西华大学数字图像处理报告 (1)
数字图像处理实习报告

数字图像处理实习报告在当今数字化的时代,数字图像处理技术在众多领域中发挥着至关重要的作用,从医疗诊断到卫星遥感,从娱乐产业到工业检测,其应用无处不在。
通过这次数字图像处理实习,我对这一领域有了更深入的了解和实践经验。
实习的初始阶段,我主要进行了相关理论知识的学习。
数字图像处理涵盖了众多概念,如图像的数字化表示、像素、灰度值、分辨率等。
了解这些基础知识是后续处理图像的基石。
同时,我还学习了常见的图像格式,如 JPEG、PNG、BMP 等,以及它们的特点和适用场景。
在掌握了一定的理论基础后,我开始接触图像处理的基本操作。
图像增强是我最先实践的部分,通过调整图像的对比度和亮度,能够使原本模糊不清或暗淡的图像变得更加清晰和易于观察。
例如,对于一张曝光不足的照片,增加亮度可以让隐藏在黑暗中的细节显现出来;而提高对比度则可以使图像中的不同区域更加分明,突出重点。
图像滤波是另一个重要的环节。
均值滤波可以有效地去除图像中的噪声,但在一定程度上会使图像变得模糊;中值滤波则能够在去除噪声的同时较好地保留图像的边缘细节。
我通过对不同类型和程度的噪声图像进行滤波处理,直观地感受到了它们的效果差异。
图像的几何变换也是实习中的关键内容。
图像的平移、旋转和缩放操作看似简单,但其背后涉及到复杂的数学计算。
在实际操作中,需要准确地计算变换矩阵,以确保图像在变换后的准确性和完整性。
实习过程中,我还深入研究了图像分割技术。
这是将图像分成不同区域或对象的过程,以便进行后续的分析和处理。
阈值分割是一种常见且简单的方法,通过设定一个阈值,将图像中的像素分为两类。
然而,对于复杂的图像,这种方法往往效果不佳,这时就需要更高级的分割算法,如基于边缘检测的分割或基于区域生长的分割。
在进行数字图像处理的过程中,我也遇到了一些挑战和问题。
例如,在处理大规模图像数据时,计算资源的限制可能导致处理速度缓慢;在选择图像处理算法时,需要根据具体的图像特点和需求进行权衡,否则可能无法达到理想的效果。
数字图像处理实验报告2

西华大学实验报告(理工类)开课学院及实验室: 实验时间 : 年 月 日一、实验目的(1) 熟悉并学会使用MA TLAB 中图像增强的相关函数。
(2) 了解图像增强的方法,去噪的方法和效果。
二、实验原理(1) 将一幅图像视为一个二维矩阵,用MATLAB 进行图像增强。
(2) 利用MATLAB 图像处理工具箱中的函数imread (读入),imshow (显示),imnoise (加噪),filter2(滤波)对图像进行去噪处理。
(3) 图像均衡化:是通过对原图像进行某种变换,使得图像的直方图变为均匀分布的直方图,从而达到增强的效果。
(4) 图像平滑方法:邻域平均,中值滤波。
分析图像降质的性质,采用合适的去噪方法,可以去除或降低噪声对图像的影响。
中值滤波对某些信号具有不变性,适用于消除图像中的突发干扰,但如果图像含有丰富的细节,则不宜使用。
三、实验设备、仪器及材料(1) 微型计算机:Intel Pentium 及更高(2) MATLAB(安装了图像处理工具箱,即Image Processing Toolbox) (3) 自己的灰色图像文件四、实验步骤(按照实际操作过程)设计MATLAB 程序,完成下列操作:(1) 直方图均衡化处理。
读入灰度图像,用subplot 语句显示原图及直方图。
调用histeq 函数,完成直方图均衡化。
用subplot 语句显示直方图均衡化后的图像及直方图。
(2) 图像平滑。
读入一张图像。
用imnoise 函数加入椒盐噪声。
然后分别用领域平均法,中值滤波法去除噪声(filter2,medfilt2函数)。
邻域平均法要求使用高斯模板⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=121242121161H 。
用subplot 语句作图给出实验结果。
对比分析去噪效果。
(3) 图像锐化,用edge()函数来加强图像中景物的边缘和轮廓,使模糊图像变得更清晰。
其中method 包‘sobel ’、‘log ’。
数字图像处理实习报告

数字图像处理实习报告
本次实习主要任务是进行数字图像处理相关工作,包括图像的预处理、特征提取、图像分割和图像识别等方面的工作。
实习过程中,我主要负责了图像处理算法的编写与优化,以及实验数据的收集与分析。
通过这次实习,我对数字图像处理技术有了更深入的了解,并且提升了自己的编程能力和团队协作能力。
在图像处理算法的编写与优化过程中,我主要使用了Python
语言和常用的图像处理库,如OpenCV和PIL等。
我研究了不同的图像处理算法,并对其进行了实验验证,优化了算法的性能和效果。
通过这些工作,我深入了解了图像处理算法的实现原理和优化方法,提升了自己在图像处理领域的技术水平。
在实验数据的收集与分析过程中,我主要负责了实验数据的采集和整理工作。
我使用了各种图像采集设备,包括相机、摄像头等,对不同场景下的图像进行了采集和整理。
然后我利用Python和Matlab等工具对实验数据进行了分析和结果展示,
为后续的图像处理算法提供了重要的支持和参考。
总的来说,这次实习让我对数字图像处理有了更深入的了解,提升了自己的技术能力和实践能力。
我在实习过程中遇到了不少困难和挑战,但通过团队合作和自我努力,最终都得以克服,取得了一定的成果。
通过这次实习,我深刻地感受到了数字图像处理技术的重要性和广阔的应用前景,也对自己未来的发展方向有了更清晰的认识。
希望通过这次实习的经历,我能够为将来的学习和工作打下坚实的基础。
数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。
2.掌握数字图像处理的基本方法。
3.掌握常用数字滤波器的性质和使用方法。
4.熟练应用数字图像处理软件进行图像处理。
实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。
% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。
图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。
在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。
RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。
% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。
数字图像处理中的滤波是一种常用的图像增强方法。
滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。
% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。
这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。
下面是数字图像处理在人脸识别应用中的一个简单例子。
% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。
数字图像处理实验——实验一

报告内容:(目的和要求、原理、步骤、数据、计算、小结等)实验一静态图像采集一、实验目的1、了解DSK的工作原理。
2、了解FPGA进行静态图象采集的工作原理。
3、了解DSP的EDMA技术在静态数据采集中的作用。
4、了解DSP的中断技术。
5、了解SDRAM在静态视频中的作用。
6、了解DSP和FPGA在视频数据采集中的同步原理。
二、实验设备计算机、6711DSK、视频板、CCS软件、Webpack软件三、实验原理本实验由视频采集卡上的FPGA和DSK共同完成对摄入图像的静态采集和显示,所为静态采集,就是可以选择采集一幅用户感兴趣的图像,把这幅图像保存到DSK板上的SDRAM中并完成显示。
视频图像由SAA7111进行AD变换和视频解码后输出CCIR601标准的视频数据流送给FPGA以及SDRAM,包括:16位图像数据(高8位为Y信号,低8位为UV信号交叉出现);行同步信号hs(在行消隐期间为高电平,其他时间为低电平);场同步信号vs(在场消隐期间为高电平,其他时间为低电平);行参考信号href(行数据有效期间为高电平)。
在PAL 制下,标准的CCIR601视频数据为864点/行*625/场*50场,一场分为两帧,分别为奇数行和偶数行。
其中每行有效数据为720个点,即herf\维持720个点。
FPGA输出给AL250进行视频显示的信号也需要满足这一格式。
根据这一格式,采集时FPGA将有效,的视频数据存入FPGA的OUTFIFO中,同时以行同步信号作为DSP的中断信号通知DSP取走FIFO 中一行的数据。
DSP收到中断信号后进入中断处理程序,用EDMA从FPGA的OUTFIFO 中读取一行的数据到SDRAM中,再用EDMA将一行的数据从SDRAM搬到视频板INFIFO 中。
FPGA产生显示所需的同步信号和对INFIFO读取的控制信号,控制INFIFO中的数据和同步信号AL250完成显示功能。
为此在这个实验前,需要了解以下知识点:1、视频图像的原理和应用2、DSP原理和应用3、FPGA原理和应用四、实验步骤1、复习有关图象动态采集的基础知识。
《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。
在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。
首先,我们进行了图像的读取和显示实验。
通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。
这为我们后续的实验奠定了基础。
同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。
这使我们能够更好地理解后续实验中的算法和操作。
接下来,我们进行了图像的灰度化实验。
灰度化是将彩色图像转换为灰度图像的过程。
在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。
通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。
随后,我们进行了图像的直方图均衡化实验。
直方图均衡化是一种用于增强图像对比度的方法。
在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。
通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。
在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。
滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。
在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。
通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。
此外,我们还进行了图像的边缘检测实验。
边缘检测是一种用于提取图像边缘信息的方法。
在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。
通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。
最后,我们进行了图像的压缩实验。
图像压缩是一种将图像数据进行压缩以减小文件大小的方法。
数字图像处理实验报告

竭诚为您提供优质文档/双击可除数字图像处理实验报告篇一:数字图像处理实验报告实验一数字图像的获取一、实验目的1、了解图像的实际获取过程。
2、巩固图像空间分辨率和灰度级分辨率、邻域等重要概念。
3、熟练掌握图像读、写、显示、类型转换等matlab函数的用法。
二、实验内容1、读取一幅彩色图像,将该彩色图像转化为灰度图像,再将灰度图像转化为索引图像并显示所有图像。
2、编程实现空间分辨率变化的效果。
三、实验原理1、图像读、写、显示I=imread(‘image.jpg’)Imview(I)Imshow(I)Imwrite(I,’wodeimage.jpg’)2、图像类型转换I=mat2gray(A,[amin,amax]);按指定的取值区间[amin,amax]将数据矩阵A转化为灰度图像I,amin对应灰度0,amax对应1,也可以不指定该区间。
[x,map]=gray2ind(I,n);按指定的灰度级n将灰度图像转化为索引图像,n默认为64I=ind2gray(x,map);索引图像转化为灰度图像I=grb2gray(Rgb);真彩色图像转化为灰度图像[x,map]=rgb2ind(Rgb);真彩色图像转化为索引图像Rgb=ind2rgb(x,map);索引图像转化为真彩色图像bw=im2bw(I,level);将灰度图像转化为二值图像,level取值在[0,1]之间bw=im2bw(x,map,level);将索引图像转化为二值图像,level取值在[0,1]之间bw=im2bw(Rgb,level);将真彩色图像转化为二值图像,level取值在[0,1]之间四、实验代码及结果1、in=imread(peppers.png);i=rgb2gray(in);[x,map]=gray2ind(i,128); subplot(131),imshow(in)subplot(132),imshow(i)subplot(133),imshow(x),colormap(map) 、%空间分辨率变化的效果clc,closeall,cleari=imread(cameraman.tif);i=imresize(i,[256,256]);i1=i(1:2:end,1:2:end);[m1,n1]=size(i)i2=i1(1:2:end,1:2:end);[m2,n2]=size(i2)i3=i2(1:2:end,1:2:end);[m3,n3]=size(i3)subplot(221),imshow(i),xlabel(256x256) subplot(222),imshow(i1),xlabel(128x128) subplot(223),imshow(i2),xlabel(64x64) subplot(224),imshow(i3),xlabel(32x32) 256x25664x64128x12832x322实验二图像的几何变换一、实验目的掌握图像的基本几何变换的方法1、图像的平移2、图像的旋转二、实验内容练习用matalb命令实现图像的平移、旋转操作1、.编写实现图像平移的函数2、用imread命令从你的硬盘读取一幅256×256灰度图;3、调用平移函数,将256×256灰度图平移100行200列,在同一个窗口中显示平移前和平移后的图像。
数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告数字图像处理实验报告1一. 实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:具体组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pixels DIB图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图, 用函数创建兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数 ,一般放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或打印机上显示DIB. 在显示时不进行缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第组.西华大学实验报告(理工类)开课学院及实验室:机械工程与自动化学院机房实验时间:年月日学生姓名何健学号3120208030721 成绩学生所在学院机械工程与自动化学院年级/专业/班2012级机电2 班课程名称数字图像处理课程代码6003619 实验项目名称Matlab图像处理工具箱的初步练习项目代码指导教师蒋代君项目学分一、实验目的1、初步了解与掌握MA TLAB语言的基本用法;2、掌握MA TLAB语言中图象数据与信息的读取方法;3、掌握在MA TLAB语言中图像类型的转换。
二、实验原理将数字图像的RGB表示转换为YUV表示;Y=0.30R+0.59G+0.11BU=0.70R-0.59G-0.11BV=-0.30R-0.59G+0.89B三、实验设备、仪器及器材1、计算机2、MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox)3、实验所需要的图片四、实验步骤(按照实际操作过程)1、阅读资料并熟悉MatLab的基本操作2、读取MA TLAB中的图象数据3、显示MA TLAB中的图象文件。
用MA TLAB在自建的文件夹中建立m文件,在这个文件的程序中,将MA TLAB目录下work文件夹中的tree.tif 图象文件读出,用到imread,imfinfo等命令,观察一下图象数据,了解一下数字图象在MA TLAB中的处理就是处理一个矩阵的本质。
4、将3中的图象显示出来(用imshow)。
5、对MA TLAB目录下work文件夹中的flowers.tif进行真彩色图像、索引色图像、灰度图像、二值图像之间的相互变换,并显示。
6、进行真彩色图像RGB(lenacolor.jpg)、YIQ图像、HSV图像、YcbCr图像的相互转换,并显示。
五、实验过程记录(数据、图表、计算等)1、学习Matlab基本操作。
2、读取并显示lenacolor.jpg图象。
程序如下:[X,MAP]=imread('lenacolor.jpg','jpg')imfinfo('lenacolor.jpg','jpg')imshow(X,MAP),title('tenacolor.jpg')3、对lenacolor.jpg图像进行真彩色图像、索引色图像、灰度图像、二值图像之间的相互变换,并显示。
程序如下:原图像真彩色[X,MAP]=imread('lenacolor.jpg','jpg') RGB=imread('lenacolor.jpg','jpg');imfinfo('lenacolor.jpg','jpg') imshow(RGB),title('真彩色')imshow(X,MAP),title('tenacolor.jpg')真彩色转索引色图像索引色转真彩色图像map=jet(256); ZC=ind2rgb(MY,map);MY=rgb2ind(RGB,map); imshow(ZC),title('索引色转真彩色图像') imshow(MY),title('真彩色转索引色图像')索引色转灰度图像真彩色转灰度图像gray2= ind2gray(MY,map); gray1= rgb2gray(RGB)imshow(gray2),title('索引色转灰度图像')imshow(gray1),title('真彩色转灰度图像')二值图像WO=im2bw(RGB,0.5);imshow(WO),title('二值图像')4、进行真彩色图像RGB(lenacolor.jpg)、YIQ图像、HSV图像、YcbCr图像的相互转换,并显示。
程序如下:真彩色 RGB转YIQ图像RGB=imread('lenacolor.jpg') RGB1=RGBimshow(RGB),title('lenacolor.jpg的真彩色')map=jet(256)yiqmap=rgb2ntsc(map)YIQ=rgb2ntsc(RGB1)imshow(YIQ),title('RGB转YIQ图像')RGB转HSV图像RGB转YCbCr图像RGB2=RGB RGB3=RGBhsvmap=rgb2ntsc(map) YcbCrmap=rgb2ycbcr(map)HSV=rgb2ntsc(RGB2) YCBCR=rgb2ycbcr(RGB3)imshow(HSV),title('RGB转HSV图像') imshow(YCBCR),title('RGB转YCbCr图像')YIQ转RGB图像 HSV转RGB图像rgbmap=rgb2ntsc(yiqmap) rgbmap=hsv2rgb(hsvmap)RGB1=rgb2ntsc(YIQ) RGB2=hsv2rgb(HSV)imshow(RGB1),title('YIQ转RGB图像')imshow(RGB2),title('HSV转RGB图像')第组西华大学实验报告(理工类)开课学院及实验室:机械工程与自动化学院机房实验时间:年月日学生姓名何健学号312012********* 成绩学生所在学院机械工程与自动化学院年级/专业/班2012级机电2班课程名称数字图像处理课程代码6003619实验项目名称 图像的频域处理方法 项 目 代 码 指 导 教 师 蒋代君 项 目 学 分1、 计算机 2MatLab 软件/语言包括图像处理工具箱(Image Processing Toolbox)Xuanzhuanpingyiy2、对图像Lenna.bmp 作二维Fourier 变换。
程序如下:I=imread('lenna.bmp') F=fftshift(fft2(I))imshow(log(abs(F)),[]),title('lenna')11001(,)(,)exp[2()/],,0,1,2,..,1N N xy F u v f x y j ux vy N u v N N π--===-+=-11001(,)(,)exp[2()/],x,y 0,1,2,..,1N N u v f x y F u v j ux vy N N N π--===+=-∑∑1222(,)[(,)(,)]F u v R u v I u v =+(,)arctan[(,),(,)].u v I u v R u v φ=相位谱:能量谱: 22(,)(,)(,)E u v R u v I u v =振幅谱:六、实验结果分析及问题讨论.西华大学实验报告(理工类)开课学院及实验室:机械工程与自动化学院机房 实验时间 : 年 月 日学 生 姓 名 何健学 号312012*********成 绩学生所在学院 机械工程与自动化学院年级/专业/班 2012级机电2班课 程 名 称 数字图像处理 课 程 代 码 6003619实验项目名称 图像的空域处理方法项 目 代 码 指 导 教 师蒋代君项 目 学 分2、读出lena.bmp 这幅图像,给这幅图像加入椒盐噪声。
程序如下:第 组∑+-∈+-∈+=],[],[2000000),(141),(N y N y y N x N xx y x f N y x f ]},[],,[|),({),(000000N y N y y N x N x x y x f Med y x f +-∈+-∈=I = imread('lenna.bmp');subplot(1,2,1);imshow(I),title('原图像')subplot(1,2,2);J=imnoise(I,'salt & pepper',0.02);imshow(J),title('噪声图像')结果如下:3、分别用均值滤波器和中值滤波器去除图像中的噪声。
程序如下:I = imread('lenna.bmp');J=imnoise(I,'salt & pepper',0.02);h = fspecial('average');I1 = imfilter(J,h);subplot(2,2,1);imshow(I1),title('3x3均值滤波去噪')h = fspecial('average',[5 5]);I2 = imfilter(J,h);subplot(2,2,2);imshow(I2),title('5x5均值滤波去噪')I3=medfilt2(J);subplot(2,2,3);imshow(I3),title('3x3中值滤波去噪')I4=medfilt2(J,[5 5]);subplot(2,2,4);imshow(I4),title('5x5中值滤波去噪')六、实验结果分析及问题讨论西华大学实验报告(理工类)开课学院及实验室:机械工程与自动化学院机房 实验时间 : 年 月 日学 生 姓 名 何健学 号312012*********成 绩学生所在学院 机械工程与自动化学院年级/专业/班 2012级机电2班课 程 名 称 数字图像处理 课 程 代 码 6003619实验项目名称图像分割和目标识别项 目 代 码 指 导 教 师 蒋代君 项 目 学 分1掌握在MA TLAB 中边缘检测的方法; 2、 了解图像分割的基本策略及方法; 3掌握用MA TLAB 语言进行边缘检测和目标识别的方法。
1、 阈值分割是对一幅图象的目标和背景进行判定,⎩⎨⎧≥=else y x f Ty x f G y x f G y x g ),()],([)],([),( 2、 用中值滤波器去除图像中的噪声; 3二值形态学基本公式:{|(())}x A B x A B ∧⊕=⋂≠Φ{|(())}c x A B x A B Θ=⋂≠Φ其中B ∧是B 的映像。
腐蚀是表示用某种形状的结构元素对一个图像进行探测,以便找出图像内部可以放下该结构元素的区域。
它是一种消除边界点,使边界向内部收缩的过程。
可以用来消除小且无意义的物体。
1、 计算机 2MatLab 软件/语言包括图像处理工具箱(Image Processing Toolbox) 1读出chrimage.bmp 这幅图像,转换为灰度图像。