比的认识 知识点
小学数学比的知识点

小学数学比的知识点比是数学中常见的一种关系表达方式,它在小学数学中起到了重要的作用。
了解比的概念以及相关的知识点,对于学生在数学学习中的理解和运用都具有重要的帮助。
本文将介绍小学数学比的知识点,以帮助学生更好地掌握和应用。
一、比的概念比是指两个或多个数或量之间的大小关系。
在比中,我们需要比较的数或量称为比较对象,比的结果称为比值。
比值可用两个冒号(:)或一个分数线(/)表示。
二、比的常见形式1. 同类比较:比较的对象属于同一类别,如“小明身高是小红身高的2倍”中,身高是同一类别的对象。
2. 异类比较:比较的对象属于不同的类别,如“小明跑100米用时小红的两倍”中,身高和用时属于不同的类别。
三、比的基本性质1. 等比关系:如果两个比的比值相等,那么我们称这两个比是等比的。
例如,如果有两个比A:B和C:D,且A/B = C/D,则称A:B和C:D 是等比的。
2. 放大和缩小:在比中,将比较对象的数量增加或减少,这样会改变比较对象的大小关系。
比如,将一个比A:B的比值扩大两倍,变为2A:2B,这样A和B的大小关系没有改变,但比的大小关系变了。
3. 倒数关系:如果两个比的比值互为倒数,那么我们称这两个比是倒数比。
例如,如果有两个比A:B和B:A,且A/B * B/A = 1,则称A:B和B:A是倒数比。
四、比的运算1. 比的相等:如果两个比的比值相等,那么这两个比是相等的。
例如,如果A:B = C:D,并且已知A=6,B=3,求C的值,那么可以通过求等值比解得C的值。
2. 比的加减:将两个比进行加减运算时,只需要将两个比较对象的数量进行相应的加减操作即可。
例如,将一个比A:B和另一个比C:D 相加,可以得到(A+C):(B+D)。
3. 比的乘除:将两个比进行乘除运算时,只需要将两个比较对象的数量进行相应的乘除操作即可。
例如,将一个比A:B乘以一个数k,可以得到kA:kB。
五、比与比例比例是由两个或多个比构成的等式,表示比的关系和相等关系。
《比的认识》的知识点总结

《比的认识》的知识点总结关于《比的认识》的知识点总结在我们平凡的学生生涯里,大家对知识点应该都不陌生吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
掌握知识点有助于大家更好的学习。
以下是小编为大家收集的关于《比的认识》的知识点总结,仅供参考,大家一起来看看吧。
《比的认识》的知识点总结1(一)比的基本概念1.两个数相除又叫做两个数的比。
比的前项除以后项所得的商,叫做比值。
2.比值通常用分数、小数和整数表示。
3.比的后项不能为0。
4.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;5.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的`数(0除外),比值不变。
(二)求比值1、求比值:用比的前项除以比的后项(三)化简比1、化简比:用比的前项除以比的后项求出分数的比值后,在把分数比值改成比。
(四)比的应用1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?题目解析:60人就是男女生人数的和。
解题思路:第一步求每份:60÷(5+7)=5人第二步求男女生:男生:5×5=25人女生:5×7=35人。
2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?题目解析:“男生25人”就是其中的一个数量。
解题思路:第一步求每份:25÷5=5人第二步求女生:女生:5×7=35人。
全班:25+35=60人3、比的第三种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?《比的认识》的知识点总结21、比的含义:两个数相除又叫做这两个数的比。
六年级上册数学比的认识的知识点

六年级上册数学比的认识知识点讲解一、比的定义、含义比的定义:两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如:15:10 = 15÷10=1.5比值通常用字母a∶b∶c或a/b/c来表示(b≠0),其中a、b、c是同类项。
其中a叫比的前项,b叫比的后项(不为零),c叫比值。
比的前项除以后项得到比值。
比可以表示两个相同量的关系,即倍数关系。
例:长100m,宽50m的长方形,长与宽的比是2比1,宽与长的比是1比2,长与长的比是1比1,宽与宽的比是1比1。
比也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
区分比和比值:比值是一个数,通常用分数表示,也可以用小数或整数表示。
比是一个式子,表示两个数的倍数关系,又叫比式,比的前项除以后项得到的比值是一个数。
二、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
三、求比值和化简比求比值的方法:用比的前项除以比的后项,它的结果是一个数值可以是整数,也可以是小数或分数。
化简比的方法:根据比的基本性质可以把比化成最简单的整数比。
化成最简单的整数比时,比的各项要用它的公因数去除,直到比的前项和后项互质为止。
四、比例的意义表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
五、比例的性质在比例里,两个内项的积等于两个外项的积。
这叫做比例的基本性质。
六、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。
求比例中的未知项,叫做解比例。
七、比和比例的区别比和比例都是表示两种量相除的关系,是两种相关联的量之间的关系,区别只是在于当两种量的比值一定时,叫做比;而当两种量的比一定,且一种量是另一种量的倍数时,才叫做比例。
比的前项和后项都是特定的数,是互相依存的两个量;比例是一个等式,是表示两个比相等的关系式,由四个数组成,其中前两项叫比例的内项,后两项叫比例的外项。
比的认识知识点总结

比的认识知识点总结
比的认识是指通过比较两个或多个事物的相似性和差异性来获取对它们的理解。
在不同领域和学科中,人们通过比较的方式来发现事物之间的关系、规律和特征。
以下是一些常见的比较认识知识点的总结:
1. 类比比较:通过比较不同事物的相似性来进行类比和推理。
例如,人类学会将未知的事物与已知的事物进行比较,以便快速了解它的性质和功能。
2. 对立比较:通过比较不同事物的差异性来进行对立和辨析。
例如,通过比较两个政治理论的不同之处,可以更好地理解它们的立场和观点。
3. 量化比较:通过比较事物的数量和度量来进行比较。
例如,通过对两个产品的价格、重量和质量进行比较,可以帮助消费者做出更好的选择。
4. 时空比较:通过比较在不同时间和空间条件下的事物来进行研究。
例如,对不同历史时期的社会制度进行比较,可以分析其优劣和影响。
5. 统计比较:通过比较数据和统计信息来进行比较和分析。
例如,通过对两个群体的统计数据进行比较,可以发现它们之间的差异和相关性。
6. 逻辑比较:通过比较事物的逻辑关系和推理来进行比较。
例
如,通过对两个论证的推理过程进行比较,可以判断其合理性和有效性。
总之,比较是一种重要的认识方式,可以帮助人们更好地理解事物、发现规律和做出决策。
通过比较的过程,人们可以从不同角度和层面来认识事物,提高对事物的理解和把握能力。
比和比例基础知识点总结

表示两个比相等的式子叫做比例.组成比例的四个数,叫做比例的项,两端的两项叫做比例的 外项,中间的两项叫做比例的內项.
2.比例的基本性质
在比例中,两个外项的积等于两个內项的积.通过这个性质可进一步得知:1、交换內项或外 项的位置等式仍成立;2、內项变外项、外项变內项等式仍成立 推论 交叉相乘: a : b c : d
三、比例应用题基础—按必分配
【例 7】 某化肥厂甲、乙、丙三个车间共有工人 820 人,如果三个车间人数的比是 8:12:21,问 甲、乙、丙三个车间各有多少人? 【真题】2008 年· 实外· 小升初考试· 6分 【答案】甲车间 160 人,乙车间 240 人,丙车间 420 人 【解析】甲车间有: 820 8 12 21 8 160 人; 乙车间有: 820 8 12 21 12 240 人; 丙车间有: 820 160 240 420 人.
【小结】化简最简比的几个技巧: (1) 小数和分数先化成整数. (2) 整数连比同时除以最大公约数. (3) 只有两项时,可将比看成除法.
3.比在生活中的应用
比在应用题中的体现了各个量的数量关系,例如 3 : 4 3:4 可表示 3 份和 4 份的倍数比例关 系.体会比在生活中的这种应用,对于今后解决分数、比例、百分数应用题打下基础有着重要的意 义。 【例 2】填空: (1) 小明的僵尸卡有 20 张,太阳卡有 10 张;小红的僵尸卡有 12 张,太阳卡有 30 张。那么小明与 小红僵尸卡之比是_______;太阳卡之比是________;总数量之比是_________。 (2) 从 A 地到 B 地,甲要 12 小时,乙要 18 小时,甲、乙两人时间之比是_________。 (3) 从 A 地到 B 地,甲乙所用时间之比是 3:4,甲用了 6 小时,那么乙用_________小时。 (4) 两个正方形边长之比是 1:2,周长之比是__________。 【答案】 (1) 5 : 3 1: 3 5 : 7;(2) 2 : 3 ;(3) 8;(2) 1: 2 【例 3】 (1) 甲数与乙数的比是 2:3,乙数与丙数的比是 4:5,则甲、乙、丙三数的比是______. 1 1 1 1 (2) 甲数与乙数的比是 : ,乙数与丙数的比是 : ,则甲、乙、丙三数的比是______. 3 4 2 4 【答案】(1) 8 :12 :15 ; (2) 8 : 6 : 3 【解析】乙是连接甲和丙的桥梁 (1) 甲:乙 2 : 3 8 :12
比的认识知识点总结

比的认识知识点总结一、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号“:”前面的数叫做比的前项,比号“:”后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
比的后项不能为0,因为比的后项相当于除法中的除数,除数不能为0。
例如15:10=15÷10=32∶∶∶∶前项比号后项比值(比值通常用分数表示,也可以用小数或整数表示)3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
4、求比值的方法:用比的前项除以比的后项。
5、区分比和比值比:表示两个数的倍数关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
6、根据分数与除法的关系,两个数的比也可以写成分数形式。
7、比和除法、分数的联系:联系区别除法被除数除号除数商一种运算分数分子分数线分母分数大小一种数比前项比号后项比值一种关系8、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
9、根据比与除法、分数的关系,可以理解比的后项不能为0。
注:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
二、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4、化简比:①、用比的前项和后项同时除以它们的最大公因数。
②、两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③、两个小数的比:向右移动小数点的位置,先化成整数比再化简。
5、用求比值的方法如:15∶10=15÷10=23=3∶2考点三:比的应用1、按比分配问题的解题方法:把比的各项之和看作平均分的份数,先求出每份是多少,再解答。
人教版数学小学六年级上册 第4单元 比 整理与复习 小学六年级 第四单元《比》知识总结

第四单元《比》知识点归纳与总结一、 比的意义1、两个数相除又叫做两个数的比。
比和除法、分数的联系“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的后项不能是零。
例如21:7 其中21是前项,7是后项。
2、比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
二、比的基本性质1、比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做分数的基本性质。
2、比的前项和后项是互质数的比,叫做最简单的整数比。
把两个数的比化简成最简单的整数比叫做化简比,也叫做比的化简。
(化简后比的前项和后项没有公因数,化简后要检查)3、分数比的化简方法:比的前项和后项同时乘它们分母的最小公倍数,变成整数比,再进行化简:例如:61:92=(61×18):(92×18)=3:4 也可以用:4:34329619261==⨯=÷ 15:8158385183:2.0==⨯= 可以转为除法的运算 4、 求几个数的连比的方法,如:甲∶乙=5∶6,乙∶丙=4∶3,因为[6,4]=12,所以5∶ 6=10∶ 12, 4∶3=12∶9,得到甲∶乙∶丙=10∶12∶9。
5、()15102:34()()24362()+=÷=÷==+三、求比值和化简比的比较1.目的不同。
求比值就是求比的前项除以后项所得的商,而化简比是把两个数的比化成最简单的整数比,2.结果不同。
求比值的结果是一个数,这个数可以是整数,也可以是小数或分数。
而化简比最后的结果仍然是一个比,要写成比的形式3.读法不同。
如6:4求比值是6:4=6÷4=46=23读作二分之三还可写作1.5(结果是一个数)。
化简比是6:4=6÷4=46=23读作三比二还可写作3:2(结果是一个比) 四、比的应用 1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?六年级有60人,男女生的人数比是5:7,男女生各有多少人?题目解析:60人就是男女生人数的和。
比的意义和比的性质

第九讲 比的意义和比的性质一、比的意义知识点归纳1:有关比的概念(1) 两个数a 与b 相除,叫做a 与b 的比,记作ba b a 或: ,其中0≠b ,a 称比的前项,b 称比的后项。
(2) 前项a 除以后项b 所得的商叫做a 与b 的比值,即b a b a =÷ 2:比、分数和除法之间的关系(1) 比是指两个数相除的关系;分数表示一个数 ;除法表示一种运算。
(2) 比的前项相当于分数的分子和除法中的被除数;比的后项相当于分数的分母和除法中的除数;比值相当于分数的分数值和除法中的商。
例题精讲1、汽车3小时行驶135千米,自行车3小时行驶36千米。
(1)求汽车行驶的路程与自行车行驶的路程之比的比值;(2)求自行车行驶的路程与时间的比值;(3)求自行车行驶的时间与路程的比值,它表示什么一种关系。
解:(1)41512453613536:135=== (2)时);(千米小时千米:/12336336=÷=(3)小时。
千米需要千米),表示每行驶(时千米小时:112/121363=说明:(1)表示长度的两个同类量相比,比值没有单位,它是一个比值;(2)表示意义不相同的量的比,它们的比值表示一种新的量,如第(2)小题表示速度。
2、一台机床上有大小两个齿轮,大齿轮10分钟转78圈,小齿轮10分钟转32圈,大齿轮与小齿轮转 的圈数之比是 ;大齿轮转的圈数与时间之比是 ;这个比的意义是 ;小齿轮转的圈数与时间的比是 ;这个比的意义是 。
3、若23:5.3:=b a ,且20=+b a ,则=a ;b = . 4、如果a 个同学在b 小时内共搬运c 块砖,那么c 个同学以同样的速度搬运a 块砖需要 小时。
5、长方形甲与长方形乙的长的比是5 :3 ,宽的比是4 :1,求长方形甲与长方形乙的面积之比。
6、一杯糖水,糖与水的比是52,喝去一半糖水后,又用水加满,这时,杯中糖与水的比值是多少? 7、小华和小强从家去电影院,小华比小强多走51的路,小强花的时间比小华少111,求小华与小强去电影院的速度的比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四单元比的认识
(一)比的基本概念
1.两个数相除又叫做两个数的比。
比的前项除以后项所得的商,叫做比值。
2.比值通常用分数、小数和整数表示。
3.比的后项不能为0。
4.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;5.同分数比较,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
7.分数的基本性质:分数的分子和
分母同时乘或除以相同的数(0除外),分数的大小不变。
8.商不变的基本性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
(二)求比值
1、求比值:用比的前项除以比的后项
(三)化简比
1、化简比:是将不是最简整数比的比化成最简整数比的过程。
(把比化成最简整数比叫做化简比。
)
2.最简整数比指比的前项和后项都
是整数,并且是一对互质数,即比的前项和后项的最大公因数是1。
3. 比值和化简比的比较
它们的主要区别是什么呢?
(1)目的不同。
求比值就是求比的前项除以后项所得的商;而化简比是把两个数的比化成最简单的整数比,也就是化简后的比要符合两个条件,一是比的前、后项都应是整数;二是前、后项的两个数要互质。
(2)结果不同。
求比值的结果是一个数,这个数可以是整数,也可以是小数或分数。
而化简比最后的结果仍然是一个比,要写成比的形式,不能
得整数或小数。
比有两种书写形式如6比4,可写作6:4也写作46读作6比4。
(3)读法不同。
如6:4
求比值是6:4=6÷4=46 = 23 读作二分之三,还可写作1.5(结果是一个数)
化简比是6:4=6÷4= 46= 23 读作三
比二,还可写作3:2(结果是一个比)
(四)比的应用
比的应用主要分为三类:
1、已知部分和,求各部分
2、已知部分差,求各部分
3、已知其中的某一部分,求其它部分
通用的计算方法是:
(1)先求出一份是多少,用已知数量÷数量对应的份数(数量是和的,份数就应该是和,数量是差的,份数就应该是差,数量是哪一部分,份数就应该是哪一部分的份数)
(2)用各部分对应的份数×一份的数量
例题:
(1)比的第一种应用:
已知两个或几个数量的和,和它们的比,求这两个或这几个数量是多少?六年级有60人,男女生的人数比是5:
7,男女生各有多少人?
题目解析:60人就是男女生人数的和。
解题思路:第一步求每份:60÷(5+7)=5(人)
第二步求男女生:男生:5×5=25(人)女生:5×7=35(人)
(2)比的第二种应用:
已知一个数量是多少,和它与其它数量的比,求另外几个数量是多少?
六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少
人?
题目解析:“男生25人”就是其中的一个数量。
解题思路:第一步求每份:25÷5=5(人)
第二步求女生:女生:5×7=35(人)。
全班:25+35=60(人)
(3)比的第三种应用:
已知两个数量的差,和它们的比,求这两个或这几个数量是多少?
六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?
题目解析:“男生比女生多20人”就是男女人数的差
解题思路:第一步求每份:20÷(7-5)=10(人)
第二步求女生:男生:7×10=70(人)女生:5×10=50(人)。
全班:50+70=120(人)
7、比在几何里的运用:
比在几何里的应用,常有四种隐藏条件:
(1)三角形的三个角的度数和是180度
(2)等腰三角形的两个底角相等,两条腰也相等。
(3)长方形的长宽之和是它周长的一半
(4)长方体的长宽高之和是它棱长和的四分之一
(1)已知长方形的周长,长和宽的比是a:b。
求长和宽、面积。
长=周长÷2×b
a +a 宽=周长÷2×b
a +
b 面积=长×宽
(2)已知已知长方体的棱长和,长、宽、高的比是a:b:c。
求长、宽、高、体积
长=棱长和÷4×c a ++b a
宽=棱长和÷4×c b ++b a 高=棱长和÷4×c c ++b a 体积=长×宽×高
表面积=(长×宽+长×高+宽×高)×2
(3)已知三角形三个角的比是a:b:c,求三个内角的度数。
三个角分别为: 180×
cbaa 180×cbab 180×c
bac
(4)已知三角形的周长,三条边的长度比是a:b:c,求三条边的长度。
三条边分别为:周长×
cbaa周长×cbab周长×c
bac
以上几何问题都可以用分数计算方法计算,也可以用求比的应用的通用方法计算。
11。