现代测试技术及应用
测试技术应用的生活实例

测试技术应用的生活实例引言在现代社会中,测试技术被广泛应用于各个领域,如软件开发、产品设计、医疗检测等。
本文将介绍一些测试技术在生活中的实际应用例子,旨在展示测试技术的重要性和广泛应用。
汽车碰撞测试汽车碰撞测试是一项常见而重要的测试技术,旨在评估汽车在不同碰撞情况下的安全性能。
在这项测试中,专业的测试人员将模拟真实的碰撞情况,通过测量和分析车辆的变形情况、安全气囊的部署效果等,来评估汽车在不同碰撞情况下的表现。
通过这些测试可以改进汽车的设计,提高车辆的安全性,从而保障乘客的生命安全。
药品安全性测试药品安全性测试是保证药物质量和使用安全的关键环节。
在这项测试中,药物在动物或人体上进行临床试验,通过观察和测量药物对人体的反应,评估药物的疗效和副作用。
通过药品安全性测试,可以筛选出对人体有益、没有明显副作用的药物,确保患者获得安全有效的治疗。
食品质量检测食品质量检测是确保食品安全和卫生的重要手段。
这项测试通常包括对食品中的营养成分、添加剂、重金属、农药残留等进行检测。
通过严格的质量检测,可以保证食品的质量,避免因食品安全问题引发的健康问题,保障人们的身体健康。
空气质量监测空气质量监测是评估环境空气是否安全、卫生的重要手段。
通过监测空气中的颗粒物、有毒气体、臭氧含量等指标,可以评估空气污染程度,提醒人们采取相应的防护措施。
通过空气质量监测,可以保障人们呼吸到的空气安全无害,预防空气污染对健康的危害。
环境声音测试环境声音测试是评估噪音污染程度的一种测试技术。
通过对环境中噪声的测量和分析,可以评估噪音对人体的影响程度,并采取相应的噪音控制措施。
通过环境声音测试,可以创造安静、舒适的生活环境,保障人们的身心健康。
结论测试技术在生活中的应用范围广泛,对保障人们的生命安全和身体健康起着重要的作用。
无论是汽车碰撞测试、药品安全性测试,还是食品质量检测、空气质量监测,这些测试都是为了确保人们的生活环境和产品质量安全。
现代工程测试技术

现代工程测试技术现代工程测试技术是一种应用于工程领域的测试方法和技术。
它的目的是通过科学的测试手段,对工程项目进行全面、准确、可靠的测试和评估,以确保工程项目的质量和安全性。
现代工程测试技术包括多个方面,如材料测试、结构测试、可靠性测试等。
下面将对这些方面进行详细的介绍。
1. 材料测试:材料测试是工程测试的基础,它主要针对工程中使用的各种材料进行测试和评估。
常见的材料测试包括强度测试、硬度测试、耐腐蚀性测试等。
通过这些测试,可以评估材料的性能和可靠性,从而选择合适的材料用于工程项目。
2. 结构测试:结构测试是对工程结构的稳定性和安全性进行评估的一种测试方法。
常见的结构测试包括静力测试、动力测试、振动测试等。
通过这些测试,可以评估结构的承载能力、抗震性能、疲劳寿命等,从而确保工程结构的安全可靠。
3. 可靠性测试:可靠性测试是对工程设备或者系统的可靠性进行评估的一种测试方法。
通过对设备或者系统进行长期的运行测试,可以评估其故障率、寿命等指标,从而预测设备或者系统的可靠性。
可靠性测试可以匡助工程师选择可靠性较高的设备或者系统,提高工程项目的可靠性。
4. 数据分析:现代工程测试技术还包括对测试数据的分析和处理。
通过对测试数据进行统计分析、图象处理等,可以得到对工程项目故意义的信息。
数据分析可以匡助工程师了解工程项目的性能、问题和改进方向,从而优化工程设计和施工过程。
5. 检测仪器和设备:现代工程测试技术离不开先进的检测仪器和设备。
常见的检测仪器包括应变计、测力计、振动传感器等。
这些仪器可以对工程项目进行实时监测和数据采集,为工程测试提供可靠的数据支持。
总之,现代工程测试技术是一种重要的工程技术手段,它通过科学的测试方法和技术,对工程项目进行全面、准确、可靠的测试和评估。
这些测试可以匡助工程师了解工程项目的性能和可靠性,从而优化工程设计和施工过程,确保工程项目的质量和安全性。
(完整版)现代测试技术及应用

现代测试技术及应用作业学号2013010106姓名刘浩峰专业核技术及应用提交作业时间2014 12 10无损检测中的CT重建技术1无损检测1.1无损检测概述无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。
中国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。
此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。
无损检测缩写是NDT(或NDE,non-destructive examination),也叫无损探伤,是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。
利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术和设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查和测试。
无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有射线检验(RT)、超声检测(UT)、磁粉检测(MT)、液体渗透检测(PT)、涡流检测(ECT)、声发射(AE)和超声波衍射时差法(TOFD)。
1、射线照相法(RT)是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。
工作原理是射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。
现代工程测试技术

现代工程测试技术现代工程测试技术是一种应用于工程领域的测试方法和技术,旨在确保工程项目的质量和安全性。
本文将详细介绍现代工程测试技术的定义、重要性、常用方法和应用案例。
一、定义现代工程测试技术是指利用科学的方法和工具对工程项目进行全面、系统的测试和评估,以验证工程设计的可行性、功能的完整性和性能的稳定性,并提出改进建议,确保工程项目的质量和安全性。
二、重要性现代工程测试技术在工程项目中起着至关重要的作用。
它能够帮助工程师评估和验证设计方案的可行性,确保工程项目的质量和安全性。
同时,通过测试技术,可以发现和解决工程项目中的问题,提高工程项目的效率和可靠性。
三、常用方法1. 静态测试方法:静态测试方法是通过对工程项目的文档、代码和设计进行分析和评估,发现潜在的问题和错误。
常用的静态测试方法包括代码审查、文档审查和设计评审等。
2. 动态测试方法:动态测试方法是通过对工程项目进行实际运行和操作,检查和验证其功能和性能。
常用的动态测试方法包括单元测试、集成测试、系统测试和性能测试等。
3. 非功能性测试方法:非功能性测试方法是对工程项目的非功能性需求进行验证和评估,如安全性、可靠性、可维护性和可用性等。
常用的非功能性测试方法包括安全测试、压力测试和易用性测试等。
四、应用案例1. 建筑工程测试技术:在建筑工程项目中,通过对建筑材料的物理性能、结构的稳定性和施工过程的监控,确保建筑工程的质量和安全性。
2. 桥梁工程测试技术:在桥梁工程项目中,通过对桥梁结构的负荷测试、振动测试和材料测试,验证桥梁的结构稳定性和承载能力。
3. 铁路工程测试技术:在铁路工程项目中,通过对轨道的几何参数、信号系统和列车运行的监测,确保铁路工程的安全性和运行效率。
4. 汽车工程测试技术:在汽车工程项目中,通过对汽车的性能、安全性和排放的测试,确保汽车的质量和符合相关标准。
5. 航空工程测试技术:在航空工程项目中,通过对飞机的结构、发动机和航电系统的测试,验证飞机的安全性和性能。
现代工程测试技术

现代工程测试技术一、引言现代工程测试技术是指在工程项目中应用各种测试方法和技术手段,对工程结构、材料、设备等进行全面、科学的检测和评估。
通过工程测试,可以确保工程项目的安全性、可靠性和质量,提高工程项目的运行效率和经济效益。
本文将详细介绍现代工程测试技术的应用领域、测试方法和技术手段,并结合实际案例进行说明。
二、应用领域1. 建造工程测试建造工程测试是指对建造结构的力学性能、抗震性能、耐久性等进行测试和评估。
常用的测试方法包括结构静力试验、振动测试、声学测试等。
通过建造工程测试,可以及时发现和解决结构问题,确保建造物的安全性和稳定性。
2. 桥梁工程测试桥梁工程测试是指对桥梁结构的承载能力、振动特性、结构健康状况等进行测试和评估。
常用的测试方法包括静载试验、动力响应试验、结构监测等。
通过桥梁工程测试,可以及时掌握桥梁的结构状态,预防和修复结构问题,确保桥梁的安全运行。
3. 地基与基础工程测试地基与基础工程测试是指对土壤和地基基础的力学性能、承载能力、稳定性等进行测试和评估。
常用的测试方法包括土壤采样与试验、地基沉降观测、地基动力特性测试等。
通过地基与基础工程测试,可以评估地基的适宜性,指导地基处理和基础设计,确保工程的稳定性和安全性。
4. 材料工程测试材料工程测试是指对工程材料的物理性能、力学性能、耐久性等进行测试和评估。
常用的测试方法包括材料力学性能试验、材料耐久性试验、材料成份分析等。
通过材料工程测试,可以确保工程材料的质量和可靠性,提高工程项目的耐久性和使用寿命。
三、测试方法1. 试验室测试试验室测试是指将工程样品带回实验室进行测试和分析。
常用的试验设备包括万能试验机、动态力学测试仪、电子显微镜等。
通过试验室测试,可以获得材料的力学性能、物理性能等参数,为工程设计和质量控制提供依据。
2. 现场测试现场测试是指在工程项目现场进行测试和监测。
常用的现场测试设备包括振动传感器、测距仪、应力计等。
通过现场测试,可以实时监测工程结构的运行状态,及时发现和解决问题,确保工程项目的安全性和可靠性。
检测技术及应用的例子

检测技术及应用的例子现代科技的快速发展,使得检测技术在很多领域都得到了广泛的应用。
下面我将就检测技术的概念、分类以及一些具体的应用领域做一些介绍。
一、概念与分类:检测技术是指对某一特定物质、事物或现象进行识别、量化或评估的方法、手段和工具的总称。
根据检测目标的不同,检测技术可以分为:1. 物质检测技术:主要用于对物质的成分、结构、性质以及所包含的有害成分等进行分析和鉴定。
如化学分析、光谱分析、电化学分析、气相色谱-质谱联用分析等。
2. 生命体检测技术:用于对生物体的生理指标、生化指标、形态结构等进行检测和评估。
如生物分子检测、细胞检测、细菌检测、基因检测等。
3. 环境与资源检测技术:主要用于对环境和资源的质量、污染程度、可持续利用等进行检测。
如土壤检测、水质检测、大气污染检测、噪声检测等。
4. 工程与材料检测技术:用于对工程和材料的性能、强度、疲劳损伤等进行评估。
如无损检测技术、材料化学分析、力学性能测试等。
二、应用领域举例:1. 食品安全检测:随着人们对食品质量和安全的要求越来越高,食品安全检测成为了一个热门的应用领域。
常用的食品安全检测技术包括:快速检测光谱技术、基因检测技术、微生物检测技术等。
2. 医学诊断检测:医学检测技术在临床诊断中起着至关重要的作用。
例如,血液、尿液和组织的化学分析、生物分子的检测、生物成像技术等在癌症、心血管疾病、遗传疾病的早期诊断和治疗中发挥了重要作用。
3. 环境保护与监测:随着环境污染问题的日益严重,环境保护与监测变得非常重要。
常用的环境检测技术包括:水质检测技术、大气污染检测技术、土壤检测技术等,可以帮助我们了解环境质量并采取相应的保护措施。
4. 新能源开发与利用:为了减少对传统能源的依赖,人们开始研究新能源技术,并通过检测技术对其进行评估和优化。
例如,太阳能电池板的效率检测、风力发电机组的性能监测等。
5. 药物研发与安全性评估:药物的研发和安全性评估需要依赖严格的检测技术。
材料现代分析与测试技术-各种原理及应用

材料现代分析与测试技术-各种原理及应用XRD :1.X 射线产生机理:(1)连续X 射线的产生:任何高速运动的带电粒子突然减速时,都会产生电磁辐射。
①在X 射线管中,从阴极发出的带负电荷的电子在高电压的作用下以极大的速度向阳极运动,当撞到阳极突然减速,其大部分动能变为热能都损耗掉了,而一部分动能以电磁辐射—X 射线的形式放射出来。
②由于撞到阳极上的电子极多,碰撞的时间、次数及其他条件各不相同,导致产生的X 射线具有不同波长,即构成连续X 射线谱。
(2)特征X 射线:根本原因是原子内层电子的跃迁。
①阴极发出的热电子在高电压作用下高速撞击阳极;②若管电压超过某一临界值V k ,电子的动能(eV k )就大到足以将阳极物质原子中的K 层电子撞击出来,于是在K 层形成一个空位,这一过程称为激发。
V k 称为K 系激发电压。
③按照能量最低原理,电子具有尽量往低能级跑的趋势。
当K 层出现空位后,L 、M 、N……外层电子就会跃入此空位,同时将它们多余的能量以X 射线光子的形式释放出来。
④K 系:L, M, N, ...─→K ,产生K α、K β、K r ... 标识X 射线L 系:M, N, O,...─→L ,产生L α、L β... 标识X 射线特征X 射线谱M 系: N, O, ....─→M ,产生M α... 标识X 射线特征谱Moseley 定律2)(1αλ-?=Z Z:原子序数,、α:常数2.X 射线与物质相互作用的三个效应(1)光电效应?当X 射线的波长足够短时,X 射线光子的能量就足够大,以至能把原子中处于某一能级上的电子打出来,?X 射线光子本身被汲取,它的能量传给该电子,使之成为具有一定能量的光电子,并使原子处于高能的激发态。
(2)荧光效应①外层电子填补空位将多余能量ΔE 辐射次级特征X 射线,由X 射线激发出的X 射线称为荧光X 射线。
②衍射工作中,荧光X 射线增加衍射花样背影,是有害因素③荧光X 射线的波长只取决于物质中原子的种类(由Moseley 定律决定),利用荧光X 射线的波长和强度,可确定物质元素的组分及含量,这是X 射线荧光分析的基本原理。
现代检测技术应用实训报告

现代检测技术应用实训报告一、引言现代检测技术的应用范围广泛,涵盖了工业、医疗、环保、食品安全等多个领域。
本文将重点介绍在实训过程中所涉及的几种现代检测技术及其应用。
二、无损检测技术无损检测技术是一种非破坏性的检测方法,可以对材料、构件或产品进行内部缺陷的检测,如裂纹、气泡、夹杂等。
常用的无损检测技术包括超声波检测、X射线检测、磁粉检测和涡流检测等。
1. 超声波检测超声波检测利用声波在材料中传播的特性来检测材料内部的缺陷。
通过发送超声波脉冲,然后接收反射回来的信号,可以确定材料中存在的缺陷位置、大小和形状。
超声波检测广泛应用于工业制造中的焊接、铸造和铆接等工艺。
2. X射线检测X射线检测利用X射线的穿透性来检测材料内部的缺陷。
通过照射被检测物体,利用X射线透射的不同程度来确定材料中的缺陷。
X 射线检测常用于金属材料的缺陷检测,如焊缝、铸件和管道的质量检测。
3. 磁粉检测磁粉检测是利用材料表面的磁场分布来检测材料表面和近表面的缺陷。
通过在被检测材料表面涂覆磁粉,当材料表面有缺陷时,磁粉会在缺陷处发生聚集,形成可见的磁粉线。
磁粉检测广泛应用于金属材料的裂纹检测。
4. 涡流检测涡流检测是利用交流电磁感应原理来检测材料表面和近表面的缺陷。
通过将交流电流通过线圈,产生交变磁场,当被检测材料表面有缺陷时,会产生涡流。
通过检测涡流的变化,可以确定材料表面的缺陷。
三、光学检测技术光学检测技术是利用光的传播和反射特性来检测材料的表面缺陷和形貌。
常用的光学检测技术包括显微镜检测、激光扫描检测和红外热像检测等。
1. 显微镜检测显微镜检测利用显微镜的放大功能来观察材料表面的细微缺陷。
通过放大镜头和照明系统,可以清晰地观察到材料表面的微观缺陷,如划痕、裂纹和颗粒等。
显微镜检测广泛应用于材料科学、生物学和电子工程等领域。
2. 激光扫描检测激光扫描检测利用激光束的扫描功能来检测材料表面的缺陷。
通过激光束的扫描,可以获取材料表面的三维形貌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代测试技术及应用集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-现代测试技术及应用作业学号姓名刘浩峰专业核技术及应用提交作业时间 2014 12 10无损检测中的CT重建技术1无损检测1.1无损检测概述无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。
中国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。
此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。
无损检测缩写是(或NDE,non-destructive examination),也叫,是在不损害或不影响被检测对象使用性能的前提下,采用、、、等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。
利用材料内部结构异常或存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术和设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查和测试。
无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有(RT)、(UT)、(MT)、液体渗透检测(PT)、涡流检测(ECT)、声发射(AE)和超声波衍射时差法(TOFD)。
1、射线照相法(RT)是指用或γ射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。
工作原理是射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r 射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。
RT的定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。
2、超声波检测(UT)原理是通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。
适用于金属、非金属和复合材料等多种试件的无损检测;可对较大厚度范围内的试件内部缺陷进行检测。
如对,可检测厚度为1~2mm的薄壁管材和板材,也可检测长的钢锻件;而且缺陷定位较准确,对面积型缺陷的检出率较高;灵敏度高,可检测试件内部尺寸很小的缺陷;并且检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。
缺点是对具有复杂形状或不规则外形的试件进行超声检测有困难;并且缺陷的位置、取向和形状以及材质和晶粒度都对检测结果有一定影响,检测结果也无直接见证记录。
3、磁粉检测(MT)原理是铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。
磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹)目视难以看出的不连续性;也可对原材料、半成品、成品工件和在役的零部件检测,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测,可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。
磁粉检测不能检测材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。
对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20°的分层和折叠难以发现。
4、渗透检测(PT)工作原理是零件表面涂上含有荧光染料或着色染料的渗透剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经去除零件表面多余的渗透液后,再在零件表面涂上显像剂,同样,在毛细管的作用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光源下(紫外线光或白光),缺陷处的渗透液痕迹被现实,(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。
渗透检测可检测各种材料,金属、非金属材料;磁性、非磁性材料;焊接、锻造、轧制等加工方式;具有较高的灵敏度(可发现0.1μm宽缺陷),同时显示直观、操作方便、检测费用低。
但它只能检出表面开口的缺陷,不适于检查多孔性疏松材料制成的工件和表面粗糙的工件;只能检出缺陷的表面分布,难以确定缺陷的实际深度,因而很难对缺陷做出定量评价,检出结果受到操作者的影响较大。
5、涡流检测(ECT)原理是将通有交流电的线圈置于待测的金属板上或套在待测的金属管外。
这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感应交变电流,称为涡流。
涡流的分布和大小,除与线圈的形状和尺寸、交流电流的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈的距离以及表面有无裂纹缺陷等。
因而,在保持其他因素相对不变的条件下,用探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化,进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或缺陷存在等信息。
但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能反映试件表面或近表面处的情况。
涡流检测时线圈不需与被测物直接接触,可进行高速检测,易于实现自动化,但不适用于形状复杂的零件,而且只能检测导电材料的表面和近表面缺陷,检测结果也易于受到材料本身及其他因素的干扰。
6、声发射(AE)通过接收和分析材料的声发射信号来评定材料性能或结构完整性的无损检测方法。
材料中因裂缝扩展、塑性变形或相变等引起应变能快速释放而产生的应力波现象称为。
这是一种新增的无损检测方法,通过材料内部的裂纹扩张等发出的声音进行检测。
主要用于检测在用设备、器件的缺陷即缺陷发展情况,以判断其良好性。
7、超声波衍射时差法(TOFD)技术于20世纪70年代由英国哈威尔的国家无损检测中心Silk博士首先提出,其原理源于silk博士对裂纹尖端衍射信号的研究。
在同一时期我国中科院也检测出了裂纹尖端衍射信号,发展出一套裂纹测高的工艺方法,但并未发展出现在通行的TOFD检测技术。
TOFD技术首先是一种检测方法,但能满足这种检测方法要求的仪器却迟迟未能问世。
详细情况在下一部分内容进行讲解。
TOFD要求探头接收微弱的衍射波时达到足够的信噪比,仪器可全程记录A扫波形、形成D扫描图谱,并且可用解三角形的方法将A扫时间值换算成深度值。
而同一时期工业探伤的技术水平没能达到可满足这些技术要求的水平。
直到20实际90年代,计算机技术的发展使得数字化超声探伤仪发展成熟后,研制便携、成本可接受的TOFD检测仪才成为可能。
但即便如此,TOFD仪器与普通A超仪器之间还是存在很大技术差别。
是一种依靠从待检试件内部结构(主要是指缺陷)的“端角”和“端点”处得到的衍射能量来检测缺陷的方法,用于缺陷的检测、定量和定位。
1.2无损检测特点及发展方向无损检测有以下特点。
第一是具有非破坏性,因为它在做检测时不会损害被检测对象的使用性能;第二具有全面性,由于检测是非破坏性,因此必要时可对被检测对象进行100%的全面检测,这是破坏性检测办不到的;第三具有全程性,破坏性检测一般只适用于对原材料进行检测,如机械工程中普遍采用的拉伸、压缩、弯曲等,破坏性检验都是针对制造用原材料进行的,对于产成品和在用品,除非不准备让其继续服役,否则是不能进行破坏性检测的,而无损检测因不损坏被检测对象的使用性能。
所以,它不仅可对制造用原材料,各中间工艺环节、直至最终产成品进行全程检测,也可对服役中的设备进行检测。
常见无损检查目视检测范围:1、焊缝表面缺陷检查。
检查焊缝表面裂纹、未焊透及漏焊等焊接质量。
2、状态检查。
检查表面裂纹、起皮、拉线、划痕、凹坑、凸起、斑点、腐蚀等缺陷。
3、内腔检查。
当某些产品(如蜗轮泵、发动机等)工作后,按技术要求规定的项目进行内窥检测。
4、装配检查。
当有要求和需要时,使用同三维工业视频内窥镜对装配质量进行检查;装配或某一工序完成后,检查各零部组件装配位置是否符合图样或技术条件的要求;是否存在装配缺陷。
5、多余物检查。
检查产品内腔残余内屑,外来物等多余物。
随着科技进步,一些看上去非常传统的无损检测方法,也已经发展出了许多新技术,譬如:射线检测——传统技术是:胶片射线照相(X 射线和伽马射线)。
新技术有:加速器高能X射线照相、数字射线成像(DR)、计算机射线照相(CR,类似于数码照相)、计算机层析成像(CT)、射线衍射等等。
2.CT重建技术电子计算机断层扫描即CT(Computed Tomography),是利用精确准直的X线束、γ射线、超声波等,与灵敏度极高的探测器一同围绕被测物体的某一部位作一个接一个的断面扫描,具有扫描时间快,图像清晰等特点,根据所采用的射线不同可分为:CT(X-CT)、超声CT(UCT)以及CT(γ-CT)等。
2.1CT重建技术的发展历史CT重建理论起源于1917年奥地利数学家J.Radon的研究论证结果,他在论文中给出 Radon变换和Radon反变换公式,指出二维、三维物体的图像能够通过无限多个射线投影确定,这一理论奠定了CT成像的数学理论基础[1],但是限于当时的技术条件而未能实现。
1956 年美国科学家将这一重建原理应用在了射线天文学,重建出太阳微波发射的图像[2]。
1963年、1964年美国塔夫茨大学教授在《应用物理杂志》上发表题为“用线积分表示函数的方法及其在放射学上的应用”的系列论文,提出用数学手段进行图像重建的方法,并应用到一台简易模拟装置上。
1971年,在英国EMI公司工程师G.Houndsfield的带领下,第一台真正的医用CT机EMI Markerl在Atkinson Morley医院诞生,并开始了医学临床应用,虽然它的第一次诊断耗时15个小时,但最终成功地为一名妇女诊断出了脑部囊肿,这台 CT 的成像矩阵为 80×80,分辨率为 3mm/pixel[3]。
Houndsfield 和Cormack这两位没有医学和生物学背景的科学家因为这项重大发明而获得了诺贝尔生理学和医学奖。
CT从此开始进入历史舞台,大大丰富了对于人体内部器官进行无损检测的方法和手段,为疾病的早期正确诊断提供了科学而准确的依据。
相比于X光摄影术,计算机断层成像技术具有对软组织分辨能力高、投影剂量小、动态范围大、无损检测和存储方便等优势。
因为CT的投影数据100%只依赖于成像断面内物体的密度,不涉及其它截面,这样以来有效地排除了无关截面对成像断面图像的干扰,彻底解决了影像重叠问题,计算机数字化处理得出各种物质的CT数(Houndsfield数):CT数=μμ−μμμμ×1000μμ是物质的衰减系数,μμ是水的衰减系数。