比的认识知识点及练习
六年级比知识详解及相关例题

专项:一、己知总数和比例1、沙、石共36吨,沙与石的比是1:8,沙、石各是多少吨?巩固提升:建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?例2、甲、乙两数的平均数是56,甲与乙的比是4:3,甲、乙各是多少?巩固提升:甲、乙、丙三个数的平均数是84,甲、乙、丙三个数的比是3:4:5,甲、乙、丙三个数各是多少?例3、一个长方形周长是88cm,长与宽的比是4:7。
长方形的长、宽各是多少厘米?面积是多少?巩固提升:用120厘米的铁丝做一个长方体的框架。
长、宽、高的比是3:2:1。
这个长方体的长、宽、高分别是多少?体积是多少?例4、一批图书有1200本,把其中的31分给低年级,余下的按4:5分给中、高年级,低、中、高年级各几本?巩固提升:希望小学要种524棵树,按照三个班的人数分配给各班。
一班42人,二班45人,三班44人。
三个班各分得多少棵?专项:二、已知相差数和比1、男工与女工的比是4:5,女比男多4人,男、女各多少人?巩固提升:希望小学参加植树活动,把任务按2∶3∶4分配给四、五、六三个年级,已知六年级比四年级多植树84棵,这次任务三个年级共植树多少棵?2、沙和石的比是7:9,沙比石少10吨,沙、石各多少吨?巩固提升:建筑工人用水泥、沙子、石子按3:5:9配制成的混凝土,水泥比石子少18吨,需要水泥、沙子、石子各多少吨?专项:三、已知一个量和比3、男工有40人,男工与女工的比是4:5,女工有多少人?一共有多少人?4、一种什锦糖是由水果糖、奶糖、软糖按5:3:2混合而成的。
(1)如果先称20千克的水果糖,奶糖与软糖各需多少千克?(2)如果先称出15千克的奶糖,水果糖与软糖各需多少综合运用1、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3 :2。
求大、小瓶里各装油多少千克?2、甲、乙、丙三位同学共有图书108本,乙比甲多18本,乙与丙的图书数之比是5 :4,求甲、乙、丙三人各有图书多少本?3、一瓶盐水,盐和水的重量比是1 :24,如果再放入75克水,这时盐与水的重量比是1 :27,原来瓶内盐水重多少千克?4、盒子里有三种颜色的球,黄球个数与红球个数的比是2 :3,红球个数与白球个数的比是4 :5。
六年级上册第四单元《比》基础知识点汇总、参考重点题型与解题思路总结

第四单元《比》基础知识点与解题思路一、比的意义1、比:两个数相除又叫做两个数的比。
2、比的结构:在两个数的比中,比号前面的数叫比的前项,比号后面的数叫比的后项。
比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示最简比:比的前项和后项只有公因数1,这样的比称为最简整数比。
3、比可以表示两个同类数量之间的倍数关系:比如一个长方形长和宽的比是15:10;也可以表示两个不同类数量之间的相除关系,得到一个新的量:比如路程÷时间=速度。
4、求比值:前项除以后项所得的商叫做比值,所以用比的前项除以后项即可求得比值(单位不统一时需要先统一单位再计算)。
比值是一个具体的数,通常用分数表示,也可以用小数或整数表示。
比值是否带单位:同类数量的比仅表示数量之间的倍数关系,其比值不带单位;不同类数量的比,其比值是一个新的数量,通常带一个复合单位(如速度)。
5、比与比值的关系:二者在写法上可能相同(都可以用分数表示),但比表示两个数量之间的相除关系;比值则是一个具体的数字。
6、比、除法与分数之间的联系:a:b=a÷b=b a(b≠0)区别:(1)意义不同:比表示两个数量之间的相除关系;除法是一种运算;分数是一个数;(2)表示方法不同:除法是一种运算,只能用算式表示;比和分数都可以用分数的形式表示,但是分数并不一定表示两个数量的比。
(3)、结果不同:除法的计算结果是一个商,这个商可以是整数、小数或分数;比只有当要求比值的时候,才需要用除法计算,比值可以用整数、小数或分数表示;而分数就是一个数,不需要计算。
7、为什么比的后项不能为0:在除法中,除数不能为0;在分数中,分母不能为0;而比的后项就相当于除法中的除数、分数中的分母,所以比的后项也不能为0。
8、求比中的未知项:在除法中,被除数÷除数=商,这3个数量只要知道其中任意2个量,就能求出另一个量,除数=被除数÷商;被除数=商×除数。
比的认识知识点与习题

比的认识一、比的意义:两个数相除又叫两个数的比比与除法,分数的关系?比前项:(比号)后项比值除法被除数÷(除号)除数商分数分子-(分数线)分母分数值a:b=a÷b=ab(b≠0)比与除法,分数的不同点:比表示两个量或数之间的倍比关系,除法是一种运算,而分数则是一个数,除法是一种运算。
二、比的化简最简整数比:比的前项和后项都是整数,并且比的前项和后项的最大公因数是1.比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。
化简比的方法练习题一.填空题:1. 5÷8=()()=():()=()小数2. 把0.56:0.64化成最简整数比是():(),比值是()。
3. 今天去我们班的学生出勤率是92℅ ,到校的学生与没有到校的学生人数比是():(),没有到校的学生与全班学生比():()。
4. 比的前项扩大10倍,后项缩小40℅,比值()。
5. 在2:5 中,如果前项增加10,要使比值不变,后项应增加().6. 把5克盐溶于45克水中,盐与盐水的比为:():()。
7. 比值为1.5的最简整数比是():() .二.判断题1.比的前项和后项同时乘或除以一个相同的数,比值不变。
()。
2.比的前项和后项可以是自然数、分数、小数.()。
3.化简比就是求比值。
()。
4.比值相当于数值,所以比值就是分数.()。
5.圆的周长与直径的比约是3.14:1.()。
三.择优录用(把正确的答案填要在括号里)1.从北京市区到丰县,甲要行3小时,乙要行2.5小时。
甲乙两人的速度比是()A 3:2.5B 2:3C 5:6D 6:52.一个比的比值是78,前项和后项同时扩大到原来的3倍后,比值是A 218B724C78D873. 甲数比乙数少四分之一,甲、乙两数的最简整数比是()A 、3:4 B、4:3 C、1:4 D、4:14.一个三角形的三个内角度数比是10:4:4,这个三角形是()三角形A.锐角B.直角C.钝角四.化简比,并求比值.3.5:0.9 2.5:10 720:960045分:1.5时 4吨:25千克 2.25:6.25五.走近生活的数学1. 某校一年级的学生人数有810人,比六年级的学生人数少10%人,一、六年级的学生人数比是多少?2.长方形的长是10cm,长方形的宽比长短了10%,长方形的长与宽的比是多少?3.配制一种盐水溶液60千克,含盐量为10%,那么盐与水的比是多少呢?4.一个工厂管理者是工人的5%,这个工厂共有270人,那么管理者与工人的比是多少?5.一个花坛,直径5米,在它周围有一条宽1米的环形鹅卵石小路,小路的面积与花坛的面积比是多少?。
小学6年级比知识点加习题

知识点1 比的概念两个数相除,又叫做这两个数的比,“:”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值。
比的后项不能为0。
比与除法,分数的关系比“:”(比号)前项后项比值分数“-”(分数线)分子分母分数值除法“÷”(除号)被除数除数商知识点2 比的基本性质比的前项和后项同时乘以或者除以相同的数(0除外),它们的比值不变。
知识点3比例的基本性质1.表示两个比相等的式子叫做比例。
2.在一个比例中,两个外项的积等于两个内项的积。
3.组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
如果用字母表示比例的四个项,即 a : b = c : d,那么这个规律可表示成ad = bc 或 bc = ad。
4.根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。
求比例的未知项,叫做解比例例1 (把图形按某个比相应放大或缩小,形状没有改变,只是大小变了)A BC(1)长方形A的长是1.5厘米,宽是1厘米;长方形B的长是3厘米,宽是2厘米。
这两个长方形的长有什么关系?宽呢?(2)如果要把长方形A按 1:2的比缩小,长和宽应是原来的几分之几?各是多少?例2图B是由图A放大后得到的,你能分别写出这两幅图中各自的长与宽的比吗?比较写出的两个比,你有什么发现?B 8厘米A3厘米6厘米4厘米例3 下面哪几组中的两个比能组成比例,把组成的比例写下来。
(1) 5 :6 和15 :18 (2)0.2 :0.1 和 3 :1 (3):和 1.2 :0.8 (4) 6 :2 和:课堂练习题11、一张长方形图片,长12厘米,宽9厘米。
按1 : 3的比缩小后,新图片的长是()厘米,宽是()厘米,这张图片()不变,大小()2、一块正方形的花手帕,边长10厘米,将其按()的比放大后,边长变为30厘米3、按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?6∶10和9∶1520∶5和4∶15∶1和6∶25、在2∶5、12∶0.2、310∶15 三个比中,与5.6∶14 能组成比例的一个比是( )6、在比例里,两个()的积和两个()积相等7、如果A×3=B×5,那么A∶B= () ∶ ( )8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:( ) ∶ ( ) = ( ) ∶ ( )9、根据3×8 =4×6写成的比例是()、()或()10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是()∶()13、解比例ⅹ∶3 =∶=∶=∶x∶ x = 3∶12∶ x = 5%∶0.6=:= x:=x:0.25=4:114、填空题在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是:请你写出一个比例,使它的两个外项互为倒数:一个比例的两个内项互为倒数,一个外项是1/8,另一个外项是:在10:12、:、 0.6:0.4这三个比中,组成比例的有:b、c都是大于零的数,如果4b=7c,那么b:c=一个长4cm,宽2cm的长方形按4∶1放大,得到的图形的面积是:下面两数的比中,能与3:4组成比例的是:A 0.6:0.8B 1/3:1/4C 20:12D 8: 6若a:b=c:d,则下列式子不正确的是:A. ad=bcB. b: a = d: cC. a:d=b:cD. a: c = b:d知识点1 比例的应用把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。
北师大版六年级上册数学比的认识(基础)知识点和练习——带答案

一、比的认识通过分析比较“图片像不像”可知:生活中两个变量之间存在倍比关系。
比的意义:两个数相除,又叫作这两个数的比。
如:364=64=2÷:比后比前号项值项注意:比的前项和后项交换位置后,就变成了另一个比。
比有两种写法::a b 或(0)ab b≠,读作a 比b 。
用比的前项除以后项,所得的商就是这个比的比值。
比和比值的联系与区别:两个同类量进行比较时,它们的比值表示这两个量之间的倍比关系。
两个相关联的不同类量进行比较时,它们的比值表示一个新的量,要加单位名称。
如:路程∶时间=速度 总价∶数量=单价 比与除法、分数之间的关系: 1、比与除法、分数之间的联系: (1)观察比较:223=23=3÷分子:分数线比比被的比除的除分除后前号母号数数项项(2)列表格比较:2、比与除法、分数之间的区别:(1)意义不同:比表示两个相关联的量(或数)的一种关系;除法是一种运算;分数则是一种数。
(2)表示方法不同:比:(0)a b b ≠;除法:(0)a b b ÷≠;分数:(0)ab b≠。
(3)结果表达不同:除法一般要求出商;比只有求比值时,才通过计算求出比值;而分数本身就是一个数值,不需要计算。
练习:一、填空题1.0.6= :5== ÷20= %.2.= ÷ == :24= %= .(小数)3.0.8=20: == %= 折.4.小明看一本漫画书用了1时,小东看一本漫画书用了43分,小明和小东所用时间比是 。
二、选择题1.走同样一段路,甲车用9小时,乙车用3小时,甲、乙两车的速度比是()A.3:1B.1:1C.1:3D.1:22.一杯纯牛奶,小明先喝了后,再加满水又喝了,再加满水,最后全部喝完.小明喝的纯牛奶与水的比是()A.1:1B.3:2C.5:6D.6:53.把5克盐放入50克水中,盐和盐水的比是()A.1:9B.1:11C.1:10D.1:84.A和B两个圆的周长之比是1:2,A和B两个圆的面积之比是()A.8:1B.1:2C.1:4D.2:85.用两根绳子测量同一口井的深度,第一根绳子有露在井口外面,第二根绳子有露在井口外面,那么第一根绳子与第二根绳子的长度比是()A.5:3B.3:5C.5:6D.6:5三、解答题1.一瓶盐水重120克,如果盐有20克,那么盐与水的比是多少?2.张阿姨去菜市场买菜,鱼和猪肉的单价比是4:7,数量比是5:3,鱼和猪肉的总价比是多少?3.小李5分钟做了120道口算题,小王2分钟做了44道口算题.小李和小王每分钟做口算题道数的比是多少?4.白菜和芹菜的单价比是3:7,数量比是5:4,白菜和芹菜的总价比是多少?5.有一杯糖水,糖的质量占糖水质量的18,糖和水的质量比是多少?参考答案与试题解析一、填空题1.0.6=3:5==12÷20=60%.【解答】解:0.6=3:5==12÷20=60%。
比的认识知识点及练习

比的认识知识点及练习比是数学中常见的一个概念,用于对两个或多个事物进行大小、数量的比较。
在实际生活中,比的概念广泛应用于各个领域,比如商品的价格比较、车辆的速度比较、学生的成绩比较等等。
对比的认识及掌握,对我们理解和应用数学知识都有很大的帮助。
本文将介绍比的基本概念、比的表示方法、比的性质以及比的练习题目。
首先,我们来了解比的基本概念。
比的基本思想就是将两个事物进行对比,找出它们之间大小的关系。
比的结果可以是相等、大于或小于。
我们用冒号“:”来表示比,例如用a:b表示a与b之间的比。
如果两个事物相等,比的结果就是1:1;如果a大于b,比的结果就是a:b,其中a大于b;如果a小于b,比的结果就是a:b,其中a小于b。
其次,比的表示方法也有一定的规则。
比的表示方法可以是分数形式,也可以是小数形式。
通常用分数形式表示的比更直观,例如2:3可以表示为2/3。
而用小数形式表示比更便于计算和比较,例如2:3可以表示为0.67。
除此之外,在比的表示中,我们还可以通过相似表示法将若干个比进行组合。
例如,如果有a:b和c:d两个比,我们可以将它们表示为(a:b):(c:d)。
这种相似表示法可以帮助我们更直观地比较复杂的数值关系。
第三,比有一些基本的性质。
比的性质主要包括比的对称性、比的传递性和比的替代性。
比的对称性表示,如果a:b,那么b:a也成立;比的传递性表示,如果a:b,b:c,那么a:c也成立;比的替代性表示,如果a:b,那么若a等于或有一个等于a的数与b成比例,则a与这个数成比例。
这些性质的掌握有助于我们在比较中灵活运用比的知识。
最后,为了更好地掌握比的应用,我们需要进行一些比的练习。
下面是几道比的练习题:1. 一个教室里有24个男生和32个女生,男生人数与女生人数的比是多少?2. 一支队伍有60人,其中男生和女生人数的比是2:3,那么女生的人数是多少?3. 小明家里有橘子和苹果,橘子和苹果的比是3:4,如果小明有21个苹果,他家有多少个水果?通过这些练习题,我们可以巩固对比的概念和原理的理解,提高比的运用能力。
比的认识(知识回顾+能力拔高练) 六年级上册数学单元考点精讲+优选易错题 北师大版(含答案)

【考点精讲+期中期末通用讲义—北师大版】六年级上册数学单元考点精讲+优选易错题(拔高版)一、生活中的比1.生活中两个量之间存在倍比关系。
2.比的意义:两个数相除,又叫作这两个数的比。
3.比的各部分名称:“∶”是比号,读作“比”。
比号前面的数是比的前项,比号后面的数是比的后项。
比的前项除以比的后项,所得的商叫作比值。
4.求比值的方法:用比的前项除以后项得到一个数,这个数就是比值。
比值可以是分数,也可以是小数或整数。
5.比与除法、分数的关系:(1)比的前项相当于被除数、分子,比的后项相当于除数、分母,比值相当于商、分数值,比号相当于除号、分数线。
因为除数和分母不能为0,所以比的后项也不能为0。
(2)用字母表示比与除法、分数三者之间的关系,可以表示为a∶b=a÷b=ab(b≠0)。
06 比的认识6.连比。
三个或三个以上的数的关系也可以用比来表示。
例如:一个长方体的长、宽、高的比是2∶3∶4(读作2比3比4),这样的比称为连比。
7.比在生活中的应用。
(1)两个同类量进行比较时,它们的比值表示这两个数量之间的倍比关系。
(2)两个相关联的非同类量进行比较时,它们的比值表示一个新的量,要加单位名称。
注意:1.比表示两个数之间的倍比关系。
2.比与除法、分数之间可以相互转换,但三者的意义不同。
3.比是有序的,如果颠倒比的顺序,就会得到另一个比,表示的意义也不同。
4.比与除法、分数的区别:比表示一种关系,除法是一种运算,分数是一个数。
易混点:教材中所讲的“比”与体育比赛中的“比”意义不同。
体育比赛中的“比”是记录比赛双方得分的一种形式,它可以记作2∶0,表示一个队得2分,另一个队得0分,而教材中的“比”表示倍比关系。
易错点:因为除数和分母不能为0,所以比的后项也不能为0。
二、比的化简1.最简整数比。
比的前项和比的后项都是整数,并且比的前项和后项的最大公因数是1。
2.把一个比化成最简整数比的过程,叫作化简比。
人教版六年级数学上册第四单元比(知识梳理+课本例题+练习)

比知识梳理一、比的意义两个数相除又叫做两个数的比。
“:”是比号,读作“比”。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的后项不能为0。
比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
例如 15 :10 = 15÷10=23=1.5 比的意义两个同类量的比表示这两个量之间的倍数关系。
两个有联系的非同类量的比表示一个新的量。
例: 路程:速度表示时间。
区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
比和除法、分数的联系:1、比同除法相比较:比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比号相当于除法中的除号,比值相当于除法的商。
2、比同分数相比较:比的前项相当于分数中的分子,比的后项相当于分数中的分母,比号相当于分数中的分数线,比值相当于分数的分数值。
3、用字母表示:a b a =:÷()0≠=b ba b 比和除法、分数的区别1、意义不同:除法是一种运算,分数是一个数,比表示两个量(或数)的倍数关系。
2、表示方法不同:作为一种运算,除法算式不能用分数表示,比可以用分数表示,但分数不一定表示两个量的比。
除法一般要求出商,比只有求比值时才通过计算求出商,而分数本身就是一个数值,无需计算。
比和比值的关系联系:比和比值都可以用分数形式表示。
区别:(1)比表示两个数的倍数关系,比值是一个数。
(2)比只能写成的形式,比值可以是分数,也可以是小数。
注意:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
二、比的基本性质根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比的认识知识点及练习
1、比的意义
两个数相除又叫做两个数的比
2、比与除法、分数的关系
注:比与根据除法、分数的主要区别:比表示两个数的倍数关系,除法是一种运算,而分数是一种数。
3、比的基本性质:比的前项和后项同时乘以或除以一个不为零的数,比值不变,这叫比的基本性质。
如:14:21=(14÷7):(21÷7)=2:3
4、比的化简:比的前项和后项都是整数,并且是互质数,这样的比是最简整数比。
把两个数的比化成最简整数比,称为比的化简。
根据比的基本性质我们可以把一个比化为最简整数比。
5、求比值:根据比值的意义,用前项除以后项,结果可以是整数、小数、分数。
练习:
(1)加工一批零件,单独做,甲要8个小时完成,乙要10个小时完成,甲和乙的工作效率比是( )
(2)把132:5
1化成最简整数比是( ),比值是( ) (3)( )÷35=0.6=( )%=()15=( ):15
(4)甲数是乙数的5倍,甲数与乙数的比是( )
(5)一个比的比值是4
3,它的前项是12,后项是( ) (6)5
3:9的比值是( )。
如果前项加上5.4,要使比值不变后项应加上( ) (7)14
1:2.5的比值是( ),如果后项乘4,要使比值不变,前项应变成( );如果前、后项都除以0.35,比值是( )
(8)A 的32等于B 的4
3,A :B=( ):( ) 除法
被除数 除号 除数 商 分数
分子 分数线 分母 分数值 比 前项 比号 后项 比值。