齿轮传动效率及齿轮疲劳实验修订版
齿轮传动效率及齿轮疲劳实验

齿轮传动效率及齿轮疲劳实验(附加机械功率、效率测试实验)一.实验目的1.了解封闭(闭式)齿轮实验机的结构特点和工作原理。
2.了解齿轮疲劳实验的过程,及通过实验测定齿轮疲劳曲线的方法。
3.在封闭齿轮实验机上测定齿轮的传动效率。
4.介绍机械功率、效率测定开式实验台,了解一般机械功率、效率的测试方法。
二.实验设备及工作原理用于定子的电磁力矩相平衡,故转矩传感器测得的力矩即为电动机的输出转矩T 0;电动机转速为n ,电动机输出功率为 P0=n ·T 0 / 9550 (KW)。
3. 封闭系统的加载当实验台空载时,悬挂齿轮箱的杠杆通常处于水平位置,当加上载荷W 后,对悬挂齿轮箱作用一外加力矩WL ,使悬挂齿轮箱产生一定角度的翻转,使两个齿轮箱内的两对齿轮的啮合齿面靠紧,这时在弹性扭力轴内存在一扭矩T 9(方向与外加负载力矩WL 相反),在万向节轴内同样存在一扭矩T 9'(方向同样与外加力矩WL 相反);若断开扭力轴和万向节轴,取悬挂齿轮箱为隔离体,可以看出两根轴内的扭矩之和(T 9+T 9')与外加负载力矩WL 平衡(即T 9+T 9'=WL );又因两轴内的两个扭矩(T 9和T 9')为同一个封闭环形传动链内的扭矩,故这两个扭矩相等(T 9=T 9'),即2T 9=WL , T 9=WL/2(Nm );由此可以算出该封闭系统内传递的功率为:P 9=T 9 n / 9550=WLn /19100 (KW)其中:n--电动机及封闭系统的转速(rpm );W--所加砝码的重力(N );L--加载杠杆(力臂)的长度,L= 0.3 m 。
4. 单对齿轮传动效率设封闭齿轮传动系统的总传动效率为η;封闭齿轮传动系统内传递的有用功率为P 9;封闭齿轮传动系统内的功率损耗(无用功率)等于电动机输出功率P 0,即:P 0=(P 9 /η)-P 9η=P 9 /(P 0+P 9)=T 9 /(T 0+T 9 )若忽略轴承的效率,系统总效率η包含两级齿轮的传动效率,故单级齿轮的传动效率为:9091T T T +==ηη 5. 封闭功率流方向封闭系统内功率流的方向取决于由外加力矩决定的齿轮啮合齿面间作用力的方向和由电动机转向决定的各齿轮的转向;当一个齿轮所受到的齿面作用力与其转向相反时,该齿轮为主动齿轮,而当齿轮所受到的齿面作用力与其转向相同时,则该齿轮为从动齿轮;功率流的方向从主动齿轮流向从动齿轮,并封闭成环。
齿轮检验标准

齿轮检验标准(总6页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March2018检验标准(齿轮)[文档副标题]中国制造进料检验标准(齿轮)齿轮箱产品检验指导书1 2适用范围适用于齿轮产品检验。
齿轮箱产品检验按照单机检验规范和要求检验,检验项目和内容如下:外观及附带资料检验铸件不允许有明显的披缝、凹陷、飞边、胀箱等缺陷;焊缝符合图纸要求,表面光滑平整,无裂纹、焊瘤、焊渣、飞溅;经过喷砂(丸)处理,表面质量等级应达到 Sa2级,经过手工或机械打磨,表面质量应达到 St2级;外露结合面边缘整齐、均匀,不应有明显的错位;表面漆膜厚度,遵从技术文件要求,油漆无流挂、漏涂、污物、剥落现象;装入沉孔的螺钉不应高于零件表面,其头部与沉孔之间不得有明显偏心;固定销、螺栓尾端应略高于零件表面;外露轴端略高于包容件的端面,内孔表面与壳体凸缘间的壁厚应均匀对称;外露件表面不应有磕碰、锈蚀、锐角、飞边、毛刺、残漆、油污、型砂,外露的螺钉、螺母、定位销等紧固件应完整,不得有扭伤锤伤划痕,安装牢固,不应有松动现象;电机等配套件型号、规格与要求一致,外观无损伤、碰伤、掉漆;外型尺寸及安装孔位符合图纸要求;附带资料齐全(关键件及部件出厂检验记录、热处理或振动时效报告、特殊材质证明、技术图纸、配套的未装零件和外购件明细)。
空运转试验试验前,检查油位,加注润滑油。
试验在无负荷状态下进行,试验条件与齿轮箱产品工况一致,试验不少于 4小时,正反各 2小时。
用以检验齿轮箱的运转状态、温度变化、功率消耗,以及运转动作的灵活性、平稳性、可靠性、安全性。
检验项目和内容如下:轴承温度检测:运转开始和结束时,用红外测温仪在轴承端盖处检测轴承温度。
轴承温度及温升,应符合技术协议及相关技术文件要求,如无明确规定,可参考以下指标:室温下,滚动轴承温度不高于 80℃,温升不超过 40℃。
齿轮接触疲劳极限表

齿轮接触疲劳极限表1. 引言齿轮是机械传动中常用的元件,广泛应用于各种机械设备中。
在长时间的使用过程中,由于受到载荷和速度等因素的影响,齿轮可能会发生疲劳破坏。
为了确保齿轮的可靠性和寿命,需要对其进行疲劳极限测试和分析。
本文将介绍齿轮接触疲劳极限表的相关内容,包括定义、测试方法、影响因素以及应用等方面。
2. 定义齿轮接触疲劳极限表是一种用于描述齿轮在特定工况下能够承受的最大载荷和寿命的表格。
它基于实验数据和统计分析,可以帮助设计师选择合适的材料、几何参数和工艺要求,以提高齿轮的使用寿命。
3. 测试方法3.1 实验设备进行齿轮接触疲劳极限测试需要一台专门的实验设备,该设备通常包括以下主要部件:•驱动装置:用于提供齿轮的转动力和转速。
•测试台架:用于支撑和固定齿轮及其相关部件。
•载荷装置:用于施加载荷到齿轮上,可以通过液压、气压或机械方式实现。
•测试传感器:用于测量齿轮的载荷、转速、温度等参数。
•数据采集系统:用于记录和分析测试数据。
3.2 测试步骤进行齿轮接触疲劳极限测试的一般步骤如下:1.准备测试样品:选择合适的齿轮样品,并根据设计要求进行加工和热处理等工艺处理。
2.安装样品:将齿轮样品安装到测试台架上,并确保其正确对中和固定。
3.设置测试参数:根据设计要求设置驱动装置、载荷装置和其他相关参数,如转速、载荷大小等。
4.运行测试:启动实验设备,以预定的工况条件下运行一段时间,记录相关数据。
5.结果分析:根据记录的数据,进行统计分析和曲线拟合,得出疲劳寿命曲线和极限载荷值。
4. 影响因素齿轮接触疲劳极限受多种因素的影响,主要包括以下几个方面:4.1 材料性能齿轮材料的硬度、强度、韧性等性能指标会直接影响其疲劳寿命。
通常情况下,选择高强度、高硬度和高韧性的材料可以提高齿轮的疲劳极限。
4.2 几何参数齿轮的模数、压力角、齿数等几何参数也会对其疲劳寿命产生影响。
一般来说,较大的模数和压力角以及适当的齿数可以提高齿轮的承载能力和使用寿命。
第十一章 齿轮传动

强度计算方法
当量齿轮法,强度当量。 接触强度计算公式
校核公式
H
ZEZH Z
KT 1 u 1 bd 1
2
u
H
H lim
N / mm
2
设计公式
d1 2 KT
3 1
SH
2
d
u 1 ZEZ u
H
Z
H
mm
Z
cos 螺旋角系数
H
[
H
]
σH ——齿面啮合点最大接触应力 [σH]——齿轮材料的许用接触应力
圆柱面的最大接触应力σH的计算
赫兹公式:
H
4
Fn 2 ab
Fn
1
1
1 1 E1
2
1
2
1 21 E2
2
b
σH ——最大接触应力
与法向力Fn成正比; 与接触变形宽度2a成反比 与曲率半径ρ1 、ρ2成反比。 与宽度b成反比。
增加中心距a; 减小外载荷T1; 选σHlim高的材料和热处理。
336 ( u 1) u
3
提高许用接触应力[σH] :
KT 1 ba
2
H
H
H lim
SH
11-6 直齿圆柱齿轮传动的轮 齿弯曲强度计算
轮齿相当于一个悬臂 梁,受载后会发生弯 曲。 两个问题:
计算时载荷的作用点 及大小 危险截面的位置
齿轮传动效率测定

验证性实验指导书实验名称:齿轮传动效率测定实验简介:齿轮是重要的机械传动零件,所以对齿轮传动的理论和实验研究都是很必要的。
齿轮传动往往要进行轮齿静强度、齿根弯曲疲劳强度、齿面接触疲劳强度、齿面磨损、齿面胶合和影响齿轮传动性能的因素(如材料、制造工艺、热处理工艺、润滑、轮齿载荷分布等)的试验,以及对齿轮传动性能(如传动效率、动载荷、噪声、工作温度等)的测定。
为此,人们采用了许多试验方法和试验设备。
本实验是针对齿轮传动的效率进行验证性测定。
适用课程:机械设计实验目的:A了解电功率封闭式齿轮传动试验台的基本原理、结构及特点;B掌握功率流分析、效率测定的方法;C测量单级圆柱齿轮减速器的传动效率,画出它的效率曲线;D初步了解拟定实验方案、设计实验装置和数据测量等方面的知识。
面向专业:机械类实验项目性质:验证性(课内选做)计划学时: 2学时实验分组:4人/组实验照片:《机械设计》课程实验实验二齿轮传动效率测定齿轮是重要的机械传动零件,所以对齿轮传动的理论和实验研究都是很必要的。
齿轮传动往往要进行轮齿静强度、齿根弯曲疲劳强度、齿面接触疲劳强度、齿面磨损、齿面胶合和影响齿轮传动性能的因素(如材料、制造工艺、热处理工艺、润滑、轮齿载荷分布等)的试验,以及对齿轮传动性能(如传动效率、动载荷、噪声、工作温度等)的测定。
为此,人们采用了许多试验方法和试验设备。
本实验是针对齿轮传动的效率进行验证性测定。
一、实验目的1. 了解电功率封闭式齿轮传动试验台的基本原理、结构及特点;2.掌握功率流分析、效率测定的方法;3.测量单级圆柱齿轮减速器的传动效率,画出它的效率曲线;4.初步了解拟定实验方案、设计实验装置和数据测量等方面的知识。
二、实验设备和工具1. Z-45直流电动机2台;2. ZJ型转矩转速传感器2台;3. ZD10型减速器2台;4. JXW-1型机械效率仪1台;5. TSGC-20调压器1台;6. 加载控制箱1台;7. CP-80打印机1台。
2024版《机械设计基础》第六章齿轮传动

安全系数
在强度计算中引入安全系数,以保证齿轮 在极端工况下仍能安全可靠地工作。
齿轮疲劳寿命预测方法
疲劳寿命概念
齿轮在循环载荷作用下,经过一定次 数的应力循环后发生疲劳破坏的寿命。
影响因素
齿轮的疲劳寿命受多种因素影响,如 材料性能、制造工艺、润滑条件和使 用环境等。
预测方法
基于疲劳累积损伤理论,结合齿轮的 受力分析和材料特性,采用试验或数 值模拟等方法预测齿轮的疲劳寿命。
确定合理的齿轮参数
包括模数、齿数、压力角、螺旋角等, 以满足传动比、承载能力和传动平稳 性等要求。
保证齿轮的精度和强度
通过合理的制造工艺和材料选择,确 保齿轮具有足够的精度和强度,以承 受传动过程中的载荷和冲击。
考虑润滑和冷却
为齿轮传动装置提供适当的润滑和冷 却,以减少磨损、降低温度和防止腐 蚀。
典型齿轮传动装置实例分析
齿轮热处理工艺选择及优化
退火
消除齿轮内部应力,降低硬度,便 于加工。
正火
提高齿轮硬度和强度,改善切削性 能。
淬火
使齿轮获得高硬度和高耐磨性,提 高齿轮使用寿命。
回火
消除淬火产生的内应力,稳定齿轮 尺寸,提高韧性。
齿轮制造工艺流程简介
01
02
齿轮毛坯加工
包括锻造、铸造、焊接等工艺, 获得齿轮的基本形状。
齿轮传动具有传动比准确、效率高、结构紧凑、工作可靠、寿命长等 优点。同时,齿轮传动也具有制造和安装精度要求高、成本较高等缺 点。
齿轮传动分类及应用
分类
根据齿轮的轴线相对位置,齿轮传动可分为平行轴齿轮传动、 相交轴齿轮传动和交错轴齿轮传动。根据齿轮的齿形,齿轮传 动又可分为直齿、斜齿、人字齿、圆弧齿等。
机械设计实验齿轮传动效率及齿轮疲劳实验

机械设计实验—齿轮传动效率及齿轮疲劳实验
二.实验设备及工作原理
2.电动机的输出功率
1) 电动机1为直流调速电机,电动机转子与定轴齿轮箱输 入轴相联,电动机采用外壳悬挂支承结构(既电机外壳可绕支 承轴线转动);
机械设计实验—齿轮传动效率及齿轮疲劳实验
二.实验设备及工作原理
2.电动机的输出功率
2)电动机的输出转矩等于电动机转子与定子之间相互作用 的电磁力矩,与电动机外壳(定子)相联的转矩传感器2提供 的外力矩与作用于定子的电磁力矩相平衡,故转矩传感器测得 的力矩即为电动机的输出转矩T0;电动机转速为n,电动机输 出功率为 P0=n•T0 / 9550 (KW)。
方法。 3、在封闭齿轮实验机上测定齿轮的传动效率。 4、介绍机械功率、效率测定开式实验台,了解一般机械功率、
效率的测试方法。
机械设计实验—齿轮传动效率及齿轮疲劳实验
二.实验设备及工作原理
1、 封闭(闭式)传动系统
1)具有2个完全相同的齿轮箱(悬挂齿轮箱7和定轴齿轮箱 4), 每个齿轮箱内都有2个相同的齿轮相互啮合传动(齿轮9与 9′,齿轮5与5’),两个实验齿轮箱之间由两根轴(一根是用于 储能的弹性扭力轴6,另一根为万向节轴10)相联,组成一个 封闭的齿轮传动系统。
由此计算出封闭系统内传递的功率
机械设计实验—齿轮传动效率及齿轮疲劳实验
二.实验设备及工作原理
4.单对效率为η;
封闭齿轮传动系统内传递的有用功率为P9; 封闭齿轮传动系统内的功率损耗(无用功率)等于电动机输出功率P0, 即:P0=(P9 /η)-P9 η=P9 /(P0+P9)=T9 /(T0+T9 ) 若忽略轴承的效率,系统总效率η包含两级齿轮的传动效率,故单级齿轮
解决设计齿轮传动时齿面接触疲劳强度不够的问题

理论研究
深入研究齿面接触疲劳的机理,建立更为精确的理论模型,为设 计提供更为准确的指导。
新材料与新工艺
探索和开发具有更高强度、耐磨性和耐热性的新材料和加工工艺。
智能化设计
利用人工智能和数值模拟技术,实现齿轮传动的智能化设计和优化。
对实际应用的建议
优化设计
01
在设计阶段充分考虑齿面接触疲劳强度,通过优化几何参数和
03
解决策略与方案
材料选择与处理
选用高强度材料
选择具有高强度和耐磨性的材料, 如合金钢、不锈钢等,以提高齿 面的抗疲劳性能。
材料热处理
通过适当的热处理工艺,如淬火、 回火等,改善材料的硬度和韧性, 增强齿面的耐磨性和抗疲劳性能。
表面强化处理
采用喷丸、碾压、渗碳淬火等表面 强化处理技术,提高齿面的硬度和 抗疲劳性能。
解决设计齿轮传动时齿面 接触疲劳强度不够的问
• 问题概述 • 问题原因分析 • 解决策略与方案 • 案例分析 • 结论与建议
01
问题概述
齿面接触疲劳强度的定义
01
齿面接触疲劳强度是指齿轮在接 触应力作用下抵抗疲劳破坏的能 力。
02
齿面接触疲劳强度取决于齿轮材 料的机械性能、热处理方式、表 面处理、齿轮参数以及工作条件 等因素。
优化设计
改进齿形设计
优化齿形参数,减小应力 集中,改善齿面接触状况, 降低接触疲劳应力。
增加润滑设计
合理设计润滑系统,确保 齿轮在传动过程中得到充 分润滑,减少摩擦和磨损。
优化装配设计
确保齿轮装配精度,减小 装配误差,提高齿轮传动 的平稳性和可靠性。
制造工艺改进
精密加工
质量检测与控制
采用先进的加工设备和工艺,提高齿 轮的加工精度和表面光洁度,减小齿 轮的制造误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
齿轮传动效率及齿轮疲
劳实验修订版
IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】
齿轮传动效率及齿轮疲劳实验
(附加机械功率、效率测试实验)
一.实验目的
1.了解封闭(闭式)齿轮实验机的结构特点和工作原理。
2.了解齿轮疲劳实验的过程,及通过实验测定齿轮疲劳曲线的方法。
3.在封闭齿轮实验机上测定齿轮的传动效率。
4.介绍机械功率、效率测定开式实验台,了解一般机械功率、效率的测试方法。
二.实验设备及工作原理
1.封闭(闭式)传动系统
封闭齿轮实验机具有2个完全相同的齿轮箱(悬挂齿轮箱7和定轴齿轮箱4),每个齿轮箱内都有2个相同的齿轮相互啮合传动(齿轮9与9',齿轮5与5'),两个实验齿轮箱之间由两根轴(一根是用于储能的弹性扭力轴6,另一根为万向节轴10)相联,组成一个封闭的齿轮传动系统。
当由电动机1驱动该传动系统运转起来后,电动机传递给系统的功率被封闭在齿轮传动系统内,既两对齿轮相互自相传动,此时若在动态下脱开电动机,如果不存在各种摩擦力(这是不可能的),且不考虑搅油及其它能量损失,该齿轮传动系统将成为永动系统;由于存在摩擦力及其它能量损耗,在系统运转起来后,为使系统连续运转下去,由电动机继续提供系统能耗损失的能量,此时电动机输出的功率仅为系统传动功率的20%左右。
对于实验时间较长的情况,封闭式实验机是有利于节能的。
P 9=T 9 n / 9550=WLn /19100 (KW) 其中:n--电动机及封闭系统的转速(rpm ); W--所加砝码的重力(N );
L--加载杠杆(力臂)的长度,L= 0.3 m 。
4. 单对齿轮传动效率
设封闭齿轮传动系统的总传动效率为η; 封闭齿轮传动系统内传递的有用功率为P 9;
封闭齿轮传动系统内的功率损耗(无用功率)等于电动机输出功率P 0,即:
P 0=(P 9 /η)-P 9
η=P 9 /(P 0+P 9)=T 9 /(T 0+T 9 )
若忽略轴承的效率,系统总效率η包含两级齿轮的传动效率,故单级齿轮的
传动效率为:909
1T T T +==ηη
5. 封闭功率流方向
封闭系统内功率流的方向取决于由外加力矩决定的齿轮啮合齿面间作用力的方向和由电动机转向决定的各齿轮的转向;当一个齿轮所受到的齿面作用力与其转向相反时,该齿轮为主动齿轮,而当齿轮所受到的齿面作用力与其转向相同时,则该齿轮为从动齿轮;功率流的方向从主动齿轮流向从动齿轮,并封闭成环。
6.齿轮疲劳试验及疲劳曲线的求法
将两对试验齿轮分别安装在悬挂齿轮箱和定轴齿轮箱内,由加载砝码通过加载杠杆施加一定的外载荷,在该载荷下由电动机驱动运转,直至齿轮轮齿发生疲劳破坏,记录该载荷(应力)下所对应的运转循环次数;在不同的外载荷下,试验得到一系列相应的循环次数,由这些试验数据即可绘制出该齿轮的疲劳曲线。
可以看出,通过试验测定齿轮的疲劳曲线,需要比较长的试验时间,学生实验只体会实验过程。
7.机械功率、效率测定开式实验台简介
开式机械功率、效率实验台的组成如图所示。
原动机(电动机)为被测机械提供动力,制动器作为被测机械的负载。
由原动机输出的动力经被测机械传递到制动器,所传递的能量在制动器“消耗掉”(转化成其它形式的能,如热能),形成开式传动系统。
开式传动实验台的组成简便灵活,但能耗较大,适用于被测设备类型多变,实验周期较短的情况。
为了测量被测机械所传递的功率及传动效率,将转矩转速传感器串接在被测机械的输入轴和输出轴上,分别测出两轴上所传递的扭矩和转速,即可算出被测机械的输入功率和输出功率,输出功率与输入功率之比即为传动效率。
由指导教师在开式实验台上演示机械传动效率的测试过程。
转矩转
转矩转
三.实验方法及注意事项
1.打开电源前,应先将电动机调速旋钮逆时针轻旋到头,避免开机时电动机突然启动。
2.打开电源,按一下“清零键”进行清零;此时,转速显示“0”,电动机转矩显示“·”,说明系统处于“自动校零”状态;校零结束后,转矩显示为“0”。
3.在保证卸掉所有加载砝码后,调整电动机调速旋钮,使电动机转速为600 r/min。
4.在砝码吊篮上加上第一个砝码(10N),并微调转速使其始终保持在预定转速(600r/min)左右,在待显示稳定后(一般调速或加载后,转速和转矩显示值跳动2-3次即可达到稳定值),按一下“保持键”,使当时的显示值保持不变,记录该组数值;然后按一下“加载键”,第一个加载指示灯亮,并脱离“保持”状态,表示第一点加载结束。
5.在砝码吊篮上加上第二个砝码,重复上述操作,直至加上8个砝码,8个加载指示灯全亮,转速及转矩显示器分别显示“8888”,表示实验结束。
6.记录下各组数据后,应先将电机转速慢慢调速至零,然后再关闭实验台电源。
7.由记录数据,作出齿轮封闭传动系统的传动效率(η-T9)曲线。
四.思考题
1.封闭式传动系统为什么能够节能?
2.封闭齿轮传动如何区分主动与被动齿轮?
3.欲改变功率流方向,采用什么方法?
4.改变齿轮工作面采用什么方法?
五. 实验报告
1. 记录对应外载荷下的转速n 、扭矩T 9,并计算出系统效率η和单对齿轮的效率1η。
2. 绘制9T -η及90T T -的变化曲线。
3. 回答思考题。