船舶系缆力计算

合集下载

船舶系缆力计算

船舶系缆力计算

设计船型:2(1:货船,2:矿石船,3:油船)装载情况:2(1:满载,2:半载或压载)船舶方形系数 C b =流向角 θ =系缆力1、风成系缆力⑴、船体水面以上横向、纵向受风面积 A xw 、A ywlogA xw =+logDW=+log =logA yw =+logDW=+log =A xw =㎡A yw =㎡⑵、作用在船舶上的计算风压力的横向、纵向分力 F xw 、F yw其中V x :设计风速的横向分量,取m/sV y :设计风速的纵向分量,取m/s ζ:风压不均匀折减系数,取F xw =**2*=KN F yw =**2*=KN2、流成系缆力a 、水流与船舶纵轴平行或流向角θ<15o 和θ>165o 时F xmcxsc C xmc:水流力船尾横向分力系数,插值计算得相对水深 d / D =/=d :系靠船结构前沿水深,取m D :与船舶计算装载度相对应的平均吃水,取mρ :水的密度,取V :水流速度,取B ' :船舶吃水线以下的横向投影面积logB ' =+logDW=+log =DW 为船舶减载排水量,取T B ' =㎡F xsc =*/2*2*=KNF xmc =*/2*2*=KN F xsc + F xmc =+=KN ⑵、水流力纵向分力 F yc12585(400000)(400000)4.09980.3770.5330.3770.5330.7330.60125.80.7330.60123063.362900.673.610-51258525.80.6369949.010-5230600.601 1.111.1(400000)1.025t/m 30.5m/s 0.140.088440000081740.14 1.0250.581741470.08 1.0250.581740.82510842313.91250.4840.6120.4840.6121.1147z2510*6.73x xw xw V A F -=z2510*0.49y yw yw V A F -=其中C yc :水流力纵向分力系数C yc =Re -0.134+b =*-0.134+=VL *νL :船舶吃水线长度,取m ν:水的运动粘性系数,取m水温:23o C系数 b =B / D=/=S :船舶吃水线以下的表面积S =1.7LD + C b LB =**+**=㎡F yc =*/2*2*=KNb 、流向角15o ≤θ≤165o时⑴、横向分力 F、纵向分力 F yc其中C xc 、C yc :水流力横向、纵向分力系数π*π*a 1 =相对水深 d / D =b 1 =a 2 =b 2 =θ =A xc 、A yc :船舶水下部分垂直和平行水流方向的投影面积A xc =B ' sin θ=*sin =㎡A yc =B ' cos θ=*cos =㎡F xc =*/2*2*=KN F yc =*/2*2*=KN3∑Fx =+=KN ∑Fy =+=KN K :系船柱受力不均匀系数,取n :计算船舶同时受力的系船柱数目,取10个α :系船缆的水平投影与码头前沿线所成的夹角,取30oβ :系船缆与水平面之间的夹角,取30o0.933000.046雷诺数 Re ==0.0060.046161.290.0060.02930.93=161.290.53002503848127253811.5 3.30431.725011.5+a 1180πθ127250.825= 1.6810++0.5b 21801.7010=C yc =b 10.0293 1.025C xc =180a 2πθ0.4710(10)1.708174+=1801.1=0.310.47369923139300.311.688049.80.6067 1.0250.51419.40.60670.76328174(10)1419.41100.6067 1.0250.58049.862604848 1.33930+48]N = 1.3[sin 30cos 30cos 30cos 30**=KN0.866+]N =10[48=]1188.21.310[0.50.8663930+0.866221.1 1.3C xsc :0.140.1 C xmc :0.080.05(10-4202510.892.23.5###0.006。

打桩船系缆力计算

打桩船系缆力计算

打桩船系缆力计算
打桩船在工作时,需要计算系缆力以确保船只的安全。

以下是打桩船系缆力的计算过程:
1. 计算船体水面以上部分的纵向和横向受风面积:
- 纵向:$log Axw = 4.09984$;
- 横向:$log Ayw = 3.3629$。

2. 计算作用在船舶上的风力的纵向和横向分力:
- $Fxw = 2\times25.8\times10^{-5}\times AywVx$;
- $Fyw = 49.0\times10^{-5}\times AywVy$。

其中,$Vx$和$Vy$分别为风速在纵向和横向的分量,$Ayw$为船舶水面以上部分的横向受风面积。

在计算系缆力时,需要考虑船只的具体情况和工作环境,并采用适当的安全系数来确保船只的稳定和安全。

如果需要更详细的计算过程或其他信息,请提供更多的上下文或与专业工程师联系。

中英规范中船舶系缆力计算的对比

中英规范中船舶系缆力计算的对比

•工程设计•中英规范中船舶系缆力计算的对比中交上海港湾工程设计研究院有限公司宗嬪慧张±f [摘要]本文主要对比中英规范中有关船舶系缆力规定的差异,通过系缆力计算方法、船舶所受风荷载及船舶所受水流力三方面的分析,结合马来西亚沙巴州尿素出运码头实例,总结引起差异的影响因素,并得出结论。

[关键词]船舶荷载系缆力风荷载水流力船舶荷载是码头设计的主要荷载之一,对码头结构计算和桩基布置等都有较大影响。

由于目前的海外工程常要求按英国标准设计,本文主要对比中英两国规范中规定的船舶系缆力计算差异。

其中,中国规范釆用《港口工程荷载规范》(JTS144-1-2010),英国标准采用BS 6349系列规范的规定。

1计算方法1.1中国规范船舶系缆力计算方法按照《港口工程荷载规范》(JTS144-1-2010)的相关规定,系缆力应考虑风和水流对船舶共同作用所产生的横向分力总和与纵向分力总和叭船舶系缆力示意图见图1。

N’=Nsin0式中:N—系缆力标准值(kN);K—受力不均匀系数;n—受力系船柱数目;a-系船缆水平投影与码头前沿线所形成的夹角(°);0—系船缆与水平面的夹角(°);N*、N,N—分别为系缆力的横向、纵向、竖向分力(kN);YFx、YFy—可能同时岀现横向、纵向分力总和(kN)。

除了按照上式规定计算外,规范还要求系缆力标准值不应小于表1和表2所列数值。

N=斷工匸,.严]rt I sin a x cos(3sin0Xcosa丿Nx二N sinacos0Ny=Ncosacos0表1海船系缆力标准值船舶载重量DW/t系缆力标准值/kN 1000150200020050003001000040020000500300005505000065080000750100000100012000011001500001300200000150025000020003000002000表2内河货船和驳船系缆力标准值船舶载重量DW/t系缆力标准值/kN DWW10030100VDWW50050500<DWWl0001001OOO<DWW20001502000VDWW30002003000VDWW50002501.2英国标准船舶系缆力计算方法根据《海工建筑物》BS6349第一分册、第四分册,系缆力计算主要分为排水量在20000t 以下的船舶和排水量超过20000t的船舶两大类。

码头结构系缆力标准值计算方法研究

码头结构系缆力标准值计算方法研究

码头结构系缆力标准值计算方法研究孙英广;朱利翔;谷文强【摘要】International and China domestic standards and codes involving the standard value calculation of maritime structure mooring load have been systematically compared and analyzed. The calculation methods for the standard value of mooring load are adopted in some overseas port projects, and an introduction to the above calculation process is made in detail. Furthermore, the calculation methods are analyzed and summarized respectively for the standard value of mooring load on the sheltered or open sea maritime structure.%本文对国内外规范和标准中有关码头结构系缆力标准值的计算方法的有关规定进行了系统地对比和分析研究,并介绍了某些海外码头工程案例所采用的系缆力标准值计算方法,给出了系缆力标准值计算的一般流程和方法,并详细地分析总结出了有掩护码头和无掩护码头系缆结构计算中的系缆力荷载标准值的计算方法.【期刊名称】《港工技术》【年(卷),期】2017(054)004【总页数】7页(P39-45)【关键词】系缆力;有掩护码头;开敞式码头;系船柱;快速脱缆钩;港口工程【作者】孙英广;朱利翔;谷文强【作者单位】中交第四航务工程勘察设计院有限公司,广东广州 510230;中交第四航务工程勘察设计院有限公司,广东广州 510230;中交第四航务工程勘察设计院有限公司,广东广州 510230【正文语种】中文【中图分类】U656.1+1在港口工程项目的码头结构计算中,系缆力标准值的选取对于结构计算具有非常重要的影响,因为系缆力往往是结构计算的主要荷载,对于专门的系缆结构(例如系缆墩)甚至是控制荷载。

高桩码头计算说明

高桩码头计算说明

第6章水工建筑物6.1 建设内容本工程拟建5万t级通用泊位2个。

水工建筑物包括码头平台、固定引桥与护岸。

结构安全等级均为二级。

6.2 设计条件6.2.1 设计船型5万t级散货船:船长×船宽×型深×满载吃水=223×32.3×17.9×12.8m6.2.2 风况基本风压 0.70Kpa按九级风设计,风速为22m/s,超过九级风时,船舶离港去锚地避风。

6.2.3 水文(1)设计水位(85国家高程)设计高水位: 2.77m 极端高水位: 4.18m设计低水位: -2.89m 极端低水位: -3.96m(2)水流水流设计流速 V=1.2m/s流向:与船舶纵轴线平行。

(3)设计波浪:波浪重现期为50年,设计高水位下H1%=1.81m; H4%=1.52m;H13%=1.22m;T mean=3.8s,L=22.96m。

6.2.4 地质条件码头平台与固定引桥区在勘察控制深度范围内地基土层为海陆交互相沉积、陆相冲洪积成因类型和凝灰岩风化岩层,从上而下分别为淤泥、块石、残积粘性土、强风化凝灰岩与中风化凝灰岩。

其中淤泥层厚为20.95m ~51.15m ;块石厚度分布不均;残积粘性土厚度3.5~9.69m ;强风化凝灰岩厚度分布不均;中风化凝灰岩最大揭露厚度为5.70m ,未揭穿。

其物理力学性质指标见表3-2。

护岸与陆域部分在勘察控制深度范围内地基土层自上而下分别为耕土、淤泥、粘土、角砾混粉质粘土、粘土、含角砾粉质粘土、强风化基岩与中等风化基岩等。

其中,淤泥厚15.50~37.00m ;粘土层厚0.7~26.00m ;角砾混粉质粘土厚0.8~16.00m ;含角砾粉质粘土厚4.5~32.80m ;强风化基岩厚0.2~3.70m ;中等风化基岩最大揭露深度为6.90m ,未揭穿。

其物理力学性质指标见表3-3。

6.2.5 设计荷载 6.2.5.1 船舶荷载 (1)系缆力[]sin cos cos cos y x F F K N n αβαβ=+∑∑ 式中:∑x F ,∑y F ——分别为可能同时出现的风和水流对船舶作用产生的横向分力总和及纵向分力总和(kN);K ——系船柱受力分布不均匀系数,K 取1.3; n ——计算船舶同时受力的系船柱数目,取n=5; α——系船缆的水平投影与码头前沿线所成的夹角(°),取α=30°;β——系船缆与水平面之间的夹角(°),取β=15°。

港口码头船舶荷载计算

港口码头船舶荷载计算
10、船舶 荷载
10.1 一般 规定
10.2 系缆 力
系缆力标 准值
P22 N 703.3301 kN
系缆力横 向分力
系缆力纵 向分力
系缆力竖 向分力
750 kN Nx 362.2222 kN Ny 627.3872 kN Nz 194.1143 kN
可能同时 出现的风 和水流对 船舶作用 的横向分
(2)油船 的横向投 影面积
logB· 3.14023 log
(DW) 4.30103 DW 20000 B` 1381.117 m2
(下公式 算)
F.0.1.4水
流力纵向
分力
水流对船
舶作用产
生的水流
力纵向分

Fyc 98.62471 kn
船舶吃水
线以下的
表面积
S 6301.36 m2
水流力纵
向分力系
一倍船长
(变量) (变量) 内河 散杂 货 (变量)
(计算得)
(查下表 得)
系缆力的 标准值不 应大于缆 绳的破断 力。
垂直于码头 前沿线的是 横向分力
平行于码头 前沿线的是 纵向分力
(当实际受 力的系船柱 数目n=2 时,K取 1.2;n>2 时,K取1.3 。)
(查下表 得)
(查下表 得) (查下表 得)

Cyc 0.031303
水密度
ρ
1 t/m3
水流速度
V
1 m/s
船舶吃水
线以下的
表面积
S
m2
水流对船
舶作用的
雷诺数
Re
160
系数
b 0.008
1.025
船舶吃水 线长度

船舶靠泊系缆力

船舶靠泊系缆力

船舶靠泊系缆力一、介绍船舶靠泊系缆力是指船舶在靠泊或离港过程中,使用缆绳与码头或锚地等固定物相连接产生的力量。

这种力量对于保持船舶的稳定性和安全性至关重要。

本文将详细探讨船舶靠泊系缆力的作用、相关计算方法和影响因素等内容。

二、船舶靠泊系缆力的作用船舶靠泊系缆力具有以下几个作用: 1. 保持船舶位置稳定:船舶靠泊系缆力可以防止船舶在风浪或潮流的影响下偏离预定位置,从而保持船舶的位置稳定。

2. 控制船舶运动:通过调整系缆的张力,可以控制船舶在靠泊或离港过程中的速度和方向,提高船舶的操纵性。

3. 分散荷载:船舶靠泊系缆力可以分散船舶与码头之间的载荷,减轻码头的压力,保护码头结构。

三、船舶靠泊系缆力的计算方法船舶靠泊系缆力的计算涉及到诸多因素,包括船舶类型、尺寸、系缆方式、环境条件等。

下面将介绍两种常用的计算方法。

1. 经验公式法经验公式法是根据大量实际船舶靠泊数据得出的经验公式进行计算。

公式的形式通常为:F = C * A * V^2其中,F表示系缆力,C为系数,A为横截面积,V为风速或海流速度。

2. 试验方法试验方法是通过实际试验得出系缆力与各种因素之间的关系,从而进行计算。

具体步骤包括: 1. 在实际环境中布置传感器,测量船舶靠泊系缆力和各种影响因素。

2. 统计并分析试验数据,建立系缆力与各因素之间的关系模型。

3. 根据建立的关系模型,对于给定的船舶和环境条件,进行系缆力的计算。

四、船舶靠泊系缆力的影响因素船舶靠泊系缆力受以下几个主要因素的影响:1. 船舶尺寸和型号船舶的尺寸和型号会影响船舶的抗风能力和水动力特性,从而影响系缆力的大小。

2. 风速和海流速度风速和海流速度的大小和方向都会影响船舶受到的外力,进而影响系缆力的大小和方向。

3. 系缆方式系缆方式包括单缆系泊、双缆系泊和多缆系泊等,不同的系缆方式会对船舶靠泊系缆力产生不同的影响。

4. 缆绳材料和直径缆绳的材料和直径会影响缆绳的强度和刚度,进而影响系缆力的传递。

码头系泊力计算

码头系泊力计算

X X 货柜码头系泊力计算书一、计算说明:拟建XX国际货柜码头由于靠岸壁的水深不足,不能停靠大型的集装箱货船,要求XX国际货柜码头向外延伸4.2米,在原有的码头前沿增加6个浮动箱式护舷,间距为32米设一个,每个浮动箱式护舷长7.5米,宽3.4米,由6个浮箱箱体、护舷橡胶与系泊系统等组成的浮动钢质浮箱,作为码头的延伸部分,通过该设施可以满足停靠10万吨级集装箱船舶。

计算内容:1.钢质浮箱通过左右两根系缆绳固定,在台风时,按八级风计算,超过八级风时船舶离港,去锚地停泊,此时主要考虑浮箱本身的安全。

而船舶靠离岸的安全主已由专家负责论证。

因此,我们仅对浮箱在台风时无靠泊状态的最大受力进行计算与安全分析。

风与波浪计算要素取13级台风,设计最大风速取47.1m/s,设计最大波高为1.9m,设计最大周期为4.9秒. 2.在八级风及以下的情况下,箱体的结构应满足停靠10万吨级的集装箱,此时,我们对浮箱在平风时有靠泊状态的最大受力进行计算与安全分析。

风速按极端风速20.7m/s,设计最大波高为1.4m,设计最大周期为4.9秒. 3.在八级风及以下的情况下,箱体的护舷碰垫应满足停靠10万吨级的集装箱船时的挤靠力及对撞击力的吸能量的要求。

4. 由于低潮与高潮的潮位差较大,系缆绳的长度通过计算确定,既要有足够长度又不能碰到原码头护舷。

二、设计依据:根据XXXX航务工程勘察设计院《XX港货运码头改造工程方案设计》三、计算规范:1、2001年“钢质海船入级与建造规范”。

2、TJT 294-98 《斜坡码头及浮码头设计与施工规范》。

3、日本《JSDS造船舾装设计基准》。

4、JTJ 215-98 《港口工程荷载规范》。

四、设计条件:根据《XX港区泊位靠泊能力论证》1.大型集装箱船舶船型尺度表船型尺度表船舶吨级载箱数DWT(t)总长L 型宽B 型深H 满载吃水T (TEU)7000030040.324.3144601~600010000034742.824.414.56001~820020.7m/s 47.1m/s设计低水位:0.72m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档