逻辑函数的标准形式及公式化简法
03第二章-2 卡诺图化简逻辑函数

m0 与 m1 、 m2 逻辑相邻。
三变量卡诺图
四变量卡诺图
圆柱面
m0 与 m1 m2 m4 m1 与 m0 m3 m5
球面
均为逻辑相邻 均为逻辑相邻
m0 与 m1 m2 m4 m8 均为逻辑相邻 m1 与 m0 m3 m5 m9 均为逻辑相邻
(1) 在卡诺图构成过程中,变量的 取值按格雷码的顺序排列。 二变量卡诺图
格雷码:相邻两个代码之间只有一位发生变化
B0 A
1
0 m0 m1
1 m2 m3
平面表格
(2) 卡诺图两侧标注的数值代表 的二进制数对应的十进制数即为 格中对应的最小项编号。 (3) 几何位置相邻的最小项也是 逻辑相邻项。 (4) 卡诺图是上下、左右闭合的 图形。
二、用卡诺图表示逻辑函数
由于任何一个逻辑函数都能表示为若干最小 项之和的形式,所以自然也就可以用卡诺图表示 逻辑函数了。 1、逻辑函数→卡诺图 (1) 最小项法 ① 将逻辑函数化为最小项表达式; ② 在卡诺图上与这些最小项对应的位 置上填入1,在其余位置填入0或不填。 这样就得到了表示该逻辑函数的卡诺图。
例1:
Y = ABC + ABC ′ + AB′ = AB(C + C ′) + AB′ = AB + AB′ = A
例2
ABC + A′ + B′ + C ′ ′ = ABC + ( ABC ) = 1 A′BC ′ + AC ′ + B′C ′
例3
= A′BC ′ + ( A + B′)C ′ ′ = A′BC ′ + ( A′B ) C ′ = C ′
逻辑函数的公式化简

一、化简的意义
逻辑函数的公式化简
1.逻辑函数表达式的不同形式 2.逻辑函数化简的意义 用较少的门电路实现相同的逻辑功能,不仅可以降低成本,而且还可提高电路工作的可 靠性。
二、公式化简的方法
1.并项法 2.吸收法 3.消去法 4.配项法
谢谢!
每一个逻辑函数式都对应 着一个具体电路。在具体实现 电路时,往往根据现有的元器 件(集成门电路)选择相应的 逻辑表达式。
一、化简的意义
2.逻辑函数化简的意义
在数字电路中,是由逻辑门电路来实现一定的逻辑功能,逻辑函数的化简就意味着实现该 功能的电路简化,能用较少的门电路实现相同的逻辑功能,不仅可以降低成本,而且还可提高 电路工作的可靠性。
逻辑函数的公式化简
逻辑函数化简的意义是什么? 逻辑函数公式化简的方法有哪些?
一、化简的意义
1.逻辑函数表达式的不同形式
异或门
Y AB AB A B
Y AB AB
与或表达式
AB AB AB AB (A B)(A B) AB AB AB AB
与或非-非表达式 与非-与非表达式 或与非表达式 与或非表达式 或非-或非表达式
AB
二、公式化简的方法
2.吸收法 利用公式A+AB=A ,吸收多余项AB。
【例2】化简逻辑函数 Y AC ABCD 【解】 Y AC ABCD
AC(1 BD) AC
二、公式化简的方法
3.消去法
利用公式 A AB A B,消去 AB 项中的多余因子 A。 【例3】化简逻辑函数 Y AB AC BC 【解】Y AB AC BC
AB(A B)C AB(AB)C AB C
二、公式化简的方法
4.配项法
利用公式 A A 1 ,给适 【解】Y AB BC BC AB
第1章(2课) 逻辑函数常用公式和化简

Y ABC ABC AB C A BC ( ABC ABC ) ( ABC AB C ) ( ABC A BC) AB AC BC
4、消去冗余项法
利用冗余律AB+AC+BC=AB+AC, 将冗余项BC消去。
Y ( A, B, C, D) m(1,3,4,6,7,11 ,14,15)
AB CD 00 00 01 11 10 0 1 1 0 01 1 0 1 1 11 0 0 1 1 10 0 0 1
m1 m3
m4
m11
m7
m15
0
m6
m14
(2)逻辑函数以一般的逻辑表达式给出:先将函数变换为与或 表达式(不必变换为最小项之和的形式),然后在卡诺图上与每 一个乘积项所包含的那些最小项(该乘积项就是这些最小项的公 因子)相对应的方格内填入1,其余的方格内填入0。
2、吸收法 (1)利用公式A+AB=A,消去多余的项。 是另 项 是 Y1 A B A BCD( E F ) A B 多外 的 另 运用摩根定律 余 一 因 外 如 的个 子 一 果 。乘 , 个 乘 Y2 A B CD ADB A BCD AD B 积则乘积 项这积项 ( A AD) ( B BCD) A B (2)利用公式A+AB=A+B,消去多余的变量。 因项 的 Y AB C A C D BC D 子 的 反 Y AB A C B C 如 AB C C ( A B) D 是 因 是 果 多子 另 一 AB ( A B )C 余, 一 个 AB C ( A B) D 的则 个 乘 AB ABC AB C AB D 。这 乘 积 AB C 个积项 AB C D
逻辑函数及其简化

消去法
运用吸收律 A AB A B 消去多余因子。
L A AB BE A B BE ABE
L AB AC BC
AB A B C
AB ABC
AB C
AB AB C C ABC ABC
AB AC AB AC BC
将某一乘积项展开为两项,或添加某乘积项,再与其它乘积项 进行合并化简。
AB
A
C 00 01 11 10
00 0 1 0
C1 0 1 1 1
B
从逻辑表达式到卡诺图
(1)如果表达式为最小项表达式,则可直接填入卡诺图,方法如下:
逻辑函数包含的最小项,其对应的方格填1。 逻辑函数不包含的最小项,其对应的方格填0。
用卡诺图表示3变量逻辑函数: F ABC ABC ABC ABC
所以:F F * * AC B D B F
不受变量数目的限制。
没有固定的步骤可循; 需要熟练运用各种公式和定理; 复杂的逻辑函数化简时需要技巧和经验; 有时很难判定化简结果是否最简。
1. 逻辑函数化简的意义和目标; 2. 逻辑函数的化简方法; 3. 公式法化简的方法和步骤。
逻辑函数的 卡诺图法化简
从真值表到卡诺图
已知某逻辑函数的真值表,用卡诺图表示该逻辑函数。
解 该函数有3个变量,先 画出3变量卡诺图,然 后根据真值表将8个最 小项的取值0或者1填入 卡诺图中对应的8个方 格中即可。
真值表
ABC L
000 0 001 0 010 0 011 1 100 0 101 1 110 1 111 1
A AC BD BEF (利用 A AB A ) A C BD BEF (利用 A AB A B )
化简函数
F A A B A C B D A C E F B F D E F
第三章 逻辑函数化简

一:布尔代数的基本公式公式名称公式1、0-1律A*0=0 A+1=12、自等律A*1=A A+0=A3、等幂律A*A=A A+A=A4、互补律A*A=0 A+A=15、交换律A*B=B*A A+B=B+A6、结合律A*(B*C)=(A*B)*C A+(B+C)=(A+B)+C7、分配律A(B+C)=AB+AC A+BC=(A+B)(A+C)8、吸收律1(A+B)(A+B)=A AB+AB=A9、吸收律2A(A+B)=A A+AB=A10、吸收律3A(A+B)=AB A+AB=A+B11、多余项定律(A+B)(A+C)(B+C)=(A+B)(A+C)AB+AC+BC=AB+AC12、否否律()=A13、求反律AB=A+B A+B=A*B下面我们来证明其中的两条定律:(1)证明:吸收律1第二式AB+AB=A左式=AB+AB=A(B+B)=A=右式(因为B+B=1)(2)证明:多余项定律AB+AC+BC=AB+AC左式=AB+AC+BC=AB+AC+BC(A+A)=AB+AC+ABC+ABC=AB(1+C)+AC(1+B)=AB+AC=右式证毕注意:求反律又称为摩根定律,它在逻辑代数中十分重要的。
二:布尔代数的基本规则代入法则它可描述为逻辑代数式中的任何变量A,都可用另一个函数Z 代替,等式仍然成立。
对偶法则它可描述为对任何一个逻辑表达式F,如果将其中的“+”换成“*”,“*”换成“+”“1”换成“0”,“0”换成“1”,仍保持原来的逻辑优先级,则可得到原函数F的对偶式G,而且F与G互为对偶式。
我们可以看出基本公式是成对出现的,二都互为对偶式。
反演法则有原函数求反函数就称为反演(利用摩根定律),我们可以把反演法则这样描述:将原函数F中的“*”换成“+”,“+”换成“*”,“0”换成“1”,“1”换成“0”;原变量换成反变量,反变量换成原变量,长非号即两个或两个以上变量的非号不变,就得到原函数的反函数。
第04讲-逻辑函数代数法化简

4
逻辑代数的三条规则
规则三:对偶规则 如果将函数F作如下变换得到一个新函数,则 新函数就是原来函数F的对偶函数,记为 F’ 。
•
+
+
•
0
1
变量保持不变 第四讲 代数法化简
1
0
5
逻辑代数的三条规则
例: 求函数 F=A ( B+C)的对偶函数 解: F’ =A + B C 注意: (1)保持原运算顺序不变 (2)表达式中“大非号”不变
(3) (F’)’= F
(4)变量 A’=A
(5)若F1=F2, 则F1’=F2’
第四讲 代数法化简
6
逻辑代数的三条规则
例: 已知 F=A B+A B +B C D+A B C D 求F’, F 解: F’ =A+B (A+B) (B+C+D) A+B+C+D F =A+B (A+B) (B+C+D) A+B+C+D
A+B+C,A+B+C,A+B+C 任一最小项都有n个邻项。
第四讲 代数法化简
13
逻辑函数的标准式
分解定理 F(x1,x2,…,xn) =xi · 1,x2,…,0,…,xn)+xi· 1,x2,…,1,…,xn) F(x F(x = xi · 1,x2,…,xn)|xi=0+ xi·F(x1,x2,…,xn)|xi=1 F(x F(x1,x2,…,xn)
10
第四讲 代数法化简
逻辑函数的标准式
2.3逻辑代数及其化简

常用逻辑函数表示方法有:1、逻辑真值表2、逻辑表达式3、逻辑图各种表示方法间的相互转换4、工作波形图常用逻辑函数表示形式:1、逻辑函数的八种表示形式2、逻辑函数的标准表示形式标准表示形式间的相互转换= A利用代入规则:五、综合法 合并项法、吸收法、消去法、配项法。
F = AD + A D + AB + AC + BD + ACEF + BEF + DEFG= A(D + D ) + AB + AC + BD + ACEF + BEF = A(1 + B + CEF ) + AC + BD + BEF = A + AC + BD + BEF 加对乘分配率:A + AC = ( A + A)( A + C ) = A + C + BD + BEFF = A( A + B )( A + C )( B + D )( A + C + E + F )(B + F )( D + E + F ) 解:首先将或-与表达式通过求对偶变为与-或表达式,利用 公式法在与-或表达式中进行化简。
(分配率) ' F = A + AB + AC + BD + ACEF + BF + DEF (合并项) = A + AC (1 + EF ) + BD + BF (包含率)= A + AC + BD + BF (分配率) = A + C + BD + BF第二步:将对偶式再次求对偶,得到原函数的最简或-与式。
F = F = AC ( B + D )(B + F )''代数化简法优点 : 不受变量限制。
缺点:化简方向不明确,一般采用试凑法,要有一定技巧。
对于任何一个逻辑函数的功能描述都可以作出真值表,根 据真值表可以写出该函数的最小项之和及最大项之积的形式。
例:F = A ⊕ B真值表A 0 0 1 1 B 0 1 0 1 F F = 1 的输入变量组合有 AB = 01、10 两组。
= m1 + m 2 = ∑ (1.2 ) 最小项之和: F = A B + A B 0 1 F = 0 的输入变量组合有 AB = 00、11 两组。
6、逻辑代数的化简(公式法和卡诺图法)

6、逻辑代数的化简(公式法和卡诺图法)⼀、逻辑函数的化简将⼀个逻辑表达式变得最简单、运算量最少的形式就叫做化简。
由于运算量越少,实现逻辑关系所需要的门电路就越少,成本越低,可靠性相对较⾼,因此在设计逻辑电路时,需要求出逻辑函数的最简表达式。
由此可以看到,函数化简是为了简化电路,以便⽤最少的门实现它们,从⽽降低系统的成本,提⾼电路的可靠性。
通常来说,我们化简的结果会有以下五种形式为什么是这五种情况,这个跟我们实现的逻辑电路的元器件是有关系的。
在所有的逻辑电路中,都是通过与、或、⾮三种逻辑电路来实现的,之前说过逻辑“与或”、“或与”、“与或⾮”组合逻辑电路是具有完备性的,也就是说能够通过它们不同数量的组合能够实现任何电路。
通过不同的“与或”电路组成的电路,最后化简的表达式就是“与或”表达式,其他同理。
⼆、将使⽤“与或”表达式的化简表达式中乘积项的个数应该是最少的表达了最后要⽤到的与门是最少的,因为每⼀个乘积项都需要⼀个与门来实现。
同时也对应了或门输⼊端的个数变少,有2个与项或门就有2个输⼊端,有3个与项或门就有3个输⼊端。
所以第⼀个条件是为了我们的与门和或门最少。
每⼀个乘积项中所含的变量个数最少它是解决每⼀个与门的输⼊端最少。
逻辑函授的化简有三种⽅法三、逻辑函数的代数化简法3.1 并项法并项法就是将两个逻辑相邻(互补)的项合并成⼀个项,这⾥就⽤到了“合并律”将公因⼦A提取出来合并成⼀项,b和b⾮相或的结果就等于1,所以最后的结果就是A。
吸收法是利⽤公式“吸收律”来消去多余的项3.3 消项法消项法⼜称为吸收律消项法3.4 消因⼦法(消元法)3.4 配项法左边的例⼦⽤到了⽅法1,右边的例⼦⽤到了⽅法2。
3.5 逻辑函数的代数法化简的优缺点优点:对变量的个数没有限制。
在对定律掌控熟练的情况下,能把⽆穷多变量的函数化成最简。
缺点:需要掌握多个定律,在使⽤时需要能够灵活应⽤,才能把函数化到最简,使⽤门槛较⾼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③n个变量的全部最小项相或为1,即
m
i 0
i
1。
④n个变量的任何一个最小项有n个相邻最小项。所谓相邻最小项是指 两个最小项中仅有一个变量不同,且该变量分别为同一变量的原变量和 反变量。因此两个相邻最小项相加一定能合并成一项并消去一对以原变 量和反变量形式出现的因子。如
2. 最大项
第3讲 逻辑函数的标准 形式、公式化简法
继续讨论前式。因为
Digital Logic Circuit
F ( A, B, C ) ABC ABC ABC A BC m(1,3,6,7)
所以
F ( A, B, C ) A B C ABC AB C ABC m(0,2,4,5)
第3讲 逻辑函数的标准 形式、公式化简法
Digital Logic Circuit
课堂讨论: 最大项与最小项之间的关系。
现代教学方法与手段:
投影 PowerPoint幻灯课件
复习(提问): 逻辑函数的表示形式。 逻辑变量的取值特点。 三种基本逻辑运算。 反演律与三个规则。
前二讲内容复习
第3讲 逻辑函数的标准 形式、公式化简法
3)乘客入座,保险带已扣上,或座位上无乘客。
解:假设1)发动机开关接通 S=1
2)飞行员入座 A=1,保险带已扣上 B=1;
3)乘客入座 Mi=1,保险带已扣上Ni=1。
4)允许滑跑 F=1
F f ( S , A, B, Mi, Ni ) SAB( M 1N1 M 1)(M 2 N 2 M 2) ( MnNn Mn) SAB( N1 M 1)(N 2 M 2) ( Nn Mn)
一、最小项与最大项
1. 最小项
设一逻辑函数为
F ( A, B, C) AB AC
利用互补律A+ A =1对函数进行扩展变换得
F ( A, B, C) AB(C C) AC( B B)
ABC ABC ABC A BC
最小项:与项中包含了全部的输入逻辑变量,每个输入逻辑变量在与项 中可以以原变量的形式出现,也可以以反变量的形式出现,且只出现一 次。 又称为标准与项。
前二讲内容复习
第3讲 逻辑函数的标准 形式、公式化简法
Digital Logic Circuit
3. 反演规则 例:已知 F A[ B (C D EG)] 解:1)用反演规则 , 求其反函数。
F A B(C D)(E G)
2)用反演律变换
F A[ B (C D EG )] A B (C D EG ) A B C D EG A B C D EG A B(C D)(E G )
F ( A, B, C ) F ( A, B, C ) m0 m2 m4 m5 m0 m2 m4 m5
A B C ABC AB C ABC
( A B C)(A B C)(A B C)(A B C)
最大项:或项中包含了全部的输入逻辑变量,每个输入逻辑变量在或项 中可以以原变量的形式出现,也可以以反变量的形式出现,且只出现一 次。这种包含所有输入逻辑变量的或项称为最大项(或标准或项)。
第3讲 逻辑函数的标准 形式、公式化简法
Digital Logic Circuit
内容: 最大项和最小项的定义及其性质 逻辑函数的标准形式及其求取方法 逻辑函数的公式化简法 目的与要求: 理解并掌握最大项和最小项之间的关系; 掌握逻辑函数的标准形式及其求取方法; 理解化简的意义和标准。
重点与难点: 重点:最大项和最小项之间的关系; 难点:运用代数化简法对逻辑函数进行化简。
Digital Logic Circuit
前述逻辑函数F可用最小项的代号表示为: F(A,B,C)= m1+ m3+ m6+ m7=∑m(1,3,6,7)
第3讲 逻辑函数的标准 形式、公式化简法
最小项具有下列性质:
Digital Logic Circuit
①n个变量构成的任何一个最小项 mi,有且仅有一种变量取值组合使其值 为1,该种变量取值组合即序号 i对应的二进制数。换言之,在输入变量 的任何取值组合下必有一个最小项,并且只有一个最小项的值为1。 ②任意两个不同最小项相与为0,即mi· mj=0 (i≠j)。
第3讲2逻辑函数的标准 n种取值组合, 对于有n个输入变量(自变量)的逻辑函数,变量有 形式、公式化简法 因此有2n个最小项。全部由最小项构成的与—或表达式称为函数的最 小项表达式,又称为标准与—或表达式或标准积之和式。
为简化书写,用mi来表示一个最小项。m的下标i实际上是该最小项 将其原变量用1、反变量用0代入构成的二进制数转换为的十进制数。
逻辑函数的表达式
第3讲 逻辑函数的标准 形式、公式化简法
Digital Logic Circuit
一个逻辑函数的表达式可以有与或表达式、或与表达式、与非-与非 表达式、或非-或非表达式、与或非表达式5种表示形式。
(1)与或表达式:Y A B AC (2)或与表达式:Y ( A B )( A C ) (3)与非-与非表达式:Y A B AC (4)或非-或非表达式:Y A B A C (5)与或非表达式:Y A B AC
Digital Logic Circuit
1. 二进制转换为Gray的规则
Gi Bi Bi 1
例:
前二讲内容复习
第3讲 逻辑函数的标准 形式、公式化简法
Digital Logic Circuit
2. 建立逻辑函数 例:建立飞机允许滑跑信号的逻辑函数表达式,滑跑条件为: 1)发动机开关表达式相应于一种逻辑电路。尽管一个逻辑函数 表达式的各种表示形式不同,但逻辑功能是相同的。
逻辑函数的标准形式
第3讲 逻辑函数的标准 形式、公式化简法
Digital Logic Circuit
一个逻辑函数具有唯一的真值表,但它的逻辑表达式不是唯一的。逻辑 函数存在一个唯一的表达式形式即标准形式。