数学建模全套课件

合集下载

数学建模培训精品课件ppt

数学建模培训精品课件ppt
提高解决问题的能力
学员们认为,通过案例分析和实践操作,他们能够更好地解决实 际问题,提高了工作效率。
结识优秀的同行
学员们结识了很多优秀的同行,通过互相学习和交流,彼此的能 力都得到了提升。
未来发展趋势预测
数学建模与大数据结合
随着大数据时代的到来,数学建模将会与大数据更加紧密 结合,利用数据挖掘和分析技术,更好地解决实际问题。
数学建模培训精品课 件
汇报人:可编辑 2023-12-22
目 录
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模实践项目 • 数学建模培训总结与展望
01
数学建模概述
定义与特点
定义
数学建模是指用数学语言描述实 际现象、解释自然规律、解决实 际问题的过程。
Python
一款开源的编程语言,具有丰富的数 学库和工具包,适用于各种数学建模 任务。
03
数学建模方法与技巧
建模方法分类
初等模型
利用初等数学知识建立 模型,如代数方程、不
等式、几何图形等。
微分方程模型
利用微积分知识,通过 建立微分方程来描述实
际问题。
概率统计模型
利用概率论和统计学知 识,通过随机变量和随 机过程来描述实际问题
求解与分析
指导学生运用数学软件或编程语言对模型 进行求解和分析,得出结论。
建立模型
指导学生根据问题特点,选择合适的数学 方法和工具,建立数学模型。
项目成果展示与评价
成果展示
组织学生进行项目成果展示, 包括项目报告、论文、PPT演示
等。
评价标准
制定评价标准,包括问题的难 度、模型的合理性、求解的准 确性、论文的规范性等方面。

《数学建模培训》PPT课件

《数学建模培训》PPT课件

数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。

《数学建模》PPT课件

《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。

数学建模ppt课件-文档资料

数学建模ppt课件-文档资料
数学建模
• 数学建模简介 • 大学生数学建模竞赛 • 数学建模的步骤 • 初等数学模型
• 数学建模简介 1、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一个 特定目的,根据特有的内在规律,做出一些必要的假 设,运用适当的数学工具,得到一个数学结构。 简单地说:就是系统的某种特征的本质的数学表 达式(或是用数学术语对部分现实世界的描述),即 用数学式子(如函数、图形、代数方程、微分方程、 积分方程、差分方程等)来描述(表述、模拟)所研 究的客观对象或系统在某一方面的存在规律。
• 大学生数学建模竞赛
大学生数学建模竞赛最早是1985年在美国出现的, 1989年我国大学生开始参加美国的竞赛。经过两 三年的参与,大家认为竞赛是推动数学建模教学 在高校迅速发展的好形式,1992年由中国工业与 应用数学学会数学模型专业委员会组织举办了我 国10城市的大学生数学模型联赛。 • 教育部领导及时发现、并扶植、培育了这一 新生事物,决定从1994年起由教育部高教司和中 国工业与应用数学学会共同主办全国大学生数学 建模竞赛,每年一次。十几年来这项竞赛的规模 以平均年增长25%以上的速度发展。
室 内 T1
Ta T b d l d
室 外 T2
Q1
墙 T 建模 热传导定律 Q k d 双层玻璃模型 T T T T T T 1 a a b b 2 Q k k k 1 1 2 1 d l d
• 从一组数据中可以看出它的蓬勃发展之势:从 1994年196个学校的867支参赛队,到2000年 517个学校的3210支参赛队,再到2019年795个 学校的8492支参赛队,参赛队壮大了近10倍, 2019年竞赛的选手达到25000多名。 2019年竞 赛的选手达到25000多名。 • 2019年全国967所高校一万余支队伍、三万多名 大学生参加2019年度的数学建模竞赛,山东省有 59所高校,近七百支队参加竞赛。

数学建模课件

数学建模课件

模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物. 模型集中反映了原型中人们需要的那一部分特征.
你碰到过的数学模型——“航行问题”
甲乙两地相距750km,船从甲到乙顺水航行需30h, 从乙到甲逆水航行需50h,问船的速度是多少? 用 x 表示船速,y 表示水速,列出方程:
数学建模的重要意义
―数学是一种关键的、普遍的、可以应用的技术”. 数学“由研究到工业领域的技术转化,对加强 经济竞争力具有重要意义”.
―计算和建模重新成为中心课题,它们是数学 科学技术转化的主要途径” .
数学建模的具体应用
• 分析与设计
• 预报与决策

控制与优化
• 规划与管理
数学建模
如虎添翼
计算机技术
评注和思考
建模的关键: 用表示椅子的位置 用 f(), g()表示椅脚与地面的距离 假设条件中哪些是本质的, 哪些是非本质的? 考察四脚连线呈长方形的椅子 (习题4). 证明过程的粗糙之处: 椅子的旋转轴在哪里,它在旋转过程中怎样 变化?
1.3.2 商人们怎样安全过河
问题(智力游戏) 随从们密约, 在河的任 一岸, 一旦随从的人数 比商人多, 就杀人越货. 乘船渡河的方案由商人决定. 商人们怎样才能安全过河? 问题分析 多步决策过程
(ln 2) / 6 0.1155 (1 / h)
结果及分析
1200 1000 x(t) 800
胃肠道药量 x(t ) 1100 e 0.1386t
(e 0.1155t e 0.1386t ) 血液系统药量 y(t ) 6600 血液总量2000ml 血药浓度100μg/ml y(t) =200mg
认为血液系统内药物的分布,即血药浓度是均匀的, 可以将血液系统看作一个房室,建立“一室模型” . 血液系统对药物的吸收率 (胃肠道到血液系统的转移 率) 和排除率可以由半衰期确定. 半衰期可以从药品说明书上查到.

《数学建模》课件

《数学建模》课件

第一章课程概述§1.1 数学模型与数学建模一.基本概念数学是研究现实世界中数量关系和空间形式的科学。

其产生以及许多重大发展都是和现实世界的生产活动和其他相应学科的需要密切相关的;同时,作为认识和改造世界的强有力的工具,又促进了科学技术和生产建设的发展。

特别在当今时代,由于计算机软硬件的迅速发展和普及,数学方法被广泛应用于生产实践、社会管理的各个领域和层面。

对具体的应用问题或问题类进行合理的简化假设以及适当的抽象并最终表述为某种数学结构,即我们在这里讨论的数学模型,是现代生产实践与社会生活实现优化决策和科学管理的必要环节。

而数学建模则是指根据实际需要或最终管理目标,对现实问题构建数学模型,对模型进行分析求解,并最终将模型解翻译为决策方案应用于实际的一个由诸多环节组成的一个完整过程。

为理解现实对象与数学模型的关系,以下给出数学建模的一个流程图:二.(引例1)椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。

这一现象是偶然的呢,还是有其必然性呢?三.(引例2)商人过河设有三名商人,各带一个随从,欲乘一小船渡河,小船只能容纳两人,须由他们自己划行。

随从们密约,在河的任何一岸,一旦随从的人数比商人多,就杀人越货。

而如何乘船渡河的大权掌握在商人们的手中。

商人们怎样才能安全渡河呢?椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。

这一现象是偶然的呢,还是有其必然性呢?以下的模型给出了肯定的回答。

一.模型假设:1.椅子四条腿一样长,椅脚与地面接触处可视为一点,四脚的连线呈正方形;2.地面高度是连续变化的,沿任何方向都不会出现间断(没台阶)。

即地面可视为数学上的连续曲面;3.对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置上至少有三只脚同时着地。

数学建模培训精品课件

数学建模培训精品课件

深度学习与神经网络
介绍深度学习和神经网络的基本原理 ,以及在数学建模中的应用和挑战。
探讨机器学习算法如何与数学建模相 结合,实现数据分析和预测。
大数据时代的数学建模挑战与机遇
大数据的数学建模方法
介绍处理大规模数据集的数学建模方法和技巧,如分布式计算、 云计算等。
数据清洗与预处理
阐述数据预处理在数学建模中的重要性,以及如何进行数据清洗和 特征提取。
THANKS.
04
模型评估与改进技巧
误差分析
分析模型预测误差来源,提高模型预测精度 。
多目标优化
在满足多个约束条件下,优化模型目标函数 。
敏感性分析
评估模型参数对结果的影响程度,优化模型 参数。
模型集成
将多个模型组合起来,提高整体预测性能。
数学建模软件介绍
04
MATLAB的使用介绍
MATLAB概述
01
MATLAB是一种用于算法开发、数据可视化、数据分析以及数
数学建模应用实例
02
微积分建模实例
总结词:微积分建模是数学建模中的基 础,通过实例可以更好地理解微积分的 实际应用。
经济学中的边际分析:通过微积分分析 经济活动中成本、收益和利润的变化, 为决策提供依据。
人口增长模型:利用微积分的知识,建 立人口增长模型,预测未来人口数量和 增长趋势。
详细描述
瞬时速度与加速度:通过分析物体运动 的速度和加速度,建立微积分模型,用 于预测物体的运动轨迹和时间。
模型验证:使用实际数据对模型进行 验证,评估模型的准确性和可靠性。
应用与优化:将模型应用于未来气候 预测中,根据反馈进行模型优化和调 整。
数学建模前沿动态
06
人工智能与数学建模的结合

《数学建模培训》课件

《数学建模培训》课件

MATLAB
• 总结词:MATLAB是一种高效的数值计算和数据分析工具 ,广泛用于数学建模、算法开发、数据分析等领域。
MATLAB
• 详细描述 • MATLAB简介:MATLAB是Matrix Laboratory的缩写,由MathWorks
公司开发,是一种基于矩阵运算的编程语言和数值计算环境。 • MATLAB功能:MATLAB具有强大的矩阵运算和数值计算能力,可以用
Python(NumPy, Pandas, Scikit-learn)
• 总结词:Python是一种广泛使用的通用编程语言,具有简单易学、代码可读性高等优点,常用于数据处理、机器学习等领 域。
Python(NumPy, Pandas, Scikit-learn)
• 详细描述 • Python简介:Python由Guido van Rossum于1989年发布第一个公开发行版,是一种解释型、交互式的编程
《数学建模培训》课件
汇报人: 日期:
目录
• 数学建模概述 • 数学基础知识 • 数学建模案例分析 • 数学建模进阶知识 • 数学建模实践技巧 • 数学建模常用软件介绍 • 数学建模发展趋势与挑战
01
数学建模概述
数学建模的定义
数学建模是一种用数学语言描述现实问题,建立数学模型,并通过对模型的分析和 求解来做出决策的科学方法。
大数据时代的挑战
数据处理难度加大
随着大数据时代的到来,数据的类型、规模 和复杂性都不断加大,这给数学建模带来了 更多的挑战。如何有效地处理、分析和利用 大数据,成为数学建模需要面对的重要问题 。
数据隐私和安全问题
在大数据时代,数据的隐私和安全问题也日 益突出。如何在保证数据隐私和安全的前提 下,进行有效的数学建模,是当前需要解决 的一个重要问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cg t B (1 e W ),
( 2)
方程的解为
W v(t ) C
t 0
计算碰撞速度,需确定圆桶和海底的碰撞时间t0
分析 考虑圆桶的极限速度
W B 527.436 470.327 lim v( t ) t C 0.08
≈713.86(英尺/秒)>>40(英尺/秒)
汽车类型及车身长模拟原理分析 若随机变量X~U(0, 1),有
P{0பைடு நூலகம்X≤0.55}=0.55,
P{0.55≤X≤0.95}=0.4,
P{0.95≤X≤1.0}=0.05. 可用一串随机数(RND)来确定到达车辆的 车型与车身长.
RND 种类 RND 车长 列长
0.10 卡车 0.59 9.44 9.44
0.28 卡车 0.48 8.96 18.4
0.61 0.34 0.77 0.57 0.02 0.88 轿车 卡车 轿车 轿车 卡车 轿车 0.10 0.56 0.30 0.90 0.81 0.66 3.70 9.12 4.10 5.30 9.62 4.82 22.1 31.22 35.32 40.62 50.24 55.06
摩托车
(2) 确定随机到达车辆的身长车. 汽车类型及车身长模拟原理分析 (3) 关于车辆的排放.
甲板可停放两列汽车,可供停车的总长为 32×2=64米
排放原则:两列尽可能均衡。(怎样实现?) 结果分析:由一组特定随机数确定车型和车身 长度,仅得到一个解答.
将一组随机数模拟确定的结果,看成对一次 实际运载情况的“观察”,少数几次观察是无意 义的. 需多次重复模拟, 再进行统计分析
数学模型是现实世界与数学世界的理想桥梁
面对各类问题:
1. 世界的末日?
当一个直径约为1000米的小行星正好在南极 与南极洲大陆相撞 ,是否会产生灾难性的影响? 2. 如何控制喷泉的高度? 如何智能控制广场中央的喷泉高度,以避免 水雾浸湿游客的衣衫?
3. 怎样安排性急的游客?
在大型游乐场里如何安排游客, 让他们乐意等待, 乐意花钱? 4. 人的指纹是否惟一? 数学模型是对于现实世界的一个特定对象, 为 了一个特定目的,根据特有的内在规律,做出必 要的简化假设,运用适当的数学工具建立的一 个数学结构.
实际极限速度与圆桶的承受速度相差巨大! 结论 解决问题的方向是正确的.
解决思路 避开求t0的难点
令 v(t)=v(y(t)), 其中 y=y(t) 是圆桶下沉深度

dv dv dy . 代入(1)得 dt dy dt
dv dy m . W B Cv , dy dt
或 v dv g , W W B Cv dy v ( 0) 0, y ( 0) 0.
他们这种做法安全吗? 联想 安全 、危险 分析 可从各个角度去分析造成危险的因素, 这里仅考虑圆桶泄露的可能.
问题的关键 *圆桶至多能承受多大的冲撞速度?(40英尺/秒) *圆桶和海底碰撞时的速度有多大? 问题 求这一种桶沉入300英尺的海底时的末速 度.(原问题是什么?) 可利用的数据条件: 圆桶的总重量 W=527.327(磅)
车身长度模拟原理分析 假定轿车和卡车车身长服从给定区间上的 均匀分布 若X U(0,1), 则有 a+(b-a)X U(a, b),
即a+(b–a)X服从(a,b)区间上均匀分布. 车身的长度由下面等式给出 轿车车身长度= 3.5+2. 0 RND 卡车车身长度=8.0+2.0 RND
W W W B W B Cv y ( ln ), 2 g C C W B
令 v=40(英尺/秒),g=32.2(英尺/秒),算出 y= 238.4 (英尺)<300(英尺) 问题的实际解答:美国原子能委员会处理 放射性废物的做法是极其危险的,必须改变。
例2.2 渡口模型 一个渡口的渡船营运者拥有一只甲板长32米, 可以并排停放两列车辆的渡船.他在考虑怎样 在甲板上安排过河车辆的位臵,才能安全地运 过最多数量的车辆.
圆桶受到的浮力
B=470.327(磅)
圆桶下沉时受到的海水阻力 D=Cv,C=0.08 利用牛顿第二定律,建立圆桶下沉位移满足 的微分方程:
m
d y dt
2
2
W B D
(1)
其中
w dy m , D Cv , v g dt

g dv cg v (W B ), W dt W V (0) 0.
两边积分得函数方程:
v W B W B Cv gy ln , 2 C C W B W
若能求出函数v=v(y),就可求出碰撞速度 v(300).(试一试) 1) 用数值方法求出v(300)的近似值为
v(300)≈45.41(英尺/秒)>40(英尺/秒) 2) 分析 v=v(y) 是一个单调上升函数,而v 增 大,y 也增大,可求出函数y=y(v)
分析 需考虑以下问题: (1) 应该怎样安排摩托车? (2) 下一辆到达的车是什么类型? (3) 怎样描述一辆车的车身长度? (4) 如何安排到达车辆加入甲板上两列车队 中的哪一列中去? 问题的解决: (1) 认为摩托车不会占有实际空间.
(2) 确定即将到达车辆类型,利用随机模拟方法
卡车
0
轿车
0.55 0.95 1
分析:怎样安排过河车辆,关心一次可以运 多少辆各类车.
准备工作: 观察数日,发现每次情况不尽 相同,得到下列数据和情况:
(1) 车辆随机到达,形成一个等待上船的车列; (2) 来到车辆中,轿车约占40%,卡车约占55%, 摩托车约占5%; (3) 轿车车身长为3.5~5.5米,卡车车身长为 8~10米. 这是一个机理较复杂的随机问题,是遵循 “先到先服务”的随机排队问题。 解决方法 采用模拟模型方法.
现 实 世 界
建立数学模型 翻译为实际解答
数 学 世 界
推理 演绎 求解
实际解答:如对现实对象的分析、预报、 决策、控制等结果。 始于现实世界并终于现实世界
例2.1 一场笔墨官司 (放射性废物的处理问题)
美国原子能委员会(现为核管理委员会)处理
浓缩放射性废物,是将废物放入密封性能很
好的圆桶中,然后扔到水深300英尺的海里.
相关文档
最新文档