一章 时间序列分析基本概 念
时间序列分析讲义
第一章 时间序列分析基本概念
1.1 时间序列的定义
• 随机序列:按时间顺序排列的一组随机变量
• 观察值序列:随机序列的 个有序观察值,称之为 序列长度为 的观察值序列
• 随机序列和观察值序列的关系
– 观察值序列是随机序列的一个实现 – 我们研究的目的是想揭示随机时序的性质 – 实现的手段都是通过观察值序列的性质进行推断
满足下列条件的随机序列称为白噪声序列,也称 为纯随机序列:
注1:白噪声序列也是平稳时间序列中的特例. 注2:由于白噪声序列不同时刻的值相互独立,那么 这样的序列数值不能对于将来进行推断与预测,所以 白噪声是不能建立模型的。 时序图1.3符合白噪声序列特征
时间序列分析讲义
若满足时间序列满足: 称该时间序列是周期为T的时间序列.
《市场调查与预测》全国自学考试第八章练习题

第八章时间序列预测法一、单项选择题(在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
)1.从数学分析角度,时间序列长期趋势发展的规律性增长线的判断依据是( )A.最小二乘法B.散点图C.时间序列的差分变化D.函数表达式(2005.4)2.时间序列法将所有对研究对象的影响因素归结为()A.历史资料的变动B.长期趋势C.市场变量 D.时间变量(2009.7)3.时间序列研究的是预测对象( )A.与所有影响因素之间的关系B.与每个具体影响因素之间的关系C.与时间因素之间的关系D.与其变化趋势之间的关系(2010.4)4.时间序列分析法预测未来的前提是()A.假定事物过去的规律会同样延续到未来B.假定事物过去的规律不会延续到未来C.假定事物的未来是不会有变化的D.假定事物的未来是有规律变化的(2006.4)5.从数学分析角度来看,对于时间序列直线趋势的规律性增长线,可利用下列哪一选项作出判断()A.最小二乘法 B.散点图C.时间序列的一阶差分 D.函数表达式(2007.4)6.时间序列数据会呈出现一种长期趋势,它的表现( )A.只能是上升趋势B.只能是下降趋势C.只能是水平趋势7.时间序列数据因受一种固定周期性变化因素影响而出现的变动称为()A.长期变动趋势 B.季节变动C.循环变动 D.随机变动(2009.4)8. 时间序列数据因受一种固定周期性变化因素影响而出现的变动称之为( )A. 长期变动趋势B. 季节性变动C. 循环变动D. 随机变动(2002.7)9.呈现季节性变动的时间序列数据,其重复变动的周期一般是()A.以年为周期B.以季为周期C.以月为周期D.以周为周期(2008.4)10.循环变动是指时间序列数据变动呈现不固定的周期变动,且变动周期长于()A.3个月 B.6个月 C.9个月(2005.7)11.利用加权平均法进行预测,所求得的加权平均数已经包含了数据的()A.长期趋势变动 B.季节性变动C.循环变动 D.不规则变动(2007.7)12.与算术平均法相比,加权平均法的优越性表现在()A.计算方法更简便B.计算方法更容易C.对不同时期的数据等同对待,一视同仁D.对不同时期的数据区别对待,给予不同程度的重视(2011.7)13.加权平均法所求得的平均数,已包含了( )A.对各个数据的分析B.长期趋势变动C.各期资料对应的权数D.所有原始数据(2003.4)14.加权平均预测法的关键是()A.确定发展速度B.确定平均的项数C.确定权数D.剔除一些特殊的影响因素(2006.7)15.加权平均法预测的关键是( )A.确定计算公式B.确定平均的项数C.确定权数D.剔除一些特殊的影响因素(2005.4)16.在统计分析中常用来修匀历史数据,揭示变动趋势的方法是( )A.算术平均法B.加权平均法C.移动平均法D.趋势分析法(2011.4)17.移动平均法在统计分析中常用来()A.修匀时间序列,揭示变动趋势B.计算移动平均数C.计算时间序列的代表性值D.构成新的时间序列(2009.4)18.对于发展趋势呈斜坡样式的时间序列资料,不可..采用的预测模型是()A.直线趋势延伸法B.一次移动平均法简便形式C.一次移动平均变动趋势移动形式D.二次移动平均法(2009.7)19.在下列预测方法中最适合水平型数据样式的方法是()A.定性预测法 B.一次移动平均法C.趋势延伸法 D.季节变动预测法(2007.7)20.一次移动平均法适用于预测目标时间序列数据的变动基本呈( )趋势的变化。
生产运作课后习题及答案

生产运作管理第三版机械工业出版社陈荣秋等著只包含判断题和选择题(红色体为不做要求第一章绪论判断题:1.制造业的本质是从自然界直接提取所需的物品。
错2.服务业不仅制造产品,而且往往还要消耗产品,因此服务业不创造价值。
错3.服务业的兴起是社会生产力发展的必然结果。
对4.有什么样的原材料就制造什么样的产品,是输入决定了输出。
错5.生产运作、营销和财务三大职能在大多数的组织中都互不相干地运作。
错6.运作管理包括系统设计、系统运作和系统改进三大部分。
对7.生产运作管理包括对生产运作活动进行计划、组织和控制。
对8.运作经理不对运作系统设计负责。
错9.加工装配式生产是离散性生产。
对10.订货型生产可能消除成品库存。
对11.纯服务业不能通过库存调节。
对12.准时性是组织生产过程的基本要求。
对13.企业的产出物是产品,不包括废物。
错选择题:1.大多数企业中存在的三项主要职能是:BA)制造、生产和运作B)运作、营销和财务C)运作、人事和营销D)运作、制造和财务E)以上都不是2.下列哪项不属于大量生产运作?AA)飞机制造B)汽车制造C)快餐D)中小学教育E)学生入学体检3.下列哪项不是生产运作管理的目标?EA)高效B)灵活C)准时D)清洁E)以上都不是4.相对于流程式生产,加工装配式生产的特点是:AA)品种数较多B)资本密集C)有较多标准产品D)设备柔性较低E)只能停产检修5.按照生产要素密集程度和与顾客接触程度划分,医院是:CA)大量资本密集服务B)大量劳动密集服务C)专业资本密集服务D)专业劳动密集服务E)以上都不是6.以下哪项不是服务运作的特点?CA)生产率难以确定B)质量标准难以建立C)服务过程可以与消费过程分离D)纯服务不能通过库存调节E)与顾客接触7.当供不应求时,会出现下述情况:DA)供方之间竞争激化B)价格下跌C)出现回扣现象D)质量和服务水平下降E)产量减少第二章企业战略和运作策略判断题:1.当价格是影响需求的主要因素时,就出现了基于成本的竞争。
时间序列预测方法

81
12.1
-24.2
4
48.4
16
13.1
-13.1
1
13.1
1
14.3
0
0
0
0
14.4
14.4
1
14.4
1
14.8
29.6
4
59.2
16
15.0
45.0
9
135.0
81
12.3
49.2
16
196.8
256
11.2
56.0
25
280.0
625
9.4
56.4
36
338.4
1296
8.9
62.3
49
436.1
16 零 售 12 量
(亿件)8
4
零售量
趋势值
0
1978 1980 1982 1984 1986 1988 1990 1992
针织内衣零售量二次曲线趋势
(年份)
(二)指数曲线(Exponential curve) 用于描述以几何级数递增或递减的现象 1、一般形式为
Yˆt abt
▪ a、b为未知常数 ▪ 若b>1,增长率随着时间t的增加而增加 ▪ 若b<1,增长率随着时间t的增加而降低 ▪ 若a>0,b<1,趋势值逐渐降低到以0为极限
47.50
49
57.00
64
66.50
81
76.00
100
85.50
121
95.00
144
104.51
169
114.01
196
123.51
225
133.01
时间序列模型

时间序列模型一、分类①按所研究的对象的多少分,有一元时间序列和多元时间序列。
②按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。
③按序列的统计特性分,有平稳时间序列和非平稳时间序列。
狭义时间序列:如果一个时间序列的概率分布与时间t无关。
广义时间序列:如果序列的一、二阶矩存在,而且对任意时刻t满足均值为常数和协方差为时间间隔T勺函数。
(下文主要研究的是广义时间序列)。
④按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。
二、确定性时间序列分析方法概述时间序列预测技术就是通过对预测目标自身时间序列的处理,来研究其变化趋势的。
一个时间序列往往是以下几类变化形式的叠加或耦合。
①长期趋势变动:它是指时间序列朝着一定的方向持续上升或下降,或停留在某一水平上的倾向,它反映了客观事物的主要变化趋势。
通常用T t表示。
②季节变动:通常用S t表示。
③循环变动:通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相似的波动。
通常用C t表示。
④不规则变动。
通常它分为突然变动和随机变动。
通常用R t表示。
也称随机干扰项。
常见的时间序列模型:⑴加法模型:y t = S t + T t + C t + R t;⑵乘法模型:y t =S T t C t -R t ;⑶混合模型:y t =S T t + R t ;y t = S t +2T t G R t ;R t这三个模型中y t表示观测目标的观测记录, E R t = 0, E R t2 ==o2如果在预测时间范围以内,无突然变动且随机变动的方差 /较小,并且有理由认为过去和现在的演变趋势将继续发展到未来时,可用一些经验方法进行预测。
三、移动平均法当时间序列的数值由于受周期变动和不规则变动的影响,起伏较大,不易显示出发展趋势时,可用移动平均法,消除这些因素的影响,分析、预测序列的长期趋势。
移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法等。
《市场预测方法》PPT课件

Yˆ Y • X • 应用:数据的发展成等比数列变化时比较合适。 T
T
t
G
二、移动平均法
• (一)简单移动平均法 • (二)加权移动平均法
(一)简单移动平均法
• 含义:将计算期内的预测目标时间序列的移动平均数,作为下一期的预测值。公式:
:表示第t期的移动平均数,作为下期t+1期的预测值。
•
例:
解(1)
• 先根据已知的一季度销售量和一季度的季节指数 ,求出第六年的季平均数;再根据第六年的季平 均数和第二季度的季节指数,求出第二季度的预 测值,
• 第六年的季平均数=10/60.18%=16.62 • 第六年第二季度的销售量=16.62×83.19%=13
.82(吨)
解(2)
• 先根据上半年的已知数和一、二季度的季节指数 ,求出第六年的季平均数;再根据第六年的季平 均数和第三季度的季节指数,求出第三季度的预 测值:
• 第六年的季平均数=27/(60.18%+83.19%) • =18.83 • 第六年第三季度的销售量=18.83×109.73% • =20.66(吨)
解(3)
• 先求出第六年的季平均数,再根据第六年的季平均数和各 季度的季节指数,求出各季度的预测值:
• 第六年的季平均数=60/4=15
• 第六年第一季度的销售量=15 × 60.18%=9.027(吨) • 第二季度的销售量=15 × 83.19%=12.4785(吨) • 第三季度的销售量=15 × 109.73%=16.4595(吨) • 第四季度的销售量=15 × 146.90%=22.035(吨)
• (一)意义:根据事物从产生、成长、成熟到衰亡这一随时间变动的演化规律,来预 测某种产品或技术所处的不同发展阶段以及未来的变化趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 确定型时间序列预测方法思考与练习(参考答案)1.什么是时间序列?时间序列预测方法有什么假设?答:时间序列是一组按时间顺序排序的数据。
时间序列预测方法的假设:①假设预测目标的发展过程规律性会延续到未来。
②假设预测对象的变化仅仅与实践有关。
2.移动平均法的模型参数N 的数值大小对预测值有什么影响?选择参数N 应考虑哪些问题?答:N 值越大对数据修匀的程度越强,建立移动模型的波动也越小,预测值的变化趋势反应也越迟钝。
N 值越小,对预测值的变化趋势反应越灵敏,但修匀性越差,容易把随机干扰作为趋势反应出来。
选择N 的时候首先需要考虑预测对象的具体情况,是希望对预测对象的变化趋势反应的更灵敏还是钝化其变化趋势从而更看重综合的稳定预测;其次,如果时间序列有周期性变动,则当N 的选取刚好是该周期变动的周期是,则可消除周期变动的影响。
3.试推导出三次移动平均法的预测公式。
解:有了二次移动平均的预测模型的推导过程,同理可以推广出三次移动平均法的预测模型: 已知时间序列t X X X ,...,,21,N 是跨越期 一次移动平均数:N X X X M N t t t t11)1(...+--+++=;二次移动平均数:NM M M M N t t tt)1(1)1(1)1()2(...+--+++=;三次移动平均数:NM M M M N t t tt)2(1)2(1)2()3(...+--+++=;设时间序列}{t X 从某时期开始具有直线趋势,且认为未来时期也按此直线趋势变化,则可设此直线趋势预测模型为:T b a X t t T t +=+ˆ其中t 为当前的时期数;T 为由t 至预测期数,,...2,1=T ; )3()2(2t t t M M a -=;)1/()(2)3()2(--=N M M b t tt4.移动平均法与指数平滑法各有什么特点?为什么说指数平滑法是移动平均法的改进?答:移动平均法:计算简单易行;预测是存储量大,仅考虑最近的N 个观察值等权看待,而对t-N 期以前的数据则完全不考虑,不能预测长期趋势。
指数平滑法:适用于中短期的预测方法,任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。
指数平滑法是对移动法的改进。
移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。
5.试比较移动平均法、指数平滑法和时间序列分解法,它们各自的优缺点是什么?答:难度 所用数据 适用预测 权重 相对准确性移动平均法 易 近期N 的数据 短期 无 差 指数平滑法一般所有数据 中短期 重近轻远 一般 时间序列解法 复杂所有数据长中短期无好6.指数平滑法的平滑系数的大小对预测值有什么影响?选择平滑系数应考虑哪些问题?确定指数平滑的初始值应考虑哪些问题?答:α的大小对预测值得影响:α的取值越大:近期资料对预测值得影响越强,远期资料的影响弱;α的取值越小:远期资料对预测值得影响增强。
选择α的考虑的问题:①如果预测误差是由某些随机因素造成的,即预测目标的时间序列虽有不规则起伏波动,但基本发展趋势比较稳定,只是由于某些偶然变动使预测产生或大或小的偏差,这时,应取小一点,以减小修正幅度,使预测模型能包含较长的时间序列的信息。
②如果预测目标的基本趋势已经发生了系统的变化,也就是说,预测误差是由于系统变化造成的,则的取值应该大一点,这样,就可以根据当前的预测误差对原预测模型进行较大幅度的修正,使模型迅速跟上预测目标的变化。
不过,取值过大,容易对随机波动反应过度。
③如果原始资料不足,初始值选取比较粗糙,的取值也应大一点。
这样,可以使模型加重对以后逐步得到的近期资料的依赖,提高模型的自适应能力,以便经过最初几个周期的校正后,迅速逼近实际过程。
④假如有理由相信用以描述时间序列的预测模型仅在某一段时间内能较好地表达这个时间序列,则应选择较大的值,以减低对早期资料地依赖程度确定指数平滑的初始值应考虑的问题:如果数据序列较长,或者平滑系数选择得比较大,则经过数期平滑链平滑之后,初始值)1(0S 对)1(tS 的影响就很小了。
故我们可以在最初预测时,选择较大的值来减小可能由于初始值选取不当所造成的预测偏差,使模型迅速地调整到当前水平。
假定有一定数目的历史数据,常用的确定初始值的方法是将已知数据分成两部分,用第一部分来估计初始值,用第二部分来进行平滑,求各平滑参数。
7.时间序列分解法一般包括哪些因素?如何从时间序列中分解出不同的因素来?答:时间序列份一般包括四类因素:长期趋势因素、季节变动因素、循环变动因素和不规则变动因素;长期趋势因素和循环变动因素的分解:选择跨越期为季节变动的周期数的一次移动平均数序列MA ,从而从时间序列中分离出长期趋势因素和循环变动因素T ×C ;季节变动因素和随机因素:用时间序列除以一次移动平均序列,从而得到季节变动因素和随机性因素S×I。
用的方法消除S×I 的随机因素;长期趋势因素:用一种能最好的描述数据长期趋势的模型,从而得到长期趋势T,用MA/T,得到循环变动分离。
9.已知某类产品以前15 个月的销售额如下表所示。
(1) 分别取N=3, N=5,计算一次移动平均数,并利用一次移动平均法对下个月的产品销售额进行预测。
(2) 取N=3,计算二次移动平均数,并建立预测模型,求第16、17 个月的产品销售额预测值。
(3) 用一次指数平滑法预测下一个月的产品销售量,并对第14、15 个月的产品销售额进行事后预测。
分别取α=0.1,0.3,0.5,S0(1)为最早的三个数据的平均值。
解:(1)一次移动平均数如图:N =3:33.28ˆ;33.28)1(1516)1(15===M X M N =5:20.26ˆ;20.26)1(1516)1(15===M X M(2)N =3时二次移动平均数属如图,第16、17期的销售预测值:...2,1ˆ151515=+=+T Tb a X T00.3067.2633.2822)2(15)1(1515=-⨯=-=M M a67.1)1/()(2)2(15)1(1515=--=N M M b⇒34.332ˆ267.311ˆ1151517151516=⨯+===⨯+==b a X T b a X T(3)13.27ˆ25.25ˆ06.28ˆ5.002.25ˆ31.23ˆ12.26ˆ3.091.18ˆ79.17ˆ92.19ˆ1.0ˆ)ˆ(ˆˆ11151416151416151416)1(011)1(0============⇒=-+==+X X X X X X X X X S X X X X X S t t t t αααα10. 利用4.6节中的数据,使用SPSS 软件对“Sales of Men's Clothing”,“ Sales of Jewelry”字段用移动平均、指数平滑以及时间序列分解模型对未来一期的产品销售额进行预测并对预测结果进行讨论。
解:打开SPSS 15.0 for windows选择open an existing data source点击ok,选择turorial/sample_files/catalog_seasfac.sav打开1)绘制时间序列趋势图,分析时序变动规律按照4.6中操作,将”Sales of Men’s Clothing”、”Sale of Jewelry”选入”Variables”框,将”Data”选入”Time Axis Labels”,查看趋势图如下图从趋势图两个时间序列中可以看出:”Sales of Men’s Clothing”呈现明显的上升趋势。
”Sale of Jewelry”的趋势不是很明显;两个时间序列都呈现很明显的季节特征,”Sales ofMen’s Clothing”的季节变动呈现随时间的增加而增长的趋势。
2) 预测:a) 利用移动平均模型预测:按照4.6节中移动平均模型的操作,将”Sales of Men’s Clothing”和”Sale of Jewelry”分别选择入变量栏内,”Span”,选项分别选择6和12即移动平均中跨越期数,得到,当N=6和N=12时”Sales of Men’s Clothing”的未来一期销售额的预测值分别为23366.75和22640.03;当N=6和N=12时” Sale of Jewelry”的未来一期销售额的预测值分别为17557.80和16921.97;b) 利用指数平滑模型预测:按照4.6节中指数平滑模型的操作,将”Sales of Men’s Clothing”和”Sale of Jewelry”分别选择入变量栏内,在”Exponential Smoothing Criteria”对话框中,”Model Type”选择”seasonal/winters’ multiplicatice”,得到”Sales of Men’s Clothing”的未来一期销售额的预测值分别为22261.78;” Sale of Jewelry”的未来一期销售额的预测值分别为12778.75;c) 利用时间序列分解模型:按照4.6节中时间序列分解模型的操作,选择”Sales of Men’s Clothing”变量,得到分解后的四个因素时序,因为选择的是乘法模型,因此,将每个因素分别预测,将得到的一月到十二月的季节指数,一月是季节指数是0.95181,由长期趋势的回归模型得未来一期的长期趋势预测为12110656.1792.3012121824.47T =+⨯=,假设未来一期循环指数为100%,最终得到的”Sales of Men’s Clothing”未来一期的预测值,1998.01ˆ21824.470.9518120772.75X =⨯=利用时间序列分解模型:按照4.6节中时间序列分解模型的操作,选择” Sale of Jewelry”变量,得到分解后的四个因素时序,因为选择的是乘法模型,因此,将每个因素分别预测,将得到的一月到十二月的季节指数,一月是季节指数是0.72680,由长期趋势的回归模型得未来一期的长期趋势预测为12116948.19( 1.084)12116817.03T =+-⨯=,假设未来一期循环指数为100%,最终得到的”Sales of Men’s Clothing”未来一期的预测值,1998.01ˆ16817.030.726812222.61X =⨯=。