传输原理(ppt)
合集下载
材料冶金传输原理课件

3
纳米材料制备和应用
我们将介绍一些常用的纳米材料制备和应用技术,例如溶胶-凝胶法、共沉淀法 和溶液法等。
新型传输材料的开发
量子点传输材料
我们将介绍一种新型的传输材 料——量子点,以及它们在半 导体和光学传输中的应用。
石墨烯传输材料
我们将探讨石墨烯这种新型的 传输材料,以及它在电子器件 和能源传输中的应用。
传热基础和传热过程
1
传热的基本概念
我们将了解什么是传热,以及传热过程中的重要参数,例如导热系数和温差。
2
传热方式
我们将讨论材料中传热的三种基本方式:对流、辐射和传导。
3
传热计算方法
我们将介绍不同的传热计算方法,例如法向和径向传热、边界层和相似性理论。
传质基础和传质过程
溶质在溶液中的传输
我们将了解溶质在溶液中传输 的基本过程和影响因素,例如 浓度梯度和扩散系数。
超材料传输材料
我们将了解一种新型的传输材 料——超材料,以及它们在光 学和声学传输中的应用。
材料传输领域的前沿研究
1 生物材料的传输
我们将介绍生物材料中 的传输现象,以及它们 在生物医学和医疗器械 领域中的应用。
2 低维材料的传输
我们将探讨低维材料中 的传输现象,例如纳米 线和量子阱,并讨论它 们在电子器件和能量传 输中的应用。
2 工业革命时期的材
料传输
我们将探讨工业革命时 期的材料传输方式,例 如蒸汽机和轮船。
3 现代科技时代的材
料传输
我们将介绍现代材料传 输方式的演变,例如飞 机和高铁的发展历程。
材料传输技术的未来展望
材料传输技术的革命性突破
我们将展望未来材料传输技术的革命性突破,例如分子传输和纳米制造等。
无线电通信-1.-2-无线电信号传输原理课件

✓检波器 ✓鉴频器 ✓鉴相器
30
1.2.4 无线电信号的接收
u无线电发射机和接收机原理框图
发射机
消息 信号源
放大器
调制器
已调波 放大器
发射 天线
高频 振荡 器
解调器
谐振放大器 或倍频器
中频 放大 器
放大器
混频器
视频显示器 扬声器等等
本地 振荡 器
高频 放大器
接收机
接收 天线
选择 电路
31
1.2.5 信号及其频谱
6
1.2.2 通信系统简介
u2 发送设备
➢两大任务
✓调制: 将基带信号转换成适合信道传输特性 的频带信号; ✓放大: 是指对调制信号和已调信号的电压和 功率放大、滤波等处理过程,以保证送入信 道足够大的已调信号功率。
➢对基带信号进行变换的原因
✓由于要传输的信息种类多样,其对应的基带 信号特性各异,这些基带信号往往并不适合 信道的直接传输。
✓地波 ✓天波
10
1.2.2 通信系统简介
u (2)无线通信信道
➢① 地波
✓地面波: 沿地面传播的无线电波。 适用于长 波和超长波。 ✓空间波: 在发射天线与接收天线间直线传播 的无线电波, 发射天线和接收天线较高,接收 点的电磁波由直接波和地面反射波合成。 适 用于超短波。
➢② 天波
11
1.2.2 通信系统简介
➢相应的波长为:
λ= c/f = 3×108/f = 106~105m
1.2.3 无线电信号的产生和发射
u基带信号
➢无线通信系统中传输的信号可以是声音、 图像、数据等,其波形复杂,有连续信号, 也有离散信号,但都具有一定的频率范围, 这种信号称为基带信号。 ➢基带信号不可能直接发射出去,只有利 用高频信号作为“载波”才能有效地将有 用信号用电磁波的形式发射出去。
30
1.2.4 无线电信号的接收
u无线电发射机和接收机原理框图
发射机
消息 信号源
放大器
调制器
已调波 放大器
发射 天线
高频 振荡 器
解调器
谐振放大器 或倍频器
中频 放大 器
放大器
混频器
视频显示器 扬声器等等
本地 振荡 器
高频 放大器
接收机
接收 天线
选择 电路
31
1.2.5 信号及其频谱
6
1.2.2 通信系统简介
u2 发送设备
➢两大任务
✓调制: 将基带信号转换成适合信道传输特性 的频带信号; ✓放大: 是指对调制信号和已调信号的电压和 功率放大、滤波等处理过程,以保证送入信 道足够大的已调信号功率。
➢对基带信号进行变换的原因
✓由于要传输的信息种类多样,其对应的基带 信号特性各异,这些基带信号往往并不适合 信道的直接传输。
✓地波 ✓天波
10
1.2.2 通信系统简介
u (2)无线通信信道
➢① 地波
✓地面波: 沿地面传播的无线电波。 适用于长 波和超长波。 ✓空间波: 在发射天线与接收天线间直线传播 的无线电波, 发射天线和接收天线较高,接收 点的电磁波由直接波和地面反射波合成。 适 用于超短波。
➢② 天波
11
1.2.2 通信系统简介
➢相应的波长为:
λ= c/f = 3×108/f = 106~105m
1.2.3 无线电信号的产生和发射
u基带信号
➢无线通信系统中传输的信号可以是声音、 图像、数据等,其波形复杂,有连续信号, 也有离散信号,但都具有一定的频率范围, 这种信号称为基带信号。 ➢基带信号不可能直接发射出去,只有利 用高频信号作为“载波”才能有效地将有 用信号用电磁波的形式发射出去。
数字基带传输系统PPT课件(通信原理)

,最高频带利
设系统频带为W (赫), 则该系统无码间 干扰时的最高传输速率为2W (波特)
21
当H(ω)的定义区间超过
时,满足
奈奎斯特第一准则的H(ω)不只有单一的解.
22
将
圆滑处理(滚降),只要
对W1呈奇对称,则 一准则.
满足奈奎斯特第
滚降因数
23
按余弦滚降的 表示为
当α=1时, 带宽比α=0加宽一倍, 此时,频带利用率为1B/Hz 24
译码:V是表示破坏极性交替规律的传号,V是破坏点,译码时,找 到破坏点,断定V及前3个符号必是连0符号,从而恢复4个连0码, 再将-1变成+1,便得到消息代码.
13
5.3 基带脉冲传输与码间干扰
基带系统模型
d(t)
GT(ω)
C(ω) s(t)
发送滤波器 传输信道
发送滤波器输入
r(t)
+ GR(ω)
破坏极性交替
AMI码含有冗余信息,
规律
具有检错能力。
缺点 与信源统计特性有关,功率谱形状 随传号率(出现“1”的概率)而变化。
出现连“0”时,长时间不出现电平 跳变,定时提取困难。
11
归一化功率谱
P=0.5 P=0.4
HDB3 AMI
1
fT
能量集中在频率为1/2码速处,位定时频率(即码速频率)分量 为0,但只要将基带信号经全波整流变为二元归零码,即可得 12 位定时信号.
第k个接收 基本波形
17
码间干扰
随机干扰
5.4 无码间干扰的基带传输特性
基带传输特性
识别
h(t) 为系统
的冲激响应
18
当无码间干扰时, 对h(t)在kTs抽样,有:
传输原理边界层理论PPT

5
时为层流;Rex>3×10
6
<Rex <3×10 6为层流到湍流的过渡区。
第一节 边界层理论的基本概念
(1)层流区: x<xc (xc为对应于Rex=2×105的流进深度。) ( 2 ) 过 渡 区 : 随 着 流 进 深 度 的 增 长 , 当 x>xc , 使 得 Rex>2×105 , 且 Rex<3×106 时。在这一区 域内,边界层的厚度随着流进尺寸的增加 而迅速增加。 (3)湍流区:随着流进尺寸的进一步增加,使得Rex > 3×106,这时边界层内的流动形态已进入湍 流状态,边界层的厚度随流进长度的增加而 迅速增加。
x x 2x 1 p x y x y x y 2
关于y轴方向上的动量传输方程,因为边界层厚度δ 很 小,第三式中的Vy对x和y的各项偏导数与x轴方向上的
动量传输相比均属无穷小量,可略而不计。因而,第三
式可以简化为
p 0 y
p dp x dx
x
y x
y
y
2 y 2 y 1 p 2 y y y 2 x
因为
x x
是一个无穷小量,所以
是一个高价无穷小,可以略去不计。
第二节
平面层流边界层微分方界层理论
意义:粘性流体流动理论应用于实际问题,明确了研究
理想流体流动的实际意义,在流体力学的发展中起了非
常重要的作用。
第一节 边界层的基本概念
一、边界层的定义 边界层:流体在流经固体壁面时,在固体壁面形成速度 梯度较大的流体薄层。 边界层的厚度:流速相当于主流区速度的 99%处,到固 体壁面的距离称为边界层厚度。 二、边界层的形成与特点 为什么会形成边界层?因为流体内部存在粘附力或粘性 力。 我们已经知道:流体流过管道时,其流动形态是通过雷 诺数来判别的。Re=dυρ /η
时为层流;Rex>3×10
6
<Rex <3×10 6为层流到湍流的过渡区。
第一节 边界层理论的基本概念
(1)层流区: x<xc (xc为对应于Rex=2×105的流进深度。) ( 2 ) 过 渡 区 : 随 着 流 进 深 度 的 增 长 , 当 x>xc , 使 得 Rex>2×105 , 且 Rex<3×106 时。在这一区 域内,边界层的厚度随着流进尺寸的增加 而迅速增加。 (3)湍流区:随着流进尺寸的进一步增加,使得Rex > 3×106,这时边界层内的流动形态已进入湍 流状态,边界层的厚度随流进长度的增加而 迅速增加。
x x 2x 1 p x y x y x y 2
关于y轴方向上的动量传输方程,因为边界层厚度δ 很 小,第三式中的Vy对x和y的各项偏导数与x轴方向上的
动量传输相比均属无穷小量,可略而不计。因而,第三
式可以简化为
p 0 y
p dp x dx
x
y x
y
y
2 y 2 y 1 p 2 y y y 2 x
因为
x x
是一个无穷小量,所以
是一个高价无穷小,可以略去不计。
第二节
平面层流边界层微分方界层理论
意义:粘性流体流动理论应用于实际问题,明确了研究
理想流体流动的实际意义,在流体力学的发展中起了非
常重要的作用。
第一节 边界层的基本概念
一、边界层的定义 边界层:流体在流经固体壁面时,在固体壁面形成速度 梯度较大的流体薄层。 边界层的厚度:流速相当于主流区速度的 99%处,到固 体壁面的距离称为边界层厚度。 二、边界层的形成与特点 为什么会形成边界层?因为流体内部存在粘附力或粘性 力。 我们已经知道:流体流过管道时,其流动形态是通过雷 诺数来判别的。Re=dυρ /η
传输线路通用类课件-传输系统基本原理

140M→STM-N 34M→STM-N 2M→STM-N 复用是依复用路线图进行的,ITU-T规定的路线图有多种, 但通常一个国家或地区仅使用一种。
11
G.707新的SDH复用路径图
x1
x1
STM-256 AUG-256
x1 STM-64
x4 AUG-64
x1 STM-16
x1 STM-4
9
帧结构
1 3 RSOH 4 AU-PTR
5
MSOH
9
9× N
9× 270× N字节
STM-N净负荷 (含POH)
261× N
先行后列 以 字 节 为 单 位 (8bit) 的块状帧 帧 频 8000 帧 /s , 帧 周期125us
10
复用步骤
复用步骤(复用方式、复用结构)
低阶SDH→高阶SDH:同步字节间插复用方式 PDH信号→STM-N:同步复用和灵活的映射 主要步骤:映射 ,定位 ,复用
模拟➢信校验号相应bit列(bit块)
➢使相应列1的个数为偶
复用段远端误块指示字节——M1 对告信息,由信宿回传到信源 告知发端:收端当前收到的B2检测的 误 块 数 ; 并 在 发 端 上 报 MS-FEBBE 性 能事件 同时在发端有MS-REI(复用段远端误 块指示)告警事件上报
15
开销
OAM功能强大,不同层次的 通道实现分离监控
只能进行波长级别 监控或者简单的字 节检测
通过光电层开销,可实现对各层级网络的监控; 6级串行连接管理,适用于多设备商/多运营商网络的 监控管理。
电层通道保护、SDH复用段 保护
光层通道保护、线 路侧保护
丰富的光层和电层通道保护、共享保护
可以支持电层智能调度
11
G.707新的SDH复用路径图
x1
x1
STM-256 AUG-256
x1 STM-64
x4 AUG-64
x1 STM-16
x1 STM-4
9
帧结构
1 3 RSOH 4 AU-PTR
5
MSOH
9
9× N
9× 270× N字节
STM-N净负荷 (含POH)
261× N
先行后列 以 字 节 为 单 位 (8bit) 的块状帧 帧 频 8000 帧 /s , 帧 周期125us
10
复用步骤
复用步骤(复用方式、复用结构)
低阶SDH→高阶SDH:同步字节间插复用方式 PDH信号→STM-N:同步复用和灵活的映射 主要步骤:映射 ,定位 ,复用
模拟➢信校验号相应bit列(bit块)
➢使相应列1的个数为偶
复用段远端误块指示字节——M1 对告信息,由信宿回传到信源 告知发端:收端当前收到的B2检测的 误 块 数 ; 并 在 发 端 上 报 MS-FEBBE 性 能事件 同时在发端有MS-REI(复用段远端误 块指示)告警事件上报
15
开销
OAM功能强大,不同层次的 通道实现分离监控
只能进行波长级别 监控或者简单的字 节检测
通过光电层开销,可实现对各层级网络的监控; 6级串行连接管理,适用于多设备商/多运营商网络的 监控管理。
电层通道保护、SDH复用段 保护
光层通道保护、线 路侧保护
丰富的光层和电层通道保护、共享保护
可以支持电层智能调度
传输原理--层流流动及湍流流动 ppt课件

z1
P2
g
v22 2g
z2
h失
2. 局部阻力损失
h失 沿程阻力损失
--通常指在过流截面突变、急弯处、阀口或阀门处产生
的损失。
h失 沿程阻力损失
传输原理
ppt课件
WU11ST
4.1 层流动状态及阻力分类 P1 g
v12 2g
z1
P2
g
v22 2g
z2
hw
五、阻力分类
有两种完全 不同的形式。
传输原理
很慢-- 层流 较大-- 过渡态
ppt课件
大-- 紊流(湍流)
WU2ST
4.1 层流动状态及阻力分类
二、层流动状态
--流体质点在流动方向上分层流动,各层之间互不干扰和 掺混,流线呈平衡状态的流动。
流体速度很慢; 产生条件:
流体的粘性力较大。
传输原理
ppt课件
WU3ST
层流 过渡态 紊流
Recr 2300 Re'cr 13000
从雷诺数的表达式可以看出,增加速度、提高流
体密度、降低流体粘度、增大管子的直径,均可使层
流向紊流转变。
传输原理
ppt课件
WU8ST
4.1 层流动状态及阻力分类
四、雷诺数
非圆截面诺数的计算
D当量
湿周L湿-总流的有效截面积上,液体与固体相接触的截面周长。
流动问题求解方法
控制方程 边值条件 初值条件
解析法:积分变换求精确解 相似法:近似解析求解 数值法:近似数值逼近
传输原理
ppt课件
WU18ST
传输基本原理及概念(ppt)

➢由于采用了同步复用方式和灵活的映射结构,可将PDH低速 支路信号(例如2Mbit/s)复用进SDH信号的帧中去(STMN),这样使低速支路信号在STM-N帧中的位置也是可预见的, 于是可以从STM-N信号中直接分/插出低速支路信号
➢SDH信号的帧结构中安排了丰富的用于运行维护(OAM)功 能的开销字节,使网络的监控功能大大加强,也就是说维护 的自动化程度大大加强
➢复用是一种使多个低阶通道层的信号适配进高阶通道层或 把多个高阶通道层信号适配进复用层的过程,复用也就是通 过字节交错间插方式把TU组织进高阶VC或把AU组织进STM-N 的过程,由于经过TU和AU指针处理后的各VC支路信号已相位 同步,因此该复用过程是同步复用
SDH传输的定义 SDH的帧结构 SDH的段开销 SDH自愈保护环
SDH传输的定义 SDH的帧结构 SDH的段开销 SDH自愈保护环
➢ITU-T规定了STM-N的帧是以字节(8bit)为单位的矩形块 状帧结构
➢当N个STM-1信号通过字节间插复用成STM-N信号时,仅仅是 将STM-1信号的列按字节间插复用,行数恒定为9行
➢SDH信号帧传输的原则是:帧结构中的字节(8bit)从左到 右,从上到下一个字节一个字节(一个比特一个比特)的传 输,传完一行再传下一行,传完一帧再传下一帧
➢使用者通路字节:F1。提供速率为64kbit/s数据/语音通路, 保留给使用者(通常指网络提供者)用于特定维护目的的临 时公务联络
➢比特间插奇偶校验8位码BIP-8:B1。这个字节就是用于再 生段层误码监测的(B1位于再生段开销中)
➢比特间插奇偶校验N×24位的(BIP-N %24)字节:B2。B2 的工作机理与B1类似,只不过它检测的是复用段层的误码情 况
➢低速支路信号复用成STM-N信号时,要经过3个步骤:映射、 定位、复用.
➢SDH信号的帧结构中安排了丰富的用于运行维护(OAM)功 能的开销字节,使网络的监控功能大大加强,也就是说维护 的自动化程度大大加强
➢复用是一种使多个低阶通道层的信号适配进高阶通道层或 把多个高阶通道层信号适配进复用层的过程,复用也就是通 过字节交错间插方式把TU组织进高阶VC或把AU组织进STM-N 的过程,由于经过TU和AU指针处理后的各VC支路信号已相位 同步,因此该复用过程是同步复用
SDH传输的定义 SDH的帧结构 SDH的段开销 SDH自愈保护环
SDH传输的定义 SDH的帧结构 SDH的段开销 SDH自愈保护环
➢ITU-T规定了STM-N的帧是以字节(8bit)为单位的矩形块 状帧结构
➢当N个STM-1信号通过字节间插复用成STM-N信号时,仅仅是 将STM-1信号的列按字节间插复用,行数恒定为9行
➢SDH信号帧传输的原则是:帧结构中的字节(8bit)从左到 右,从上到下一个字节一个字节(一个比特一个比特)的传 输,传完一行再传下一行,传完一帧再传下一帧
➢使用者通路字节:F1。提供速率为64kbit/s数据/语音通路, 保留给使用者(通常指网络提供者)用于特定维护目的的临 时公务联络
➢比特间插奇偶校验8位码BIP-8:B1。这个字节就是用于再 生段层误码监测的(B1位于再生段开销中)
➢比特间插奇偶校验N×24位的(BIP-N %24)字节:B2。B2 的工作机理与B1类似,只不过它检测的是复用段层的误码情 况
➢低速支路信号复用成STM-N信号时,要经过3个步骤:映射、 定位、复用.
传输原理课件-2_动量传输基本方程

流入控制
控制体的
合外力冲量 体的动量 体的动量 动量增量
Xdxdydz
p dxdydz x
vxvx dxdydz
x
vxvy dxdydz y
vx dxdydz
vxvz dxdydz
z
X
p x
vx
x
vxvx
y
vxvy
z
vx
vz
xx yx zx
x y z
x
通过EFGH面流出
vxvx
vxvx
x
dxdydz
净流出的动量
vxvx dxdydz
x
2. 动量传输基本方程
2.2.2 动量守恒定律与欧拉方程
18
单位时间作用 单位时间 单位时间 单位时间
vx
在控制体上的
流出控制
流入控制
控制体的
合外力冲量 体的动量 体的动量 动量增量
x方向
密度场 ρ =f(x ,y, z, τ)
2. 动量传输基本方程
4
2.1.2 稳定流动与非稳定流动
据流场中各参数是否随时间的变化,可将流场 分为稳定流场和不稳定流场。 依据 ∂η/ ∂τ 是否为零来判断: 当∂η/ ∂τ=0 为稳定流动;否则为不稳定流动
η为所有流动参数。 如:流速、压力、密度
稳定流动
同一瞬时流
场中连续的 a:va
不同位置质 b:vb
点的流动方 c:vc
向线
d:vd
b a
d
c
vc
2. 动量传输基本方程
7
•流线的性质:
通过流场内的任何空间点,都有一条流线,在整 个空间中就有一组曲线族,亦称流线族 流线是不能相交的,即某一瞬间通过任一空间上, 只能有一条流线.(反证)