初升高衔接数学测试题

合集下载

优选初升高数学衔接测试卷试题学生版本.docx

优选初升高数学衔接测试卷试题学生版本.docx

初升高数学衔接班测试题(满分: 100 分,时间: 120 分钟)姓名成绩一.选择题(每小题 3 分)1.若2 x25x 2 0 ,则4x 24x 1 2 x 2 等于()A. 4x 5B. 3C. 3D. 5 4x2. 已知关于x不等式2x2+bx-c>0 的解集为x | x1或x3},则关于 x 的不等式bx2cx40 的解集为()A. x | x2或 x1}B. x | x 1或 x 2}22C. { x |1x 2}D. x | 2 x1}223. 化简12的结果为()2131A 、32B、32C、2 2 3D、3224. 若0<a<1,则不等式(x-a)( x-1 )<0的解为()aA.x | a x1;B.x |1x a;a aC.x | x a或 x 1; D. a5. 方程 x2-4│x│+3=0 的解是( )x | x1或 x aa=±1或 x=±3 =1和x=3=-1或x=-3 D.无实数根6.已知(a b)27 , ( a b) 23,则 a 2b2与ab的值分别是()A. 4,1B.2, 3C.5,1D.10, 2327.已知y 2x2的图像时抛物线,若抛物线不动,把X轴,Y轴分别向上,向右平移 2 个单位,那么在新坐标系下抛物线的解析式是()A. y2(x 2) 22B.y 2( x 2) 22C. y2(x 2) 22D.y 2( x 2) 228. 已知2 x23x 0 ,则函数 f ( x ) x 2x 1 ()A. 有最小值3,但无最大值; B.有最小值3,有最44大值 1;C. 有最小值1,有最大值19; D.无最小值,也无最4大值 .9.设、是方程值为()4x24 2 0 (x)的两实根,则22的最小mx m RA.17B. 1C. 2D.1516216 10. 若关于 x 的二次方程 2(k+1)x2+4kx+3k-2=0 的两根同号,则实数 k 的取值范围为()A.( 2,1)B.C. ( , 1) (2, ) D.3[ 2, 1) (2,1]3( 2, 1) (2,1)311. 当 1 x 1 时,函数y2x22ax 1 2a 有最小值是3,则 a 的值2为()A. 1B. 3C. 1或3D.78 12.已知函数 y=ax2+bx+c(a≠0)的图象经过点(-1,3)和(1,1)两点, 若 0<c<1, 则 a 的取值范围是 ( )A.(1,3)B.(1,2)C.[2,3)D.[1,3]13. 若关于X 的不等式x 4 3 x a 为空集,则 a 的取值范围是()<11 C. 0<a<1 D.0a1二、填空题(每小题 3 分)14. 已知a b c 4 , ab bc ac 4 ,则a2b2c2_____________.15. 不等式 | x2+2x| <3 的解为 _________ ___.16. 计算:13213191=____________.1451117. 已知关于x的方程x2ax (a3)0 有两个根,且一个根比 3 小,另一个根比 3 大,则实数a的取值范围是_______ _____.三计算题(第( 1)问 4 分,其余每小题 5 分)(1)(3)四.解答题(每小题 5 分)18. 设函数y x2 2 x 2 1, x R .(1)作出函数的图象 ;(2)求函数y的最小值及y取最小值时的x值.19.已知关于 x 的方程x2-2(k-1)x+k2=0有两个实数根 x1,x2 .(I)求 k 的取值范围;(II)若x1x2x1x2 1 ,求k的值.20.已知 a 为实数。

初升高衔接数学测试(附解答)

初升高衔接数学测试(附解答)

初升高衔接数学测试(附解答)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初升高衔接数学测试(总分100分,时间90分钟)一、选择题(每题3分,共30分)1.一元二次方程x 2+x-2=0的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根(C )只有一个实数根 (D )没有实数根2.已知0≠xyz ,则z z y y x x ++的值不可能为( ) (A) 1 (B) 0 (C )3 (D) —13.若关于x 的多项式x 2-px -6含有因式x -3,则实数p 的值为( ).A .-5B .5C .-1D .14.均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),则这个容器的形状为( ).5.不等式025423≤-+-x x x 的解集是( )A. 2≤xB.2≥xC.21≤≤xD.1≥x6.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上的一动点,将ΔAMN 沿MN 所在直线翻折得到ΔA ’MN ,则A ’C 长度的最小值是( )A. 7B.17-C. 2D. 73-7.已知某三角形的三边长分别为6,8,6,则该三角形的内接圆半径为( )A.6B.55 C.5 D. 554 8.如图7所示,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP ′B=135°,P ′A :P ′C=1:3,则P ′A :PB=:[ ]。

A .1:21/2;B .1:2;C .31/2:2;D .1:31/2。

9.如果关于x 的不等式组:⎩⎨⎧≤-≥-0203b x a x ,的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对[a ,b]共有( )个。

A.8B.7C.6D.510.设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为( ).A. 7B.8C.9D.6二、填空题(每题4分,共20分)图7F E O DB A DC 第12题11.若,x y为实数,且20x +=,则2010()x y +的值为___________.12.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为2cm ,∠A =120°,则EF = cm .13.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为_______.14.已知关于x 的分式方程111=--++x k x k x 的解为负数,则k 的取值范围是 。

初中升高中衔接试卷数学

初中升高中衔接试卷数学

一、选择题(每题5分,共50分)1. 若函数f(x) = x^2 - 2x + 1,则f(x)的图像是()A. 顶点为(1, 0)的抛物线B. 顶点为(0, 1)的抛物线C. 顶点为(2, 1)的抛物线D. 顶点为(1, 2)的抛物线2. 若方程x^2 - 3x + 2 = 0的解为x1和x2,则x1 + x2的值为()A. 1B. 2C. 3D. 43. 已知等差数列{an}的前三项分别为a1,a2,a3,且a1 + a3 = 8,a2 = 4,则该等差数列的公差d为()A. 2B. 3C. 4D. 54. 若a,b是方程x^2 - 3x + 2 = 0的两个根,则a^2 + b^2的值为()A. 4B. 5C. 6D. 75. 若等比数列{an}的前三项分别为a1,a2,a3,且a1 = 2,a2 = 4,则该等比数列的公比q为()B. 2C. 3D. 46. 若函数f(x) = |x - 1| + |x + 2|,则f(x)的图像是()A. 一个开口向右的抛物线B. 一个开口向左的抛物线C. 一个开口向上的抛物线D. 一条折线7. 若函数f(x) = 2x + 3,g(x) = 4 - x,则f(g(x))的值为()A. 2x + 5B. 4x + 5C. 2x - 5D. 4x - 58. 若方程x^2 - 4x + 3 = 0的解为x1和x2,则x1 x2的值为()A. 1B. 2C. 3D. 49. 已知等差数列{an}的前三项分别为a1,a2,a3,且a1 = 5,a2 = 8,则该等差数列的公差d为()A. 3B. 4C. 510. 若函数f(x) = 3x - 2,g(x) = 2x + 1,则f(g(x))的值为()A. 3x - 1B. 3x + 1C. 2x - 1D. 2x + 1二、填空题(每题5分,共25分)11. 若方程x^2 - 2x - 3 = 0的解为x1和x2,则x1 + x2的值为______。

初升高数学衔接测试题(学生版)

初升高数学衔接测试题(学生版)

初升高数学衔接班测试题(满分:100分,时间:120分钟)姓名成绩一.选择题(每小题3分)1.若02522<+-x x ,则221442-++-x x x 等于()2.已知关于x 不等式2x 2+bx -c >0的解集为{}31|>-<x x x 或,则关于x 的不等式042≥++cx bx 的解集为()3.化简132121++-的结果为()A 、23+B 、23-C 、322+D 、223+4.若0<a <1,则不等式(x -a )(x -)1a<0的解为() A.1|x a x a ⎧⎫<<⎨⎬⎩⎭;B.1|x x a a ⎧⎫<<⎨⎬⎩⎭; C.1|x x a x a ⎧⎫<>⎨⎬⎩⎭或;D.1|x x x a a ⎧⎫<>⎨⎬⎩⎭或 5.方程x 2-4│x│+3=0的解是()A.x=±1或x=±3B.x=1和x=3C.x=-1或x=-3D.无实数根6.已知7)(2=+b a ,3)(2=-b a ,则22b a +与ab 的值分别是()A.4,1B.2,23C.5,1D.10,237.已知22x y =的图像时抛物线,若抛物线不动,把X 轴,Y 轴分别向上,向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.2)2(22+-=x yB.2)2(22-+=x yC.2)2(22--=x yD.2)2(22++=x y 8.已知0322≤-x x ,则函数1)(2++=x x x f ()A.有最小值43,但无最大值;B.有最小值43,有最大值1; C.有最小值1,有最大值419;D.无最小值,也无最大值. 9.设βα、是方程)( 02442R x m mx x ∈=++-的两实根,则22βα+的最小值为().A 1617.B 21.C 2.D 1615 10.若关于x 的二次方程2(k+1)x 2+4kx+3k-2=0的两根同号,则实数k 的取值范围为() A.)1,2(- B.]1,32()1,2[ -- C.),32()1,(+∞--∞ D.)1,32()1,2( -- 11.当11≤≤-x 时,函数a ax x y 21222-+-=有最小值是23-,则a 的值为().A 1.B 3.C 1或3.D 8712.已知函数y=ax 2+bx +c (a ≠0)的图象经过点(-1,3)和(1,1)两点,若0<c <1,则a 的取值范围是()A .(1,3)B .(1,2)C .[2,3)D .[1,3]13.若关于X 的不等式a x x <-+-34为空集,则a 的取值范围是()A.a<1B.a 1≤C.0<a<1D.≤0a 1≤ 二、填空题(每小题3分)14.已知4a b c ++=,4ab bc ac ++=,则222a b c ++_____________.15.不等式|x 2+2x |<3的解为____________.16.计算:1111132435911++++⨯⨯⨯⨯=____________. 17.已知关于x 的方程2(3)0x ax a -++=有两个根,且一个根比3-小,另一个根比3-大,则实数a 的取值范围是____________. 三计算题(第(1)问4分,其余每小题5分)5分) 设函数R x x x y ∈+-+=,1222. (1)作出函数的图象;(2)求函数y 的最小值及y 取最小值时的x 值.19.已知关于x 的方程x 2-2(k -1)x+k 2=0有两个实数根x 1,x 2. (I)求k 的取值范围;(II)若12121x x x x +=-,求k 的值. 20.已知a 为实数。

初升高数学衔接试卷及答案

初升高数学衔接试卷及答案

初升高数学衔接试卷及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(无限循环)B. πC. √2D. 1/32. 一个圆的半径为5,那么它的直径是多少?A. 10B. 15C. 20D. 253. 如果一个二次方程 \( ax^2 + bx + c = 0 \) 有两个相等的实根,那么 \( b^2 - 4ac \) 等于多少?A. 0B. 1C. -1D. 44. 函数 \( y = 3x + 2 \) 的斜率是多少?A. 2B. 3C. 5D. 45. 以下哪个表达式是正确的因式分解?A. \( x^2 - 1 = x + 1 \)B. \( x^2 - 1 = x - 1 \)C. \( x^2 - 1 = (x + 1)(x - 1) \)D. \( x^2 - 1 = (x - 1)^2 \)6. 一个三角形的三边长分别是3,4,5,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形7. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -28. 如果一个函数 \( f(x) \) 是奇函数,那么 \( f(-x) \) 等于:A. \( f(x) \)B. \( -f(x) \)C. \( x \cdot f(x) \)D. \( x^2 \cdot f(x) \)9. 以下哪个选项是不等式 \( x^2 - 4x + 3 < 0 \) 的解集?A. \( x < 1 \) 或 \( x > 3 \)B. \( x < 3 \) 或 \( x > 1 \)C. \( 1 < x < 3 \)D. \( x < -3 \) 或 \( x > 1 \)10. 一个数列的前5项为1,3,5,7,9,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 几何数列二、填空题(每题2分,共20分)11. 一个直角三角形的两条直角边长分别是6和8,那么斜边长是________。

初升高衔接数学题加答案

初升高衔接数学题加答案

初升高衔接数学题加答案一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不规则三角形答案:B2. 已知x^2 - 5x + 6 = 0,求x的值。

A. x = 2B. x = 3C. x = -2D. x = -3答案:B3. 一个数列的前三项为1,2,3,若每一项都等于前一项的平方,那么第四项是:A. 4B. 8C. 9D. 16答案:C4. 一个圆的半径为r,圆心到圆上任意一点的距离都等于r,这个圆的面积是:A. πr^2B. 2πrC. r^2D. 2r^2答案:A5. 若函数f(x) = 2x - 3,求f(5)的值。

A. 7B. 4C. 2D. 1答案:A6. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的结果。

A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}答案:B7. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -8答案:A8. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A9. 一个二次方程x^2 + 2x + 1 = 0的解是:A. x = -1B. x = 1C. x = -2D. x = 2答案:A10. 若a和b互为相反数,且a + b = 0,那么a的值是:A. 0B. 1C. -1D. 无法确定答案:D二、填空题(每题2分,共20分)1. 若一个数的立方等于-27,则这个数是______。

答案:-32. 一个数的绝对值是5,则这个数可以是______或______。

答案:5 或 -53. 一个直角三角形的斜边长为5,若一条直角边长为3,则另一条直角边长为______。

答案:44. 若a = 3b,且b ≠ 0,则a和b的比例是______。

初升高衔接数学测试(附解答)

初升高衔接数学测试(附解答)初升高衔接数学测试(附解答)一.填空题。

(每题3分,共30分)1. 已知函数f(x) = x^2 - 4x + 3,则f(1) = ______。

解答:f(1) = 1^2 - 4 × 1 + 3 = 1 - 4 + 3 = 0。

2. 设x = 2,则函数f(x) =x^3 - 3|x|的值为______。

解答:f(2) = 2^3 - 3 × 2 = 8 - 6 = 2。

3. 设一次函数y = kx + 3的图象过点(2, 7),则k的值为______。

解答:代入已知点得7 = k × 2 + 3,整理得k = (7 - 3)/2 = 4/2 = 2。

4. 已知x^2 + k = (x - 2)(x + 3),则k的值为______。

解答:展开右侧得x^2 + k = x^2 + x - 6,比较系数得k = -6。

5. 一个三位数的1/10是5,将这个三位数加上55后得到一个四位数,这个四位数是________。

解答:设三位数为xyz,其中x、y、z表示个位、十位和百位数字。

根据题意得到两个方程:(1)1/10 * 100 * x + 1/10 *10 * y + 1/10 * z = 5;(2)100 * x + 10 * y + z + 55 = 1000 * x+ 100 * y + 10 * z。

计算得x = 4,y = 4,z = 5,所以四位数为4445。

6. 一根绳子长45米,把它剪成3段,第一段比第二段短3米,第二段比第三段短2米,则第一段的长度是________。

解答:设第一段的长度为x,根据题意得到两个方程:(1)x + (x + 3) + (x + 3 + 2) = 45;(2)x + 5 = x + 3。

解得x = 13,所以第一段的长度是13米。

7. 甲、乙两人连续投掷硬币,甲方先开始,投得正面得1分,反面得0分;乙方投得正面得2分,反面得0分。

完整版)初高中数学衔接知识试题

完整版)初高中数学衔接知识试题整式乘法与因式分解训练试题(1)一、填空:1)若x=5,则x=5;若x=-4,则x=-4.2)若(5-x)(x-3)²=(x-3)⁵-x,则x的取值范围是18/19. 3)(2+3)(2-3)=-5;4)若x+ax+b=(x+2)(x-4),则a=-2,b=8.5)计算992+99=1091.二、选择题:1)若x²+mx+k是一个完全平方式,则k等于m²。

(C)2)不论a,b为何实数,a²+b²-2a-4b+8的值可以是零。

3)成立的条件是x≠2.4)若(x+y)/(2x-y)=5/4,则y/x=1/2.5)计算a-(-a)=2a。

6)多项式2x-yx-15y的一个因式为x-3y。

三、解答题1.正数x,y满足x+y=2xy,求(x-y)/(x+y)的值.解:将x+y=2xy变形得到(x+y)/(xy)=2,即1/x+1/y=2. 将(x-y)/(x+y)变形得到(x+y)/(x-y)=1/(1-2xy)。

因此(x-y)/(x+y)=1-2xy=1-(x+y)/(xy)=1-2= -1.所以(x-y)/(x+y)的值为-1.2.分解因式:1)x⁵y²-x²y⁵=(xy²-y⁴)(x⁴+x³y+x²y²+xy³+y⁴)2)x²+5x-24=(x+8)(x-3)3)a²-2a-15=(a-5)(a+3)4)12y²-5y-2=(4y+1)(3y-2)5)3x²-10x+3=(3x-1)(x-3)6)(a²-a)²-14(a²-a)+24=(a-3)(a-4)(a²-a-6)7)x²+2x-1=(x+1)²-28)x⁴+x³-5x²+x-6=(x-1)(x+2)(x²+x-3)9)(a-b)²-4(a-b-1)=(a-b-3)(a-b+1)3.(1)已知3a+3b=-9,求2a+4ab+2b-6的值。

(word完整版)初高中数学衔接练习题

初中升高中衔接练习题(数学)乘法公式1 .填空:(1)1 2 1 2 -a b 1 (—1 -a)();92 3⑵ (4 m)2216m 8m ();(3)(a 2bc)22 a2 2 4b c ().2.选择题:(1)若 2x1 . mx k 曰 是 -个完全平方式,则 k 等于( )2(A ) m 2(B ) 1 2 m (C )1 2 m1(D )m'43 16(2)不论a , b 为何实数, 2a b 2 2a 4b 8的值()(A 总是正数(B )总是负数(C )可以是零 (D )可以是正数也可以是负数A 、 a 10, b 2B 、a 10, b 2C 、a10, b 2D 、a 10 , b 25、 2 若x mx 10 x ax b 其中a 、 b 为整数, 则m 的值为 () A 、 3或9 B 、3 C 、 9 D 、 3或9三、 ‘把下列各式分解因式1、 62p q 2 11 q 2p 3 2 3、a5a 2b6ab 2 3、2y 2 4y 64、b 42b 2 8b ,贝U a 、 b 的值是()、填空题:1、把下列各式分解因 (1)(2) (3) (4) (5)(6) (7) (8) x2x2 x2x x 2 2 x6x 24m 2 5x5x5x 5x a 5 7x 2 11x 18 7x 2 12m 6x 2(10) 12x 2、若 x 2 ax 二、选择题: 1、在多项式6y 2__________x 2 x 4 则 a A.只有(1) 分解因式112、 Axy b(每小题四个答案中只有一个是正确的) QQ Q(1) x 7x 6 ( 2) x 4x 3 (3) x(5) x 2 (2) B.只有(3)( 4) C.只有(3)2a a 37 x 6 ( 2) x 215x 44中,有相同因式的是 (5) 26x 8 ( 4) x 7x 10 )D. (1)和(2);( 3)和(4);( 3 )和(5) 8ab B33b 2 得( a 11b a) 3b11b a 3b 11b a 3b因式分解 2提取公因式法一、填空题:1、多项式6x2y 2xy2 4xyz中各项的公因式是________________________3、a b2 8a b2分解因式得()A 、a b10 a b2B 、a b 5 a b4C 、a b 2 a b10D 、a b 4 a b54、若多项式x2 3x a可分解为x2m X y n y Xx y ?o222 .3m X y n X X y ? o4、 m X y z n y z X x y z ?o5、 m X y z X y z X y z ?o6、 13a b 2 63 2 x 39a b X 5分解因式得o7•计算 99299 =、判断题:(正确的打上“/ ,错误的打上“x”)1、 2a 2b 4ab 2 2ab a b ............................................................................................ (2、 am bm m m a b ................................................................................................ (3、 3x 3 6x 2 15x3xx 2 2x 5 ......................................................................... (n n 1n 14、 X X X X 1 .......................................................................................................... (公式法三、把下列各式分解 1 、 9 m 2 n m 2 n 2、3x 2 - 33、4x 2 4x 224、x 4 2x 2 1分组分解法用分组分解法分解多项式( 1)2X 2 ya 2b 2 2ax 2 by(2)2a 4ab 4b 2 6a 12b 9关于x 的一次三项式ax2+bx+c(a 工0)的因式分 解.1 •选择题:多项式 2x xy 15y 的一个因式〔为()2.分解因式:(1)X 2+ 6x + 8; (2) 8a 3- b 3; (3) x 2— 2x — 1; (4) 4(x y 1) y(y 2x). 根的判别式1.选择题:(1)方程x 2 2・.3kx 3k 20的根的情况是()(A )有一个实数根 (B )有两个不相等的实数根 (C )有两个相等的实数根(D 没有实数根(2)若关于x 的方程mX + (2讨1)x + m= 0有两个不相等的实数根,则实数m 的取值范围1111是()(A ) m<( B ) m>—(C ) m<—,且m^ 0(D m> ------- ,且 m^ 04 44421 12 .填空:(1)若方程x — 3x — 1 = 0的两根分别是 X 1和X 2,则一 一= _________________) ) ) )4 22222 小‘1X 0.01 X 0.X 0.1 x 0.1 .......................... (93332、 9a 2 8b 2 3a 2 4b 2 3a 4b 3a 4b .............................. ...... (3、 25a 216b 5a 4b 5a 4b... (2 2 2 24、 X y X yx y X y •-..... ( 5、a 2bc 2 a b c a b c….... () ) ) ) )(A ) 2x 5y (B ) x 3y (C ) x 3y (D ) x 5y、填空题:a 2 2ab b 2,a 2 b 2,a 3 b 3的公因式是 ________________________________________ 、判断题:(正确的打上,错误的打上“x” ) 22(2)方程mx+ x —2m= 0 (m# 0)的根的情况是______________________ .(3)_________________________________________________________ 以一3和1为根的一元二次方程是 _________________________________________________ .3.已知、a28a 16 |b 1| 0,当k取何值时,方程kx2+ ax+ b= 0有两个不相等的实数根?4 .已知方程x2—3x— 1 = 0的两根为x i和X2,求(x i —3)( x 2—3)的值.习题2.1A 组1.选择题:(1 )已知关于x的方程x2+ kx — 2 = 0的一个根是1,则它的另一个根是()(A)— 3 (B) 3 ( C)— 2 ( D) 2(2)下列四个说法:①方程x2+ 2x —7 = 0的两根之和为一2,两根之积为一7;②方程x2—2x + 7 = 0的两根之和为一2,两根之积为7;27③方程3 x2—7= 0的两根之和为0,两根之积为-;3④方程3 x2+ 2x= 0的两根之和为一2,两根之积为0.其中正确说法的个数是( ) (A) 1个(B) 2个(C) 3个(D) 4个(3)关于x的一元二次方程ax2—5x+ a2+ a= 0的一个根是0,贝U a的值是( )(A) 0 (B) 1 (C)— 1 (D) 0,或—12. 填空:(1)方程kx2+ 4x—1 = 0的两根之和为一2,贝U k = ____________________ .(2)方程2x? —x —4= 0 的两根为a,3,则a 2+3 2= .(3)______________________________________________________________________ 已知关于x 的方程x2—ax —3a= 0的一个根是一2,则它的另一个根是__________________________ .(4)_____________________________________________________ 方程2x2+ 2x —1 = 0 的两根为X1 和X2,则| x 1 —X2I = ______________________________________ .3. 试判定当m取何值时,关于x的一元二次方程n i x2—(2耐1) x +1 = 0有两个不相等的实数根?有两个相等的实数根?没有实数根?4 .求一个一元二次方程,使它的两根分别是方程x2—7x— 1 = 0各根的相反数.B组1.选择题:若关于x的方程x2+ ( k2—1) x + k+ 1 = 0的两根互为相反数,则k的值为().(A) 1,或—1 ( B) 1 ( C)— 1 ( D) 02. _________________________________________________________________________________ 填空:(1 )若m n是方程x2+ 2005x —1= 0的两个实数根,则mn+ min —mn的值等于___________(2)如果a,b是方程x2+ x —1 = 0的两个实数根,那么代数式a3+ a2b+ ab2是_________ .3. 已知关于x的方程x2—kx —2= 0.(1)求证:方程有两个不相等的实数根;2)设方程的两根为X1和X2,如果2(x1 + X2) >X1X2,求实数k的取值范围.4 .一元二次方程ax + bx+ c = 0 ( a# 0)的两根为X1和X2.求:(1) | x 1 —X2| 禾口——X2; (2) X13+ X23.25.关于x的方程x2+ 4x+ m= 0的两根为X1, X2满足| X1 —X2| = 2,求实数m的值.C组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x2—8x + 7= 0的两根,则这个直角三角形的斜边长等于( )(A) 3 (B) 3 (C) 6 (D) 9(2)若X1, X2是方程2x2—4x+ 1 = 0的两个根,则 $ 翌的值为( )1 1(A)a + B》(B)a + ^W —2 2 (4) 已知a, b, c是厶ABC勺三边长,那么方程(A没有实数根(C)有两个相等的实数根(C)a+B》1(D)a + 3< 12 CCX + (a+ b)x+ = 0的根的情况是()4(B)有两个不相等的实数根D)有两个异号实数根3(A) 6 ( B) 4 (C) 3 ( D)2(3 )如果关于X的方程X2—2(1 —R)X+ m= 0有两实数根a, 则a+3的取值范围为2 .填空:若方程 x - 8x + vm= 0 的两根为 x i , X 2,且 3x i + 2X 2= 18,贝U m= ______ .3.已知x i , X 2是关于x 的一元二次方程 4kx 2— 4kx + k + 1 = 0的两个实数根.(1 )是否存在实3数k ,使(2x i — X 2)( x 1 — 2 x 2)=- 一成立?若存在,求出 k 的值;若不存在,说明理由;22.填空题1)二次函数y = 2x 2— mx+ n 图象的顶点坐标为(1 , — 2),则m = _____ , n = ____________ .(2) ___________________________________________ 已知二次函数 y = x 2+(m — 2)x — 2m ,当m = ______________________________________________ 时,函数图象的顶点在 y 轴上;当m= _____ 时,函数图象的顶点在 x 轴上;当m = 一 时,函数图象经过原点.(3) _________________________________________ 函数y =— 3(x + 2)2+ 5的图象的开口向 ,对称轴为 ___________________________________________ ,顶点坐标为 ____________ ;当 x = _____________ 时,函数取最 _________ 值 y = _______ ;当 x 时,y 随着x 的增大而减小.3. 求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及 y 随x 的变化情况,2 2并画出其图象.(1) y = x — 2x — 3; (2) y = 1+ 6 x — x .4. 已知函数y = — x 2— 2x + 3,当自变量x 在下列取值范围内时,分别求函数的最大值 或最小值,并求当函数取最大(小)值时所对应的自变量x 的值:(1) x <— 2 ; (2) x w 2; (3)— 2< x < 1 ; (4) 0< x < 3.二次函数的三种表示方式1 .选择题:1)函数y = — x 2 + x — 1图象与x 轴的交点个数是()A 0个 (B ) 1个 (C ) 2个(D )无法确定1 2 一(2)函数y =—( x + 1) + 2的顶点坐标是()(A (1 , 2)( B ) (1 , — 2) (C ) ( — 1, 2) ( D ) ( — 1,— 2)2.填空: (1)已知二次函数的图象经过与 x 轴交于点(一1, 0)和(2 , 0),则该二次函数的解析式可设为 y = a ________ ( _______ a M 0).(2) ___________________________________________________________________ 二次函数y =— x 2+2 . 3x + 1的函数图象与x 轴两交点之间的距离为 _____________________________ .⑵ 求使 乞 — 2的值为整数的实数X 2 X 1k 的整数值;(3)若k =— 2,x 1—,试求的值.X 22d 0 .4(1) 求证:无论 m 取什么实数时,这个方程总有两个相异实数根; 2)若这个方程的两个实数根 X 1, X 2满足以2|=|刘| + 2,求 若关于x 的方程x 2+ x + a = 0的一个大于1、零一根小于2 . .4.5.2已知关于X 的方程x (m 2)x 1, m 的值及相应的X 1, X 2. 求实数a 的取值范围.二次函数y = ax + bx + c 的图象和性质 1•选择题:(1)下列函数图象中,顶点不在坐标轴上的是(2(A ) y = 2X( B ) 2(C ) y = 2x — 1( D )22(2) 函数 y = 2(x — 1) + 2 是将函数 y = 2x ( )2个单位得到的 1个单位得到的 1个单位得到的 (A (B ) (C (D 向左平移 向右平移 向下平移 向上平移 1个单位、 2个单位、2个单位、2个单位、再向上平移 再向上平移 再向右平移 再向右平移 )2y = 2x — 4x + 2y = 2x 2— 4x二次函数的简单应用选择题:(1)把函数y=—(x—1)2+ 4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为( )2 2 2 2(A) y = ( x + 1) + 1 ( B) y=—(x + 1) + 1 (C) y=—(x —3) + 4 ( D) y =—(x—3) + 1。

初中升高中衔接数学试卷

1. 若实数a,b满足a+b=2,ab=1,则a²+b²的值为:A. 3B. 2C. 4D. 52. 下列各式中,正确的是:A. sin²45°+cos²45°=2B. sin²30°+cos²30°=1C. tan60°=√3D. cot60°=√33. 已知等腰三角形ABC中,AB=AC,∠BAC=40°,则∠B的度数为:A. 40°B. 50°C. 60°D. 70°4. 下列函数中,在定义域内单调递增的是:A. y=x²B. y=2xC. y=2-xD. y=√x5. 若方程2x²-5x+3=0的两根为x₁和x₂,则x₁+x₂的值为:A. 5B. 3C. 2D. 1二、填空题(每题5分,共25分)6. 在直角坐标系中,点A(2,3)关于y轴的对称点为______。

7. 已知等边三角形ABC的边长为a,则其面积S为______。

8. 函数y=3x-2的图象经过点______。

9. 若∠A=30°,∠B=60°,则∠C=______。

10. 若二次方程x²-4x+3=0的两根为x₁和x₂,则x₁·x₂的值为______。

11. (本题共15分)已知等腰三角形ABC中,AB=AC,∠BAC=50°,求∠B和∠C 的度数。

12. (本题共15分)已知函数y=2x+1,求函数的图象与x轴、y轴的交点坐标。

13. (本题共15分)若方程2x²-3x-2=0的两根为x₁和x₂,求x₁²+x₂²的值。

四、应用题(每题15分,共30分)14. (本题共15分)某工厂生产一批产品,前5天每天生产40件,后5天每天生产50件。

求这10天内平均每天生产多少件产品?15. (本题共15分)一辆汽车从甲地出发,以60千米/小时的速度匀速行驶,行驶了3小时后到达乙地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初升高衔接数学测试题work Information Technology Company.2020YEAR
衔接班数学练习题
一.选择题(每小题5分)
1.若02522<+-x x ,则221442-++-x x x 等于( )
.A 54-x .B 3- .C 3 .D x 45-
2.已知关于x 不等式2x 2+bx -c >0的解集为{}31|>-<x x x 或,则关于x 的不等式
042≥++cx bx 的解集为 ( )
.A }212|⎩⎨⎧≥-≤x x x 或.B }221|⎩
⎨⎧≥-≤x x x 或.C }221|{≤≤-x x .D }212|⎩⎨⎧≤≤-x x 3.若0<a <1,则不等式(x -a )(x -)1a <0的解为( ) (A) 1|x a x a ⎧⎫<<⎨⎬⎩⎭; (B) 1|x x a a ⎧⎫<<⎨⎬⎩⎭
; (C) 1|x x a x a ⎧⎫<>⎨⎬⎩
⎭或; (D) 1|x x x a a ⎧⎫<>⎨⎬⎩⎭或 4、方程x 2-4│x│+3=0的解是 ( )
A.x=±1或x=±3
B.x=1和x=3
C.x=-1或x=-3
D.无实数根
5.已知7)(2=+b a ,3)(2=-b a ,则22b a +与ab 的值分别是( ) A. 4,1 B. 2,23 C.5,1 D. 10,2
3 6.已知22x y =的图像时抛物线,若抛物线不动,把X 轴,Y 轴分别向上,向右平移2个单位,那么在新坐标系下抛物线的解析式是( )
A.2)2(22+-=x y
B.2)2(22-+=x y
C.2)2(22--=x y
D.2)2(22++=x y
7.已知0322≤-x x ,则函数1)(2++=x x x f ------------------------( )
(A) 有最小值43,但无最大值; (B)有最小值4
3,有最大值1; (C) 有最小值1,有最大值4
19; (D)无最小值,也无最大值. 8.设βα、是方程)( 02442
R x m mx x ∈=++-的两实根,则22βα+的最小值为
( )
.A 16
17 .B 21 .C 2 .D 1615 9.若关于x 的二次方程2(k+1)x 2+4kx+3k -2=0的两根同号,则实数k 的取值范围为------( )
(A ))1,2(- (B )]1,3
2()1,2[ -- (C )),32()1,(+∞--∞ (D ))1,3
2()1,2( -- 10.当11≤≤-x 时,函数a ax x y 21222-+-=有最小值是23-,则a 的值为( )
.A 1 .B 3 .C 1或3 .D 8
7 11. 已知函数y=ax 2+bx +c (a ≠0)的图象经过点(-1,3)和(1,1)两点,若0<c <1,则a 的取值范围是( )
A .(1,3)
B .(1,2)
C .[2,3)
D .[1,3]
12.若关于X 的不等式a x x <-+-34为空集,则a 的取值范围是 ( )
A.a<1
B.a 1≤
C. 0<a<1
D. ≤0a 1≤
二、填空题(每小题5分)
13.已知4a b c ++=,4ab bc ac ++=,则222a b c ++_____________.
14.不等式|x 2+2x |<3的解为_________ ___.
15.计算:1111132435911
++++⨯⨯⨯⨯=____________. 16. 已知关于x 的方程2(3)0x ax a -++=有两个根,且一个根比3-小,另一个根比3-大,则实数a 的取值范围是_______ _____.
三.解答题
17.设函数R x x x y ∈+-+=,1222.
(1)作出函数的图象;
(2)求函数y 的最小值及y 取最小值时的x 值.
18.已知关于x 的方程x 2-2(k -1)x+k 2=0有两个实数根x 1,x 2.
(I)求k 的取值范围;
(II)若12121x x x x +=-,求k 的值.
19.已知a 为实数。

(1)解不等式:()22321220x a a x a a -++++<;
(2)若(1)中的不等式的解包含所有2到5的实数(包括端点),求a 的取值范围。

20.关于x 的方程22x -3x+2m=0的两根都在[-1,1]上,求实数m 的取值范围.
21.设二次函数
a ax x x f -++-=12)(2在区间]1,0[上的最大值为2,求实数a 的值。

22.已知当m ∈R 时,函数
y =m (x 2-1)+x -a 的图象和x 轴恒有公共点,求
实数a 的取值范围.。

相关文档
最新文档