逻辑函数的最小项
第四次 逻辑函数及最小项、最大项ppt

二、 逻辑函数式
按照对应的逻辑关系,把输出变量表示为输入
变量的与、或、非三种运算的组合,称为逻辑代 数式,又称为逻辑函数式,通常采用“与或” 的形式。
B A
C
Y = A ·(B + C)
Y
8
书写简洁、方便; 便于利用公式定理进行运算、变换; 便于用逻辑图实现。 不如真值表直观。
9
三、 逻辑图 把逻辑函数式的逻辑运算关系用逻辑符
内容 回顾
2.4.1 代入定理
------在任何一个包含变量A的逻辑等式中,若以另 外一个逻辑式代入式中所有A的位置,则等式依然成
立。
3
2.4.2 反演定理
对任何一个逻辑表达式Y 作反演变换,可得Y 的
反函数 Y 。这个规则叫做反演定理。
反演变换:
“﹒”→“﹢” “﹢”→“﹒”
变换顺序 先括号, 然后乘,最后加
21
2.5.3 逻辑函数的两种标准形式
最小项之和最大项之积
一、最小项
1、概念:在n个变量逻辑函数中,若m为包含n个 因子的乘积项,而且这n个变量均以原 变量或反变量的形式在m中出现一次, 则称m为该组变量的最小项。
最小项 m: m是乘积项 包含n个因子 n个变量均以原变量和反16
3. 从逻辑式画出逻辑图 用图形符号代替逻辑式中的运算符号。
【例】已知逻辑函数为 Y A(B C) 试画出对应的逻辑图。 解:
将式中所有的与、或、非运算符号用 图形符号代替,并依据运算优先顺序将 它们连接起来。
17
4. 从逻辑图写出逻辑式
1. 用图形符号代替逻辑式中的逻辑运算符。
将输入变量取值的所有组合状态逐一 代入逻辑式求出函数值,列成表。
逻辑函数最小项

逻辑函数最小项
逻辑函数中的最小项是指逻辑变量全部取反(即所有变量的值都为相反值)的特例。
例如,对于一个包含n个变量的逻辑函数,其最小项有2^n个。
例如,对于一个包含三个变量A、B和C的逻辑函数,其最小项可以是:
- A'B'C'(A和B为假,C为真)
- A'B'C(A和B为假,C为假)
- A'B'C'(A和B为真,C为假)
- A'B'C(A和B为真,C为真)
- A'B'C'(A和B为真,C为真)
- A'BC'(A为假,B和C为真)
- A'BC(A为假,B和C为假)
- A'BC'(A为真,B和C为真)
- A'BC(A为真,B和C为假)
- A'BC'(A为真,B和C为真)
- AB'C'(A为真,B为假,C为真)
- AB'C(A为真,B为假,C为假)- AB'C'(A为真,B为真,C为真)- AB'C(A为真,B为真,C为假)- AB'C(A为真,B为假,C为假)- ABC'(A、B和C都为假)
- ABC(A、B和C都为真)
这些就是该逻辑函数的所有最小项。
卡诺图化简法

ABC ABC A BC
m3 m2 m1
m(1、 2、 3)
例2
L( ABC ) ( AB AB C ) AB
AB AB C AB
AB AB C AB ( AB AB) C AB ABC ABC AB(C C) ABC ABC ABC ABC
⒈用摩根定律去掉非号(多个变量上)直至只在一个变量上有非号为止
⒉用分配律去除括号,直至得到一个与或表达式
⒊配项得到最小项表达式
习 例1
题
A B A BC
的最小项
求函数F(A、B、C) 表达式 解:F(A、B、C)
A B A BC
A B A BC
AB(C C) A BC
如:
m0 m2 m4 m6 m8 m10 m12 m14 D
2.用卡诺图化简逻辑函数的方法和步骤
设已得到逻辑函数的卡诺图
1) 将相邻的值为“1”的小方块画成若干个包围圈
ⅰ)每个包围圈中必须含有2n个小方块 (n=0,1,2, …)
画 圈 原 则
ⅱ)小方块可重复被包围,但每个包围圈中必须含有其他 包围圈没有的新小方块 ⅲ)不能漏掉任何值为1的小方块 ⅳ) 包围圈所含的小方块数目要尽可能多 ⅳ) 包围圈数目要尽可能少,画包围圈的顺序由大→小
10 1
01 11 10
1 1 1 1 1 1 1 1 1
B
1 1 1
D
3.具有无关项的逻辑函数的卡诺图化简
无关项的定义
在真值表内对应于变量的某些取值下,函数的值可以是任意的,或者 这些变量的取值根本不会出现,这些变量取值所对应的最小项称为无 关项或任意项。
逻辑函数的卡诺图

1.最小项的基本概念由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是1. 每项都只有三个因子2. 每个变量都是它的一个因子3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次一般情况下,对n个变量来说,最小项共有2n个,如n=3时,最小项有23=8个2.最小项的性质为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。
由此可见,最小项具有下列性质:(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。
(2)不同的最小项,使它的值为1的那一组变量取值也不同。
(3)对于变量的任一组取值,任意两个最小项的乘积为0。
(4)对于变量的任一组取值,全体最小项之和为1。
3.最小项的编号表示,下标i即最小项编号,用十进制数表示。
以ABC为最小项通常用mi例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而按此原则,3个变量的最小项011相当于十进制中的3,所以把ABC记为m3二、逻辑函数的最小项表达式利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。
下面举例说明把逻辑表达式展开为最小项表达式的方法。
例如,要将化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即又如,要将化成最小项表达式,可经下列几步:(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式;(2)利用分配律除去括号,直至得到一个与或表达式;(3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。
由此可见,任一个逻辑函数都可化成为唯一的最小项表达式。
三、用卡诺图表示逻辑函数1.卡诺图的引出一个逻辑函数的卡诺图就是将此函数的最小项表达式中的各最小项相应地填入一个特定的方格图内,此方格图称为卡诺图。
经典:8、逻辑函数最小项表达式

__
__ __ __ __ __
ABC ABC ABC A BC A BC
重叠定律
__ __ __
ABC ABC A BC
m7 m6 m2
4
例4、已知逻辑函数f(A,B,C)的真值表如
下,试写出它的最小项表达式。
A
B
C
f(A,B,C)
0
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
1
1
补足的方法是:例如项A__B需补足变量C, 只要构建 AB AB(C C)
3
__ __ __
例3将逻辑函数f (A, B,C) AB BC A BC
表示为最小项表达式。
__ __ __
பைடு நூலகம்
解:f (A, B,C) AB BC A BC
__
__ __ __ __
AB(C C) (A A)BC A BC
8
9
10
小结
1、逻辑函数的最小项表达式:任何 一个逻辑函数都可以写成它的最小项 的与或式。 方法:最小项表达式:首先要将逻 辑函数写成与或式,然后将因子不 足的项补足。 2、在真值表中值等于1的最小项的与 或式为逻辑函数的最小项表达式。
11
最小项表达式
盐高职高二数学组:陆军
1
2
定义:任何一个逻辑函数都可以写成
它的最小项的与或式,这叫做该逻辑函数
的最小项表达式。
__ __ __
例3、将逻辑函数f (A, B,C) AB BC A BC
表示为最小项表达式
电子技术及应用第七章-第四节-3逻辑函数表达式的最简标准

2、最简与非—与非表达式
最简与非-或非表达式,就是 式中的非号最少、并且每个非号下 面乘积项中的变量也最少的与非与非表达式。
பைடு நூலகம்
Y A B AC A B AC
__________ ____ _____ _____ __ __ __________ __ __________ __ __ __
__
__
A B A C
3、最简或与表达式
最简或与表达式,就是式中的 括号最少、并且每个括号内相加的 变量也最少。
__ __
Y A B AC ( A B)( A C )
__ __
4、最简与或非表达式
最简与或非表达式,就是式中非 号下面相加的乘积项最少、并且每个 乘积项中相乘的变量也最少的与或非 表达式。
Y A B AC ( A B )( A C ) A B AC
__________ ____ __ __ __ __
__
__
所以,对逻辑函数进 从上面所介绍的函数的 各种最简表达式可知, 只要得到了函数的最简 与或表达式,再利用摩 根定律进行适当的变换, 就可以得到其他几种类 型的最简表达式。
逻辑函数的最小项
如果一个函数的某个乘积项包含了函数的全部 变量,其中每个变量都以原变量或反变量的形式出 现,且仅出现一次,则这个乘积项称为该函数的一
个标准积项,标准积项通常称为最小项。
逻辑函数的最小项表达式
任一个逻辑函数均可以表示成一
函数的标准 与或表达式
组最小项的和,这种表达式称为函数
的最小项表达式,也称为函数的标准 与或表达式,或称为函数的标准积之 和表达式。任何一个n变量的函数都 有一个且仅有一个最小项表达式。
数字电路中的最小项

数字电路中的最小项
在数字电路中,最小项是代表逻辑函数的最基本的布尔表达式。
它在逻辑函数的化简和实现中具有重要的作用。
最小项由变量的集合和它们的状态(0或1)组成,在一个逻辑函数中,可能有多个最小项。
最小项可以通过一张真值表来表示。
对于一个逻辑函数,真值表将列出所有可能的变量状态对应的函数值。
最小项为真的那些情况所对应的变量状态称为该逻辑函数的最小项。
在数字电路中,最小项还可以确定一个逻辑函数的布尔表达式。
由于最小项代表了逻辑函数的最基本的布尔表达式,因此,每一个逻辑函数都可以表示为最小项的和。
也就是说,一个逻辑函数可以由多个最小项组合而成,这些最小项的数量和它们的组合方式决定了逻辑函数的复杂度。
最小项在逻辑函数的化简中也扮演着重要的角色。
化简是指将逻辑函数简化为等价的、更简单的形式。
最小项可以帮助我们寻找逻辑函数的简化形式。
在进行化简操作中,我们可以将逻辑函数拆分成多个最小项,然后找到其中具有公共变量的最小项进行合并。
最后,将所有合并后的最小项组合起来,就可以得到化简后的逻辑函数。
在数字电路中,最小项的使用可以有效地提高电路的效率和可靠性。
在设计数字电路时,我们可以利用最小项的组合方式优化电路的结构。
通过合并具有共同变量的最小项,我们可以减少电路的复杂度,并使
电路变得更加可靠。
总之,最小项是数字电路中最基本的逻辑表达式,它的使用可以帮助
我们更加有效地理解和设计数字电路。
作为数字电路设计的重要基础
知识,我们需要掌握它的概念和运用。
5.最小项

最小项1.用卡诺图法将逻辑函数变成最小项的形式方法:①将函数表现在卡诺图里②将卡诺图中的1与下两图比对例题:用卡诺图法将逻辑函数L=A—B+B—C—D变成最小项的形式。
L=A—B+B—C—D=m1+m4+m5+m6+m7+m9用卡诺图法将逻辑函数L=AB+A—C变成最小项的形式。
L=AB+A—C2. 用公式法将逻辑函数变成最小项的形式方法:①利用A(B —+B)=A ,令每一项都包含全部代号②整理①的结果,令每一项都是A 、B 、C 、D 的顺序③将每一项的A 、B 、C 、D 变成1,将A —、B —、C —、D —变成0 ④将③的结果由二进制数变成十进制数⑤在m 后加上④中的结果例题:用公式法将逻辑函数L=AB+A __C 变成最小项的形式 ① L= AB + A __C=AB(C+C __) + A __C(B+B __)② =ABC+ ABC __+ A __BC+ A __B __C③ 111 110 011 001④ 7 6 3 1⑤ L=m7+m6+m3+ m13. 将最小项的形式化成变量形式方法:①取出m后的数字②将数字变成二进制数(3输入即变成3位,4输入即变成4位)③每个二进制数的第一个数是0则变成A—,是1则变成A第二个数是0则变成B—,是1则变成B第三个数是0则变成C—,是1则变成C第四个数是0则变成D—,是1则变成D④用公式法或者卡诺图法化简逻辑函数例题:将L(A,B,C,D)=m1+m4+m5+m6+m7+m9化成变量形式。
① 1 4 5 6 7 9②0001 0100 0101 0110 0111 1001③A__B__C__D A__BC__D__A__BC__D A__BCD__A__BCD AB__C__DL(A,B,C,D)=m1+m4+m5+m6+m7+m9=A__B__C__D+A__BC__D__+A__BC__D+A__BCD__+A__BCD+AB__C__D④=A__B+B__C__D4.将L=∑m+∑d形式的式子用卡诺图化简方法:①根据下图,在m对应代号处写1,d对应代号处写X,在其他代号处写0②将卡诺图表示成逻辑表达式注意:1、表示的过程中,可以将X当作1来凑8个1、4个1、2个1、1个12、将所有1都表示完即可,不需要表示完所有X例题:将L(A,B,C,D)=∑m(1,4,5,6,7,9)+∑d(10,11,12,13,14,15)用卡诺图法化简。