直线和圆的方程知识点总结

合集下载

中职数学第八章直线方程和圆知识点

中职数学第八章直线方程和圆知识点

中职数学第八章直线方程和圆知识点直线方程和圆1.两点间距离公式:设点A(x1,y1)和点B(x2,y2),则AB的长度为AB = √[(x2-x1)²+(y2-y1)²]。

当x1=x2时,AB = |y2-y1|。

当y1=y2时,AB = |x2-x1|。

2.中点坐标:设点A(x1,y1)和点B(x2,y2),则线段AB的中点M的坐标为[(x1+x2)/2,(y1+y2)/2]。

当x1≠x2时,M的纵坐标为(y2-y1)/(x2-x1)×(x-x1)+y1.3.直线的倾斜角和斜率:直线的倾斜角α∈[0,π)。

直线的斜率k=tanα (α≠π/2)。

当α=30°时,k=√3/3;当α=45°时,k=1;当α=60°时,k=√3;当α=120°时,k=-√3;当α=150°时,k=-√3/3.4.直线方程:点斜式:设直线过点A(x1,y1),斜率为k,则直线的点斜式方程为y-y1=k(x-x1)。

斜截式:设直线与y轴交点为b,则直线的斜截式方程为y=kx+b。

两点式:设直线过点A(x1,y1)和点B(x2,y2),则直线的两点式方程为(x-x1)/(x2-x1)=(y-y1)/(y2-y1)。

截距式:设直线与x轴和y轴的截距分别为a和b,则直线的截距式方程为x/a+y/b=1 (a≠0,b≠0)。

一般式:设直线的一般式方程为Ax+By+c=0 (A和B不同时为0)。

5.两直线的位置关系:当两直线斜率都不存在时,若它们的截距不相等,则两直线平行;若它们的截距相等,则两直线重合。

当两直线斜率都存在时,若它们的斜率相等且截距不相等,则两直线平行;若它们的斜率相等且截距相等,则两直线重合;若它们的斜率乘积为-1,则两直线垂直。

当一条直线斜率不存在时,另一条直线斜率存在且不为0时,它们不可能平行或垂直。

当两直线斜率都存在且不为0时,若它们的斜率不相等,则它们相交,且夹角为arctan|k1-k2|;若它们的斜率相等且截距不相等,则它们平行;若它们的斜率相等且截距相等,则它们重合。

直线方程和圆的方程概念及知识点拓展(高中数学)

直线方程和圆的方程概念及知识点拓展(高中数学)

直线与圆的概念公式及拓展一.直线的倾斜角与斜率1.直线的倾斜角α的范围[)π,0。

当直线l 与x 轴重合或平行时,规定倾斜角为0。

注意几种角的范围:异面直线所成的角⎥⎦⎤ ⎝⎛2,0π; 直线和平面所成角⎥⎦⎤⎢⎣⎡20π,; 二面角[]π,0; 两向量的夹角[]π,0;2.斜率定义:倾斜角不是90°的直线,它的倾斜角α的正切值叫做这条直线的斜率k , 即k=tan α(α≠90°);倾斜角为90°的直线没有斜率。

直线方程:Ax+By+C=0的斜率BAk -=。

方向向量:若()n m a ,=为直线的方向向量,则直线的斜率mn k =。

已知直线上两点:过两点()),(,,2211y x y x 的直线的斜率1212x x y y k --=。

二.直线方程的五种形式:1.点斜式:已知直线过点(x 0,y 0),斜率为k ,则直线方程)(00x x k y y -=-,它不包括垂直于x 轴的直线。

2.斜截式:已知直线斜率为k ,在y 轴上的截距b ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线。

3.两点式:已知直线过了P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2,y 1≠y 2)两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于x 轴的直线。

4.截距式:已知直线在x ,y 轴上的截距分别为a ,b ( a ≠0,b ≠0)则直线方程为1=+bya x ,它不包括垂直于坐标轴的直线和过原点的直线。

5.直线的一般式方程:任何直线都可以写成Ax +By +C =0(其中A ,B 不同时为0)的形式。

拓展:1.直线在坐标轴上的截距可正,可负,也可为0。

直线的斜率为1或直线过原点,则直线两截距互为相反数; 直线的斜率为-1或直线过原点,则直线两截距相等。

2.设直线方程的一些常用技巧:(1)已知直线y 轴截距b ,常设其方程为y =kx +b 。

圆的直线方程公式总结

圆的直线方程公式总结

圆的直线方程公式总结在数学中,圆和直线是非常基础的几何图形,它们在各种数学问题中都有着重要的作用。

而圆的直线方程公式则是描述圆和直线之间关系的重要工具。

在本文中,我们将对圆的直线方程公式进行总结,希望能够帮助读者更好地理解和运用这些公式。

首先,我们来看圆的标准方程。

圆的标准方程通常写作,(x h)² + (y k)² = r²,其中(h, k)表示圆心的坐标,r表示圆的半径。

这个方程描述了平面上任意一点到圆心的距离等于半径的关系,是描述圆的基本方程之一。

接下来,我们来看直线的标准方程。

直线的标准方程通常写作,Ax + By + C = 0,其中A、B、C为常数,并且A和B不同时为0。

这个方程描述了平面上所有满足这个线性关系的点的集合,是描述直线的基本方程之一。

那么,圆和直线之间的关系如何描述呢?在平面几何中,圆和直线有三种可能的位置关系,相离、相切和相交。

我们分别来看这三种情况下的圆的直线方程公式。

首先是相离的情况。

当圆和直线相离时,它们之间没有交点。

这时,我们可以使用距离公式来描述它们的关系。

假设圆的标准方程为,(x h)² + (y k)² = r²,直线的标准方程为,Ax + By + C = 0。

那么,圆和直线之间的距离d可以表示为,|Ah + Bk + C| / √(A² + B²) > r。

这个不等式描述了圆和直线相离的情况。

其次是相切的情况。

当圆和直线相切时,它们只有一个交点。

这时,我们可以使用切线的性质来描述它们的关系。

假设圆的标准方程为,(x h)² + (y k)² = r²,直线的标准方程为,Ax + By + C = 0。

那么,圆和直线相切的条件可以表示为,|Ah + Bk + C| / √(A² + B²) = r。

这个等式描述了圆和直线相切的情况。

高中数学直线和圆知识点总结

高中数学直线和圆知识点总结

高中数学直线和圆知识点总结高中数学直线和圆学问点总结直线和圆一.直线1.斜率与倾斜角:ktan,[0,)(1)[0,2(2))时,k0;2时,k不存在;(3)(2,)时,k0(4)当倾斜角从0增加到90时,斜率从0增加到;当倾斜角从90增加到180时,斜率从增加到02.直线方程(1)点斜式:yy0k(xx0)(2)斜截式:ykxbyy1y2y1xayb(3)两点式:xx1x2x1(4)截距式:1(5)一般式:AxByC03.距离公式(1)点P1(x1,y1),P2(x2,y2)之间的距离:P1P2(x2x1)(y2y1)|Ax0By0C|AB2222(2)点P(x0,y0)到直线AxByC0的距离:d(3)平行线间的距离:AxByC10与AxByC20的距离:d4.位置关系(1)截距式:ykxb形式重合:k1k2b1b2相交:k1k2平行:k1k2b1b2垂直:k1k21(2)一般式:AxByC0形式重合:A1B2A2B1且A1C2A2C1且B1C2C1B2平行:A1B2A2B1且A1C2A2C1且B1C2C1B21|C1C2|AB垂直:A1A2B1B20相交:A1B2A2B15.直线系A1xB1yC1+(A2xB2yC2)0表示过两直线l1:A1xB1yC10和l2:A2xB2yC20交点的所有直线方程(不含l2)二.圆1.圆的方程(1)标准形式:(xa)2(yb)2R2(R0)(2)一般式:x2y2DxEyF0(D2E24F0)xx0rcos(3)参数方程:(是参数)yy0rsin【注】题目中消失动点求量时,通常可实行参数方程转化为三角函数问题去解决.(4)以A(x1,y1),B(x2,y2)为直径的圆的方程是:(xxA)(xxB)(yyA)(yyB)02.位置关系(1)点P(x0,y0)和圆(xa)2(yb)2R2的位置关系:222当(x0a)(y0b)R时,点P(x0,y0)在圆(xa)2(yb)2R2内部222当(x0a)(y0b)R时,点P(x0,y0)在圆(xa)2(yb)2R2上222222当(x0a)(y0b)R时,点P(x0,y0)在圆(xa)(yb)R外(2)直线AxByC0和圆(xa)(yb)R的位置关系:推断圆心O(a,b)到直线AxByC0的距离d当dR时,直线和圆相交(有两个交点);当dR时,直线和圆相切(有且仅有一个交点);当dR时,直线和圆相离(无交点);1|AaBbC|AB22222与半径R的大小关系3.圆和圆的位置关系推断圆心距dO1O2与两圆半径之和R1R2,半径之差R1R2(R1R2)的大小关系当dR1R2时,两圆相离,有4条公切线;当dR1R2时,两圆外切,有3条公切线;当R1R2dR1R2时,两圆相交,有2条公切线;当dR1R2时,两圆内切,有1条公切线;当0dR1R2时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:l2Rd22扩展阅读:高中数学直线与圆的方程学问点总结高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x轴正方向;②平行:α=0°;③范围:0°≤α<180°。

直线与圆的方程知识点总结

直线与圆的方程知识点总结

直线与圆的方程知识点总结
直线与圆的方程是解析几何中的基本知识点,下面是关于直线与圆的方程的一些重要知识点总结:
直线方程知识点总结:
1. 直线的点斜式方程:y-y0=k(x-x0),其中 (x0, y0) 为直线上的一点,k 为直线的斜率。

2. 直线的斜截式方程:y=kx+b,其中 k 为直线的斜率,b 为 y 轴上的截距。

3. 直线的两点式方程:(y-y1)/(y2-y1)=(x-x1)/(x2-x1),其中 (x1, y1) 和
(x2, y2) 为直线上的两点。

4. 直线的截距式方程:x/a + y/b = 1,其中 a 和 b 分别为直线在 x 轴和 y 轴上的截距。

5. 直线的一般式方程:Ax + By + C = 0,其中 A、B、C 为常数,且 A 和
B 不为 0。

圆的方程知识点总结:
1. 圆的标准式方程:(x-h)^2 + (y-k)^2 = r^2,其中 (h, k) 为圆心坐标,r 为半径。

2. 圆的参数式方程:x=h+rcosθ, y=k+rsinθ,其中 (h, k) 为圆心坐标,r 为半径,θ 为参数。

3. 圆的极坐标式方程:ρ=r,其中 r 为半径,θ 为极角。

4. 圆的直径式方程:x^2 + y^2 + Dx + Ey + F = 0,其中 D、E、F 为常数。

5. 圆的一般式方程:x^2 + y^2 + Ax + By + C = 0,其中 A、B、C 为常数。

在直线与圆的方程中,还有一些重要的知识点和概念,如直线的法线式和参数式,圆的切线和割线等。

理解和掌握这些概念和公式对于解决几何问题非常重要。

圆与直线知识点总结

圆与直线知识点总结

圆与直线知识点总结一、圆的基本概念圆是平面上与一个给定点距离相等的点的集合。

这个给定点叫做圆心,与圆心距离相等的距离叫做半径。

圆通常用“O”表示圆心,“r”表示半径。

如果圆心为坐标原点(0,0),那么圆的方程可以表示为x²+y²=r²。

圆的直径是圆上任意两点之间的最大距离,其长度为圆的半径的两倍,可以表示为d=2r。

圆的常见性质:1. 圆的周长:圆的周长叫做圆的周长,通常用C表示。

圆的周长可以用圆的直径或者半径表示。

圆的周长公式为:C=2πr或者C=πd。

其中π是一个无限不循环小数,它约等于3.14159。

2. 圆的面积:圆的面积叫做圆的面积,通常用S表示。

圆的面积公式为S=πr²。

3. 圆的弧长与扇形面积:圆的一部分叫做弧,连接两个圆周上的点的线段叫做弦,弧与弦所夹的部分叫做扇形。

弧的长度叫做圆的弧长,可以表示为l=α/180°×πr。

扇形的面积可以表示为S=1/2r²θ。

二、圆与直线的位置关系1. 直线与圆的相交:直线与圆的位置关系主要有相交、外切、内切和相离四种情况。

直线与圆相交的情况有两点相交和两点重合两种情况。

2. 判别方法:通过解析几何的方法可以判别直线与圆的位置关系。

设直线的方程为y=kx+b,圆的方程为(x-a)²+(y-b)²=r²,通过联立直线方程与圆的方程,可以求解直线与圆的交点。

根据交点的数量和位置可以判断直线与圆的位置关系。

三、圆与直线的解析几何1. 直线的方程:直线的方程通常用一般式、点斜式、斜截式等形式表示。

一般式为Ax+By+C=0,其中A、B、C为常数。

点斜式为y-y₁=k(x-x₁),其中k是斜率,(x₁,y₁)是直线上的一个点。

斜截式为y=kx+b,其中k为斜率,b为截距。

2. 圆的方程:圆的方程通常用标准方程和一般方程表示。

标准方程为(x-a)²+(y-b)²=r²,一般方程为Ax²+By²+Cx+Dy+E=0。

直线与圆的方程知识点总结

直线与圆的方程知识点总结

直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。

2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。

3、斜率与坐标:12122121tan x x y y x x y y k --=--==α①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。

4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=•k k 。

②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。

③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。

2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-= ②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。

直线与圆的方程公式大全一数

直线与圆的方程公式大全一数

直线与圆的方程公式大全一数在数学中,直线和圆是基本的几何图形,它们在解决几何问题和实际应用中起着重要的作用。

本文将介绍直线和圆的方程公式,帮助读者更好地理解和应用它们。

一、直线的方程公式直线是由无数个连续的点组成的,它具有方程的形式。

常见的直线方程有点斜式、一般式和截距式。

点斜式方程如果已知直线上的一点P(x₁, y₁)和直线的斜率k,那么可以使用点斜式方程来表示直线。

点斜式方程的一般形式为:(y - y₁) = k(x - x₁)其中,(x, y)是直线上的任意一点。

一般式方程一般式方程是直线的标准形式,它的一般形式为:Ax + By + C = 0其中,A、B和C为常数,A和B不能同时为零。

斜截式方程斜截式方程也是直线的常用表示形式,它表示为:y = mx + b其中,m为直线的斜率,b为直线与y轴的截距。

二、圆的方程公式圆是由平面上的一组点构成的,这些点到圆心的距离都相等。

圆可以用方程来表示,常见的圆方程有标准方程和一般方程。

标准方程圆的标准方程形式为:(x - h)² + (y - k)² = r²其中,(h, k)为圆心的坐标,r为半径的长度。

一般方程圆的一般方程是以一般标准形式来表示,它可以表达为:x² + y² + Dx + Ey + F = 0其中,D、E和F为常数。

三、应用举例直线和圆的方程公式在几何问题和实际应用中都有广泛的应用。

以下是一些具体的示例:1.直线的方程可以用于求解两直线之间的夹角。

2.圆的方程可以用于计算圆的面积和周长。

3.圆与直线的方程公式可以用于求解直线与圆的交点。

这些应用仅仅是直线和圆方程公式广泛应用的一小部分示例,它们在几何学、物理学、工程学等领域都起着重要作用。

总结直线和圆是几何学中最基本的图形,它们的方程公式对于解决几何问题和实际应用都非常重要。

本文介绍了直线的点斜式、一般式和斜截式方程,以及圆的标准方程和一般方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、直线方程.
1. 直线的倾斜角
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
3. ⑴两条直线平行:
1
l 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l . ⑵两条直线垂直:
两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l
4. 直线的交角:
5. 过两直线⎩⎨⎧=++=++0:0:222
21111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内)
6. 点到直线的距离:
⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A C
By Ax d +++=.
注:
1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)
()(||y y x x P P -+-=. 2. 定比分点坐标分式。

若点P(x,y)分有向线段1212
PP PP PP λλ=所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λ
λλλ++=++=
1,121
21y y y x x x 特例,中点坐标公式;重要结论,三角形重心坐标公式。

3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k
4. 过两点1212222111),(),,(x x y y k y x P y x P --=
的直线的斜率公式:. 12()x x ≠ 当2121,y y x x ≠=(即直线和x 轴垂直)时,直线的倾斜角α=︒90,没有斜率
⑵两条平行线间的距离公式:设两条平行直线)(0:,0:212211C C C By Ax l C By Ax l ≠=++=++,它们之间的距离为d ,则有222
1B A C C d +-=.
注;直线系方程
1. 与直线:A x +B y +C= 0平行的直线系方程是:A x +B y +m =0.( m ∊R, C ≠m ).
2. 与直线:A x +B y +C= 0垂直的直线系方程是:B x -A y +m =0.( m ∊R)
3. 过定点(x 1,y 1)的直线系方程是: A(x -x 1)+B(y -y 1)=0 (A,B 不全为0)
4. 过直线l 1、l 2交点的直线系方程:(A 1x +B 1y +C 1)+λ( A 2x +B 2y +C 2)=0 (λ∊R ) 注:该直线系不含l 2.
7. 关于点对称和关于某直线对称:
⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.
⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.
若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线. ⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.
二、圆的方程.
2. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.
3. 圆的一般方程:022=++++F Ey Dx y x .
当0422 F E D -+时,方程表示一个圆,其中圆心⎪⎭⎫ ⎝⎛--2,2E D C ,半径2
422F E D r -+=. 当0422=-+F E D 时,方程表示一个点⎪⎭⎫ ⎝⎛--2,2
E D . 当0422
F E D -+时,方程无图形(称虚圆).
注:①圆的参数方程:⎩
⎨⎧+=+=θθsin cos r b y r a x (θ为参数). ②方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+.
③圆的直径或方程:已知0))(())((),(),(21212211=--+--⇒y y y y x x x x y x B y x A (用向量可征).
4. 点和圆的位置关系:给定点),(00y x M 及圆222)()(:r b y a x C =-+-.
①M 在圆C 内22020)()(r b y a x -+-⇔
②M 在圆C 上22020)()r b y a x =-+-⇔
( ③M 在圆C 外22020)()(r b y a x -+-⇔
5. 直线和圆的位置关系:
设圆圆C :)0()()(222 r r b y a x =-+-; 直线l :)0(022≠+=++B A C By Ax ; 圆心),(b a C 到直线l 的距离22B A C
Bb Aa d +++=.
①r d =时,l 与C 相切;
②r d 时,l 与C 相交;
,有两个交点,则其公共弦方程为0)()()(212121=-+-+-F F y E E x D D . ③r d 时,l 与C 相离.
5. 圆的切线方程:
①一般方程若点(x 0 ,y 0)在圆上,则(x – a)(x 0 – a)+(y – b)(y 0 – b)=R 2. 特别地,过圆222r y x =+上
C
一点),(00y x P 的切线方程为200r y y x x =+.
②若点(x 0 ,y 0)不在圆上,圆心为(a,b)则⎪⎩
⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y ,联立求出⇒k 切线方程. 7. 求切点弦方程:方法是构造图,则切点弦方程即转化为公共弦方程. 如图:ABCD 四类共圆. 已知O Θ的方程022=++++F Ey Dx y x …① 又以ABCD 为圆为方程为2))(())((k b x y y a x x x A A =--+--…②
4)()(2
22b y a x R A A -+-=…③,所以BC 的方程即③代②,①②相切即为所求.
解题方法:1)直接法:建系设点,列式表标,简化检验; 2)参数法; 3)定义法, 4)待定系数法.。

相关文档
最新文档