人教版-数学-七年级上册-1.2.4 绝对值 教案 -

合集下载

人教版数学七年级上册1.2.4《绝对值》教案

人教版数学七年级上册1.2.4《绝对值》教案

人教版数学七年级上册1.2.4《绝对值》教案一. 教材分析《绝对值》是人教版数学七年级上册第1章第2节的内容,本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。

绝对值是数学中的一个基本概念,它在日常生活和工农业生产中有着广泛的应用。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。

但同时,学生对新的数学概念的接受和理解还需要一定的引导和培养。

他们对绝对值的概念和性质可能还存在一些模糊的认识,需要通过实例和练习来加深理解。

三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。

2.培养学生运用绝对值解决实际问题的能力。

3.培养学生的抽象思维能力和逻辑思维能力。

四. 教学重难点1.绝对值的概念和性质。

2.运用绝对值解决实际问题。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,掌握绝对值的概念和性质,提高学生的动手操作能力和解决问题的能力。

六. 教学准备1.PPT课件。

2.相关例题和练习题。

3.学生分组合作学习资料。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如温度、距离等,引导学生思考这些问题的共同特点,从而引出绝对值的概念。

2.呈现(10分钟)介绍绝对值的定义,用PPT展示绝对值的图形表示,让学生直观地理解绝对值的概念。

同时,给出绝对值的性质,让学生通过观察和思考来理解这些性质。

3.操练(10分钟)让学生分组合作,运用绝对值的性质解决一些实际问题,如求距离、计算温度等。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。

教师选取部分题目进行讲解,分析解题思路。

5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如地图上的距离、股票的涨跌等。

引导学生运用绝对值的知识解决这些问题,提高学生的应用能力。

人教版七年级数学上册:1.2.4《绝对值》教学设计2

人教版七年级数学上册:1.2.4《绝对值》教学设计2

人教版七年级数学上册:1.2.4《绝对值》教学设计2一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容,主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些简单的问题。

绝对值是数学中的一个重要概念,它在日常生活和工农业生产中有着广泛的应用。

二. 学情分析学生在学习《绝对值》之前,已经学习了有理数的概念,对正数、负数、零有所了解。

但是,他们对绝对值的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对绝对值的应用场景有所疑惑,需要通过生活中的实例来帮助他们理解。

三. 教学目标1.理解绝对值的概念,掌握绝对值的性质。

2.能够运用绝对值解决一些简单的问题。

3.理解绝对值在日常生活和工农业生产中的应用。

四. 教学重难点1.绝对值的概念和性质。

2.绝对值的应用。

五. 教学方法采用讲授法、实例分析法、练习法、小组合作学习法等,结合多媒体教学手段,让学生在理解绝对值的概念和性质的基础上,能够运用绝对值解决实际问题。

六. 教学准备1.PPT课件。

2.练习题。

3.生活中的实例。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,引出绝对值的概念。

例如,一个人在地图上从原点出发,走了10公里向东,又走了10公里向西,问他现在离原点有多远?引出绝对值的概念,即离原点的距离是10公里。

2.呈现(10分钟)通过PPT课件,呈现绝对值的性质,如:–绝对值是非负数。

–互为相反数的两个数的绝对值相等。

–绝对值大的数比绝对值小的数大。

同时,给出相应的例子,让学生理解和掌握这些性质。

3.操练(10分钟)让学生独立完成一些练习题,巩固对绝对值概念和性质的理解。

例如:–计算下列各数的绝对值:-5, 3, -2, 0, 4。

–如果两个数互为相反数,它们的绝对值是否相等?4.巩固(10分钟)让学生分组合作,找出生活中的其他实例,运用绝对值的概念和性质解决问题。

例如,计算两个人之间的距离,或者计算物体的位移等。

1.2.4绝对值的定义和性质(教案)2023-2024学年七年级上册数学人教版(安徽)

1.2.4绝对值的定义和性质(教案)2023-2024学年七年级上册数学人教版(安徽)
二、核心素养目标
1.培养学生运用数学语言进行表达和交流的能力,通过绝对值定义和性质的学习,使学生能够准确描述和解释绝对值的含义及其在实际问题中的应用。
2.培养学生的逻辑思维和推理能力,使学生掌握绝对值性质的证明过程,学会运用性质解决相关问题。
3.培养学生的数感和符号意识,让学生理解数的大小关系和符号变化,提高对数的认识和敏感度。
其次,我发现学生在掌握绝对值性质方面存在一定的难度,尤其是在运用性质解决实际问题时。在小组讨论和实验操作环节,部分学生仍然显得有些迷茫。针对这个问题,我考虑在今后的教学中,可以设计一些更具针对性的练习题,让学生在课堂上即时巩固所学知识。此外,加强对学生的个别辅导,帮助他们找到解题的突破口。
此外,课堂上的小组讨论氛围较为活跃,学生们的参与度也较高。但在讨论过程中,我发现有些学生过于依赖同伴,缺乏独立思考。为了培养学生的独立思考能力,我打算在接下来的教学中,增加一些独立完成的任务,让学生在独立解决问题的过程中提升自己的能力。
3.负数的绝对值:负数的绝对值等于它的相反数,即若a<0,则|a|=-a。
4.绝对值的性质:
a.非负性:任何数的绝对值都是非负数,即|a|≥0。
b.正数的绝对值相等:若a>0,b>0,则|a|=|b|当且仅当a=b。
c.互为相反数的两个数的绝对值相等:若a和b互为相反数,则|a|=|b|。
d.绝对值具有传递性:若a=b,则|a|=|b|。
同学们,今天我们将要学习的是《绝对值的定义和性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算距离或者比较大小的情况?”(例如,计算两点之间的距离,比较两个数的大小)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索绝对值的奥秘。

人教版初中数学课标版七年级上册第一章1.2.4 绝对值教案

人教版初中数学课标版七年级上册第一章1.2.4 绝对值教案

1.2.4 绝对值(1)教案【教学目标】一、知识与技能1.借助数轴,初步理解绝对值的概念,会求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用,感受数学在生活中的作用.二、过程与方法1.使学生形成从一般到特殊的解题思想,养成严密的思维习惯.2.培养学生主动探索,敢于发现,合作交流的精神.三、情感态度与价值观1.通过对形式不同的问题的解答,激发学生学习的积极性和兴趣,使全体学生积极参与,体验成功的喜悦.2.对学生进行“实践——认识——实践”的辩证唯物主义教育.【教学重点、难点】1.重点:绝对值的概念,会求一个数的绝对值.2.难点:对绝对值概念的正确理解.【教学过程】一、情境引入:两辆汽车从同一处O出发,分别向东、西方向行驶10km ,到达A、B两处。

它们行驶路线相同吗?它们行驶路程相同吗?(1)如何用有理数表示它们的行驶情况?(2)这两个有理数有什么关系?-10与10在数轴上所表示的点到原点的距离是10个单位长度,它们的符号不同.我们把这个距离10叫做+10和-10的绝对值。

二、合作学习:1.绝对值的定义:我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值) . 记作:|a|例如,在数轴上表示数―10与表示数10的点与原点的距离都是10,所以―10和10的绝对值都是10,记作|―10|=|10|=10同样可知:|―4| =4,|+1.7|=1.72.想一想:这里的数a 可以表示什么样的数?3.试一试: 由绝对值的意义,我们可以知道:︳7︳= , ︳-7︳= ;︳2.8︳= ,︳-4.5︳= ;︳0︳=4.议一议:从以上结果你有什么启示?你能用自已的话总结出绝对值的性质吗?5.归纳出数a 的绝对值的性质:(1)一个正数的绝对值是它本身;(2) 0的绝对值是0;(3) 一个负数的绝对值是它的相反数.我们可以用a 来表示任意一个有理数,上述性质可以表示为:①若a >0,则|a |=a ;②若a =0,则|a |=0; 或写成: ③若a <0,则|a |=–a ;(4)绝对值的非负性由绝对值的定义可知:不论有理数a 取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a |≥0(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩三、典例导学:【知识点 1】 求一个数的绝对值例1.写出下列各数的绝对值. 解:66=; 88-=; 3.9 3.9-=; 5522= ; 221111-= ;100100=; 00= 【总结提升】求一个数的绝对值的方法:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到结论.练习一:课本P11第 2,3题2.判断下列各式是否正确:(1)|5|=|-5| ( )(2)-|5|=|-5| ( )(3)-5=|-5| ( )3.判断下列说法是否正确:(1)符号相反的数互为相反数( )(2) 一个数的绝对值越大,表示它的点在数轴上越靠右( )(3)一个数的绝对值越大,表示它的点在数轴上离原点越远( )(4)当a ≠0时,|a|总是大于0 ( )想一想:1.绝对值是3的数有几个?各是什么?有没有绝对值是-4.5的数?2. 绝对值小于2的整数有几个,把它们在数轴上表示出来.3.判断:如果一个数的绝对值是它本身,那么这个数是正数【知识点 2】 应用绝对值的性质解决问题在日常生活和生产中,我们借助绝对值的意义可以判断某些产品质量的好差,你能回答526,8, 3.9,,,100,0211---下列问题吗?例2. 正式排球比赛对所有排球的质量有严格的规定,下列5个质量检测结果:(用正数记超过质量的克数,用负数记不足质量的克数)+15,-10,+25,-20,-8请指出哪个排球的质量好一些.答:记为-8的排球质量好一些。

人教版七年级数学上册1.2.4绝对值(教案)

人教版七年级数学上册1.2.4绝对值(教案)
2.教学难点
-理解绝对值的性质:学生需要理解绝对值的非负性、对称性和单调性等性质,这些性质是解决复杂问题的关键。
-计算含有绝对值符号的表达式:如|-a|、|a+b|等,学生需要掌握如何根据绝对值的性质简化表达式。
-解决绝对值相关的实际问题:在应用绝对值解决实际问题时,学生可能会混淆概念,难以将问题转化为数学表达式。
五、教学反思
在今天的教学中,我发现同学们对绝对值的概念理解得还不错,但在具体应用到实际问题中时,有些同学还是显得有些吃力。我想这可能是由于理论联系实际的过程还不够熟练,需要我们在今后的教学中多加强调与实践。
在讲解绝对值的时候,我通过数轴和实际例子来帮助同学们理解,看到他们逐渐明白了这个概念,我感到很高兴。但我也注意到,有些同学在计算绝对值时还是容易犯错,尤其是在处理负数的绝对值时。这可能是因为他们还没有完全理解负数绝对值的本质,即负数的绝对值是它的相反数。
-计算有理数的绝对值:能够准确计算出任何有理数的绝对值,包括正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。
-应用绝对值解决实际问题:将绝对值的概念应用于解决实际问题,如计算两地之间的距离、温度差等。
举例:讲解绝对值定义时,可以通过数轴上的点来形象说明,如点-3和点3到原点的距离都是3,因此|-3|=3,|3|=3。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《绝对值》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过距离的概念,比如两个地方之间的距离?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索绝对值的奥秘。
举例:
-难点解释:讲解绝对值的对称性时,可以通过例子|-3|=|3|来说明,帮助学生理解绝对值与数的符号无关。

人教版初中七年级数学上册《绝对值》教案

人教版初中七年级数学上册《绝对值》教案

1.2.4 绝对值第1课时绝对值【教学目标】(一)知识技能1.使学生掌握有理数的绝对值概念及表示方法。

2.使学生熟练掌握有理数绝对值的求法和有关计算问题。

(二)过程方法1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。

2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。

3.给出一个数,能求它的绝对值。

(三)情感态度从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。

教学重点给出一个数会求它的绝对值。

教学难点绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数。

【情景引入】问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值.【教学过程】1.绝对值的定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。

记作|a|。

例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。

同样可知|―4|=4,|+1.7|=1.7。

2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道: (1)|+2|= ,51= ,|+8.2|= ; (2)|0|= ; (3)|―3|= ,|―0.2|= ,|―8.2|= 。

概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a 的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2) 0的绝对值是0;(3) 一个负数的绝对值是它的相反数。

1.2.4绝对值——绝对值的非负性 教学设计 2022—2023学年人教版数学七年级上册

1.2.4 绝对值——绝对值的非负性教学设计2022-2023学年人教版数学七年级上册一、教学目标1.理解绝对值的概念;2.掌握求绝对值的方法;3.熟练掌握绝对值的非负性。

二、教学重难点1.绝对值的概念;2.求绝对值的方法;3.绝对值的非负性;三、教学内容与安排1. 知识点的讲解1.1 绝对值的概念教师简要介绍数轴及其上定义的绝对值的概念,通过图示,让学生更好地理解绝对值的概念。

1.2 求绝对值的方法教师详细介绍求绝对值的方法,特别是负数的绝对值的求法,举例说明,让学生掌握方法。

1.3 绝对值的非负性教师介绍绝对值的非负性,即绝对值是一个非负的数,且等于一个数的时候,它本身便是非负的。

教师应多讲解一些实际生活中的例子,以便学生更好地理解和应用。

2. 讲解与练习安排2.1 教师讲解教师通过板书、投影片或者黑板报告等方式,对绝对值的概念、求法和非负性进行讲解,以确保学生掌握基本知识点。

2.2 练习安排•练习1:让学生通过手工工具练习绘制数轴,加深对数轴及绝对值的理解;•练习2:让学生练习计算正数、负数的绝对值,熟练掌握求绝对值的方法;•练习3:让学生通过实际生活中的例子练习应用绝对值的非负性,加深对绝对值的理解。

四、教学反思绝对值是数学中必须掌握的基础知识点,对学习数学的后续知识点打下基础。

在教学过程中,教师应结合生活实例,让学生更好地体会绝对值的概念和应用,以提高学生的学习兴趣和学习效果。

此外,在讲解时应注意语言的简单明了、易于理解。

练习环节应根据学生的掌握情况,针对性地设计训练,以提高学习效果。

七年级数学上册(人教版)1.2.4绝对值(第1课时绝对值的概念及性质)优秀教学案例

2.学生进行自我评价,反思自己在学习过程中的优点和不足,制定改进措施。
3.教师对学生的学习情况进行评价,关注学生的知识掌握和能力培养,鼓励学生的进步和创新。
4.结合学生的反馈和评价,教师调整教学策略,为后续教学提供参考。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中与绝对值相关的实际问题,如地图上的距离、运动员比赛得分等,引导学生关注绝对值在现实生活中的应用。
本节课的主要内容包括绝对值的概念、绝对值的性质以及绝对值在实际问题中的应用。在教学过程中,教师应注重从实际问题出发,引导学生发现绝对值的意义,并通过合作交流、讨论归纳出绝对值的性质。同时,结合典型例题,让学生在实践中掌握绝对值的应用,提高解决问题的能力。
为了提高教学效果,教师可以运用多媒体教学手段,如动画、图片等,形象地展示绝对值的概念及性质,增强学生的直观感受。同时,注重启发式教学,引导学生主动思考、探究,培养学生的创新精神和实践能力。
3.教师通过典型例题,讲解绝对值在实际问题中的应用,引导学生学会运用绝对值解决问题。
(三)学生小组讨论
1.教师提出小组讨论任务,让学生结合实例探讨绝对值的性质。
2.学生分组讨论,共同分析绝对值的性质,如正数和0的绝对值是其本身,负数的绝对值是其相反数。
3.各小组汇报讨论成果,教师点评并总结绝对值的性质。
(二)问题导向
1.引导学生提出关于绝对值的问题,如“绝对值有什么意义?”,“如何表示一个数的绝对值?”等,激发学生的探究欲望。
2.教师提出具有挑战性的问题,如“你能用绝对值解释生活中的哪些现象?”引导学生运用所学知识解决实际问题。
3.鼓励学生自主探究,引导学生发现绝对值的性质,如正数和0的绝对值是其本身,负数的绝对值是其相反数。

人教版数学七年级上册1.2.4《绝对值(第1课时)》教学设计1

人教版数学七年级上册1.2.4《绝对值(第1课时)》教学设计1一. 教材分析《人教版数学七年级上册》第1.2.4节“绝对值(第1课时)”是学生在初中阶段首次接触绝对值概念。

绝对值是数学中的一个基本概念,它表示一个数在数轴上所对应的点与原点的距离。

本节课的内容对于学生理解数的大小关系、解方程、不等式等方面具有重要意义。

二. 学情分析七年级的学生已经具备了一定的数学基础,如实数、有理数等概念。

但他们对绝对值的概念可能还比较陌生,需要通过具体的情境和实例来理解和掌握。

同时,学生可能对数轴有一定的了解,但将绝对值与数轴联系起来可能还需要一些引导。

三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。

2.培养学生运用绝对值来描述和解决问题的能力。

3.引导学生通过数轴来理解绝对值,培养学生的数形结合思想。

四. 教学重难点1.重点:绝对值的概念和性质。

2.难点:绝对值在实际问题中的应用。

五. 教学方法1.情境教学法:通过具体情境引入绝对值的概念,让学生在实际情境中感受绝对值的意义。

2.数形结合法:利用数轴帮助学生理解绝对值,引导学生将绝对值与数轴相结合。

3.实例分析法:通过多个实例让学生掌握绝对值的性质,培养学生的运用能力。

六. 教学准备1.教学课件:制作课件,内容包括绝对值的概念、性质和应用实例等。

2.数轴教具:准备数轴教具,用于引导学生直观地理解绝对值。

3.练习题:准备一些有关绝对值的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾数轴上的点与原点的关系。

例如,点A 在数轴上表示2,点B在数轴上表示-2,让学生观察点A和点B与原点的关系。

2.呈现(10分钟)介绍绝对值的概念:数轴上表示一个数的点到原点的距离叫做这个数的绝对值。

并用课件展示绝对值的定义和性质。

3.操练(10分钟)让学生在数轴上找出一些数的绝对值,并说明理由。

例如,找出-3、0、5的绝对值,并解释为什么它们的绝对值分别是3、0、5。

2024年秋季新人教版七年级上册数学教学课件 1.2.4 绝对值

(1) 根据调查结果,指出哪些产品是合乎要求的 (即在误 差范围内的); (2) 指出合乎要求的产品中哪一个质量好一些,并用绝对 值的知识说明.
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
1. 判断对错:
(1) 一个数的绝对值等于本身,则该数一定是正数; ( )
(2) 一个数的绝对值等于它的相反数,这个数一定是
负数;
()
(3) 如果两个数的绝对值相等,那么这两个数一定
相等;
()
(4) 如果两个数不相等,那么这两个数的绝对值
一定不等;
()
(5) 有理数的绝对值一定是非负数.
()
2. 化简:
B -10
分析:行驶路线 行驶路程
O
A
0
10
方向 + 距离 方向不同 距离 距离相同
绝对值的定义: 一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作|a|.
B
O
A
-10
0
10
例:因为点 A 表示10,与原点的距离是 10 个单位长度,
所以|10| = 10.
1.利用数轴,口答下列问题:
|5|=5
–5 –4 –3 –2 –1 0 1 2 3 4 5
| 3.5 | = 3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
| -3 | = 3
–5 –4 –3 –2 –1 0 1 2 3 4 5
| -3.5 | =3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
|0|= 0
有理数
新知一览
正数和负数
有理数
数轴
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结合实际发现新知
引导学生看教科书第16页的图,并回答相关问题:
把14个气温从低到高排列;
把这14个数用数轴上的点表示出来;
观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?
应怎样比较两个数的大小呢?
学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:
要求学生在头脑中有清晰的图形.
让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。
课堂练习
例2,比较下列各数的大小(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式
验数学知识与生活实际的联系.
因为绝对值概念的几何意义是数形转化的典型
模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.
合作交流
探究规律
例1求下列各数的绝对值,并归纳求有理数a的绝对
有什么规律?、
-3,5,0,+58,0.6
要求小组讨论,合作学习.
教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).
1.2.4 绝对值
教学目标
1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点
两个负数大小的比较
知识重点
绝对值的概念
教学过程(师生活动)
设计理念
设置情境
引入课题
星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20,|-10|=10显然,|0|=0
这个例子中,第一问是相反意义的量,用正负
数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体
3,有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学
中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到
大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.
4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教
巩固练习:教科书第15页练习.
其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别.
求一个数的绝时值的法则,可看做是绝对值概
念的一个应用,所以安排此例.
学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.
练习:第18页练习
小结与作业
课堂小结
怎样求一个数的绝对值,怎样比较有理数的大小?
本课作业
1,必做题:教产书第19页习题1,2,第4,5,6,10
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在
这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学
习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意
义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理
数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,
学生不易接受.
2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反
意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回பைடு நூலகம்后,教师说明如下:
学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.
在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则
想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.
相关文档
最新文档