2015年北京中考汇编——22题应用题(可编辑)
历年北京中考数学试题及答案(---2015)

2010年北京市高级中等学校招生考试数学试卷 学校 姓名 准考证号考 生 须 知 1. 本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的1. -2的倒数是 (A) -21 (B) 21 (C) -2 (D) 2。
2. 2010年6月3日,人类首次模拟火星载人航天飞行试验 “火星-500”正式启动。
包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的 “火星之旅”。
将12480用科学记数法表示应为 (A) 12.48⨯103 (B) 0.1248⨯105 (C) 1.248⨯104 (D) 1.248⨯103。
3. 如图,在△ABC 中,点D 、E 分AB 、AC 边上,DE //BC ,若AD :AB =3:4, AE =6,则AC 等于 (A) 3 (B) 4 (C) 6 (D) 8。
4. 若菱形两条对角线的长分别为6和8,则这个菱形的周长为 (A) 20 (B) 16(C) 12 (D) 10。
5. 从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是 (A) 51 (B) 103 (C ) 31 (D) 21。
6. 将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为 (A) y =(x +1)2+4 (B) y =(x -1)2+4(C) y =(x +1)2+2 (D) y =(x -1)2+2。
7. 10名同学分成甲、乙两队进行篮球比赛,它们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,身高的方差依次为2甲S ,2乙S ,则下列关系中完全正确的是 (A) 甲x =乙x ,2甲S >2乙S (B) 甲x =乙x ,2甲S <2乙S (C) 甲x >乙x ,2甲S >2乙S (D)甲x <乙x ,2甲S >2乙S 。
2015年北京市中考数学试卷

数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前北京市2015年高级中学招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米.将140000用科学记数法表示应为( )A .41410⨯B .51.410⨯C .61.410⨯D .60.1410⨯2.实数,,,a b c d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )A .aB .bC .cD .d3.一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )A .16B .13C .12D .23 4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为( )ABCD5.如图,直线1l ,2l ,3l 交于一点,直线41l l ∥,若1124∠=,288∠=,则3∠的度数为( ) A .26 B .36 C .46 D .566.如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C被湖隔开,若测得AM 的长为1.2km ,则M ,C 两点间的距离为( ) A .0.5km B .0.6km C .0.9kmD .1.2km7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,228.如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图.若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向.表示太和门的点坐标为(0,1)-,表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是( )A .景仁宫(4,2)B .养心殿(2,3)-C .保和殿(1,0)D .武英殿( 3.5,4)--9.例如,购买A 类会员卡,一年内游泳20次,消费502520550+⨯=元,若一年内在该游泳馆游泳的次数介于4555次之间,则最省钱的方式为( )A .购买A 类会员年卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的,,,,,B C C A O A A OB B OC 组成.为记录寻宝者的进行路线,在BC 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )A .A OB →→ B .B AC →→ C .B O C →→D .C B O →→第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 11.分解因式:225105x x x -+= .12.如图是由射线AB ,BC ,CD ,DE ,EA 组成的平面图形,则12345∠+∠+∠+∠+∠= .13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为 . 14.关于x 的一元二次方程2104ax bx ++=有两个相等的实数根,写出一组满足条件的实数,a b 的值:a = , b = .15.北京市2009—2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约 万人次,你的预估理由是 .16.阅读下列材料:在数学课上,老师说:“小芸的作法正确.”请回答:小芸的作图依据是.三、解答题(本题共13小题,共72分.解答应写出文字说明、演算步骤或证明过程.) 17.(本小题满5分)计算:201()(π24sin 602--++.18.(本小题满5分)已知22360a a +-=.求代数式3(21)(21)(21)a a a a +-+-的值.19.(本小题满5分)解不等式组4(1)710,85,3x x x x ++⎧⎪-⎨-⎪⎩≤<并写出它的所有非负整数解. O数学试卷 第5页(共8页) 数学试卷 第6页(共8页)20.(本小题满5分)如图,在ABC △中,AB AC =,AD 是BC 边上的中线,BE AC ⊥于点E .求证:CBE BAD ∠=∠.21.(本小题满5分)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25000辆,租赁点600个.预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?22.(本小题满5分)在□ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,DF BE =,连接 ,AF BF . (1)求证:四边形BFDE 是矩形;(2)若3CF =,4BF =,5DF =,求证:AF 平分DAB ∠.23.(本小题满5分)在平面直角坐标系xOy 中,直线(0)y kx b k =+≠与双曲线8y x=的一个交点为(2,)P m ,与x 轴、y 轴分别交于点,A B .(1)求m 的值;(2)若2PA AB =,求k 的值.24.(本小题满5分)如图,AB 是O 的直径,过点B 作O 的切线BM ,弦CD BM ∥,交AB 于点F ,且DA DC =,连接AC ,AD ,延长AD 交BM 地点E . (1)求证:ACD △是等边三角形; (2)连接OE ,若2DE =,求OE 的长.25.(本小题满5分)阅读下列材料:2015年清明小长假,北京市属公园开展以 “清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013年清明小长假增加了25%;颐和园游客接待量为26.2万人次,比2013年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9万人次. 根据以上材料回答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为 万人次;(2)选择统计表或统计图,将2014—2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.26.(本小题满5分)有这样一个问题:探究函数211=2y x x+的图象与性质.小东根据学习函数的经验,对函数211=2y x x+的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数211=2y x x+的自变量x 的取值范围是 ;(2)下表是y 与x 的几组对应值. 求m 的值;(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是3(1,)2.结合函数的图象,写出该函数的其他性质(一条即可): .ABCD E F -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------------- 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共8页) 数学试卷 第8页(共8页)27.(本小题满7分)在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线1y x =-交于点A ,点A 关于直线1x =的对称点为B ,抛物线21:C y x bx c =++经过点,A B . (1)求点,A B 的坐标;(2)求抛物线1C 的表达式及顶点坐标; (3)若抛物线22:(0)C y ax a =≠与线段AB 恰有一个公共点,结合函数的图象,求a 的取值范围.备用图28.(本小题满7分)在正方形ABCD 中,BD 是一条对角线.点P 在射线CD 上(与点C D 、不重合),连接AP ,平移ADP △,使点D 移动到点C ,得到BCQ ∆,过点Q 作QH BD ⊥于H ,连接AH ,PH .(1)若点P 在线段CD 上,如图1, ①依题意补全图1;②判断AH 与PH 的数量关系与位置关系并加以证明;(2)若点P 在线段CD 的延长线上,且152AHQ ∠=︒,正方形ABCD 的边长为1,请写出求DP 长的思路.(可以不写出计算结果)29.(本小题满8分)在平面直角坐标系xOy 中,C 的半径为r ,P 是与圆C 不重合的点,点P 关于O 的反称点的定义如下:若在射线CP 上存在一点P ',满足2CP CP r '+=,则称'P 为点P 关于C 的反称点,下图为点P 及其关于C 的反称点'P 的示意图.特别地,当点'P 与圆心C 重合时,规定'0CP =. (1)当O 的半径为1时:①分别判断点(2,1)M ,3(,0)2N,T 关于O 的反称点是否存在?若存在,求其坐标;②点P 在直线2y x =-+上,若点P 关于O 的反称点P '存在,且点P '不在x 轴上,求点P 的横坐标的取值范围;(2)当C 的圆心在x 轴上,半径为1,直线3y =+x 轴、y 轴分别交于点,A B .若线段AB 上存在点P ,使得点P 关于C 的反称点P '在C 的内部,求圆心C 的横坐标的取值范围.。
北京市2015年中考数学真题试题(含扫描答案)

中考衣食住用行衣:中考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2015年北京市高级中等学校招生考试数学试卷一、选择题下面各题均有四个选项,其中只有一个..是符合题意的。
1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到1 40 000立方平米。
将1 40 000用科学记数法表示应为A.14×104 B.1.4×105 C.1.4×106 D.0.14×1062.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是A.a B.b C.c D.d3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为A. B. C. D.4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为5.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为A.26° B.36°C.46° D.56°6.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为A.0.5km B.0.6kmC.0.9km D.1.2km7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是A.21,21 B.21,21.5C.21,22 D.22,228.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。
2015北京中考数学试题及答案

2015年北京中考题数学题含答案一、 选择题(本题共32分,每题4分)下面各题均有四个选项,其中只有一个是符合题意的1.2的相反数是( ).A .2B .2-C .12-D .122.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300000吨,将300000用科学计数法表示应为( ).A .60.310⨯B .5310⨯C .6310⨯D .43010⨯3.如图,有6张扑克牌,从中随机抽取1张,点数为偶数的概率( ).A .16 B .14 C .13D .124.右图是某几何体的三视图,该几何体是( ).A .圆锥B .圆柱C .正三棱柱D .正三棱锥5.某篮球队12名队员的年龄如下表所示:则这12A .18,19 B .19,19 C .18,19.5 D .19,19.56.园林队公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图像如图所示,则休息后园林队每小时绿化面积为( ). A .40平方米 B .50平方米 C .80平方米 D .100平方米7.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD的长为( ).A .B .4C .D .88.已知点A 为某封闭图形边界的一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周,设点P 的时间为x ,线段AP 的长为y ,表示y 与x 的函数关系的图象大致如图所示,则该封闭图形可能是( ).二.填空题(本体共16分,每题4分)9.分解因式:24ay 9x a -=___________________.10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为_________________m .11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数(0)ky k x=≠使它的图象与正方形OABC 有公共点,这个函数的表达式为______________.12.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x '-++叫做点P 伴随点,一直点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,这样依次得到点1A ,2A ,3A …,n A …,若点1A 的坐标为(3,1),则点3A 的坐标为__________,点2014A 的坐标为__________;若点1A 的坐标为(,)a b ,对于任意正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为_____________.三.解答题(本题共30分,每小题5分)13.如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =. 求证:A E ∠=∠.14.计算:()3-3tan30----+⎪⎭⎫⎝⎛+ 15160π.15.解不等式2132121-≤-x x ,并把它的解集在数轴上表示出来.(添加图)16、已知x-y=3,求代数式(x+1 )2 - 2x + y(y-2x) 的值.17、已知关于x 的方程mx 2-(m+2)x+2=0(m≠0). (1) 求证:方程总有两个实数根;(2) 若方程的两个实数根都是整数,求正整数m 的值.18.列方程或方程组解应用题小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.19.如图,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF 交于点P,连接EF.PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.20.根据某研究院公布的2009-2013年我国成年国民阅读调查报告的部分数据,绘制的统计图表如下:2013年成年国民2009~2013年成年国民倾向的阅读方式人数分布统计图年人均阅读图书数量统计表根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为_______本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为_____本.21.如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连结BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.22.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.E图1 图2小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为___________,AC的长为_____________.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.24.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB < 90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.25. 对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y ,都满足-M≤y≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1) 分别判断函数y=x1(x > 0)和y= x + 1(-4 < x ≤ 2)是不是有界函数?若是有界函数,求边界值;(2) 若函数y=-x+1(a ≤ x ≤ b ,b > a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围; (3) 将函数2(1,0)y x x m m =-≤≤≥的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足 143≤≤t ?2015年北京高级中等学校招生考试数学答案一.二.三. 解答题(本题共30分,每小题 5分):13.(本小题满分5分)证明:∵ BC ∥DE∴ ∠ABC = ∠EDB ;在△ABC 和△EDB 中:AB = ED ;∠ABC = ∠ EDB ; BC = DB ;∴ △ABC ≌ △EDB ; ∴ ∠A = ∠E14.(本小题满分5分)解:原式 ===15.(本小题满分5分) 解: 移项得:;合并同类项得:系数化为1: x ≥在数轴上表示出来:16.(本小题满分5分) 解:化简代数可得: 原式 == =∵∴ 原式 == 417.(本小题满分5分)(1)证明:可知△===== ≥0∴方程总有两个实数根。
2015北京中考数学试题及答案word版

2015北京中考数学试题及答案word版2015年北京中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 1D. -1答案:C2. 以下哪个图形是轴对称图形?A. 平行四边形B. 等边三角形C. 梯形D. 非等腰三角形答案:B3. 已知一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 120°C. 30°D. 90°答案:A4. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A5. 下列哪个是二次根式?A. √2B. 2√2C. √(-2)D. √2/3答案:A6. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 14C. 16D. 无法确定答案:B7. 已知一个直角三角形的两直角边长分别为3和4,那么这个三角形的斜边长是多少?A. 5B. 7C. 9D. 无法确定答案:A8. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 下列哪个是单项式?A. 2x+3B. 2x^2+3xC. 3x^2D. x^2+y^2答案:C10. 一个多项式减去3x^2+5x-2得到-2x^2+x+4,那么这个多项式是多少?A. x^2+6x+6B. -5x^2+4x+6C. 5x^2-4x+2D. -x^2-6x-6答案:C二、填空题(每题3分,共15分)11. 一个数的平方根是2,那么这个数是______。
答案:412. 一个数的立方根是-2,那么这个数是______。
答案:-813. 一个数的倒数是1/3,那么这个数是______。
答案:314. 一个数的绝对值是7,那么这个数可能是______或______。
答案:7或-715. 一个数的相反数是-7,那么这个数是______。
答案:7三、解答题(每题10分,共55分)16. 计算:(2x-3)(2x+3)-(3x+2)(3x-2)。
2015年北京市中考数学试题(含答案)

2015年北京市中考数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到1 40 000立方平米。
将1 40 000用科学记数法表示应为( )A .14×104B .1.4×105C .1.4×106D .0.14×1062.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )A .aB .bC .cD .d3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( ) A .61 B .31 C .21 D .324.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为( )A B C D5.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为( )A .26°B .36°C .46°D .56°(第5题 图) (第6题 图) (第7题 图)6.如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AM 的长为1.2km ,则M ,C 两点间的距离为( ) A .0.5km B .0.6km C .0.9km D .1.2km7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,22东、正北方向为x轴、y轴的正方向。
表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2) B.养心殿(-2,3) C.保和殿(1,0) D.武英殿(-3.5,-4)9.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:例如,购买A类会员卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡 B.购买B类会员年卡 C.购买C类会员年卡 D.不购买会员年卡10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成。
北京市2015年中考数学试题及解析

2015年北京市高级中等学校招生考试数学试卷一、选择题下面各题均有四个选项,其中只有一个..是符合题意的。
1截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到 1 40 000立方平米。
将140 000用科学记数法表示应为4 5 6 6A . 14 XI0 B. 1.4 M0 C . 1.4 X0 D . 0.14 氷0【考点】科学计数法与有效数字【难度】容易【答案】B【点评】此题考查科学计数法的表示方法,以及用科学计数法表示的数的有效数字的确定方法•该题目在初三强化提高班专题讲座第一章数与式第02讲科学计数法部分做了专题讲解,中考原题与讲义中给出的题目只是数字不同,考查知识点完全相同。
2.实数a, b, c, d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是Q C d1-- ----- ------ ------ ►"心-2 4 0 12 3 4A. aB. bC. cD. d【考点】数轴、绝对值【难度】容易【答案】A【点评】本题考查绝对值的基本概念。
该题目在初一强化提高班课程讲座第一章有理数第01讲有理数的定义,相关概念及有理数大小比较部分做了专题讲解,中考原题与讲义中给出的题目只是数字不同,考查的知识点及解题方法完全相同。
3.—个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差另",从中随机摸出一个小球,恰好是黄球的概率为A . B. C. D.【考点】概率【难度】容易【答案】B【点评】此题考查概率的求法: 如果一个事件有n 种可能,而且这些事件的可能性相同,其 中事件A 出现m 种结果,那么事件 A 的概率P (A )=一 •该题目在 初三强化提高班 专 n题讲座 第八章 中考总复习 第01 讲 中考综合复习串讲(3)部分做了专题讲解,中考原题与讲义中给出的题目只是数字不同, 考查的知识点及解题方法完全相同。
而且讲义中的 例题比中考中的这道题要复杂,老师对具体的分析方法等都做了详细讲解。
2015北京中考数学试卷及答案解析

2015 年北京市中考数学试卷一、选择题(本题共 30 分,每题 3 分)下边各题均有四个选项,此中只有一.个.是切合题意的1.(3 分)(2015?北京)截止到 2015 年 6 月 1 日,北京市已建成 34 个地下调蓄设备,蓄水能力达到140000 立方米,将 140000 用科学记数法表示应为()A.14×104.×5.×6.×61010 D 1410考科学记数法—表示较大的数.12999 数学网点:专计算题.题:分将 140000 用科学记数法表示即可.析:解解:×105,答:应选 B.点本题考察了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,评:科学记数法的表示形式为a×10n的形式,此中 1≤|a| < 10,n 为整数,表示时重点要正确确立 a 的值以及 n 的值.2.(3 分)(2015?北京)实数 a,b,c,d 在数轴上的对应点的地点以下图,这四个数中,绝对值最大的是()A.a B.b C.c D.d考实数大小比较. 12999 数学网点:分第一依据数轴的特点,以及绝对值的含义和性质,判断出实数a,b,c,d 的绝析:对值的取值范围,而后比较大小,判断出这四个数中,绝对值最大的是哪个数即可.解解:依据图示,可得答:3<|a| <4,1<|b| <2,0<|c| <1,2< |d| <3,因此这四个数中,绝对值最大的是a.应选: A.点本题主要考察了实数大小的比较方法,以及绝对值的非负性质的应用,要娴熟评:掌握,解答本题的重点是判断出实数 a,b,c,d 的绝对值的取值范围.3.(3 分)(2015?北京)一个不透明的盒子中装有3 个红球, 2 个黄球和 1 个绿球,这些球除了颜色外无其余差异,从中随机摸出一个小球,恰巧是黄球的概率为()A.考点:专题:分析:解答:B.C.D.概率公式. 12999 数学网计算题.直接依据概率公式求解.解:从中随机摸出一个小球,恰巧是黄球的概率== .应选 B.点本题考察了概率公式:随机事件 A 的概率 P(A)=事件 A 可能出现的结果数除以评:全部可能出现的结果数.4.(3 分)(2015?北京)剪纸是我国传统的民间艺术,以下剪纸作品中,是轴对称图形的为()A.B.C.D.考轴对称图形. 12999 数学网点:分依据轴对称图形的观点求解.析:解解: A、不是轴对称图形,答:B.不是轴对称图形,C.不是轴对称图形,D.是轴对称图形,应选: D.点本题考察了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,评:假如图形的两部分能够重合,那么这个是轴对称图形.5.(3 分)(2015?北京)如图,直线 l 1,l 2,l 3交于一点,直线 l 4∥l1,若∠ 1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°考平行线的性质. 12999 数学网点:分如图,第一运用平行线的性质求出∠AOB的大小,而后借助平角的定义求出∠3析:即可解决问题.解解:如图,∵直线l 4∥l1,答:∴∠ 1+∠AOB=180°,而∠ 1=124°,∴∠ AOB=56°,∴∠ 3=180°﹣∠ 2﹣∠ AOB=180°﹣ 88°﹣ 56°=36°,应选 B.点该题主要考察了平行线的性质及其应用问题;应坚固掌握平行线的性质,这是评:灵巧运用、解题的基础和重点.6.(3 分)(2015?北京)如图,公路 AC,BC相互垂直,公路 AB的中点 M与点 C被湖分开.若测得AM的长为,则 M,C两点间的距离为()A.B.C.D.考直角三角形斜边上的中线.12999 数学网点:专应用题.题:分依据直角三角形斜边上的中线等于斜边的一半,可得.析:解解:∵在 Rt△ABC中,∠ ACB=90°, M为 AB的中点,答:∴.应选 D.点本题考察了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线评:等于斜边的一半.理解题意,将实质问题转变为数学识题是解题的重点.7.(3 分)( 2015?北京)某市 6 月份日均匀气温统计以下图,则在日均匀气温这组数据中,众数和中位数分别是()A.21,21B.21,C.21,22D.22,22考众数;条形统计图;中位数.12999 数学网点:专数形联合.题:分依据条形统计图获取各数据的权,而后依据众数和中位数的定义求解.析:解解:这组数据中, 21 出现了 10 次,出现次数最多,因此众数为21,答:第 15 个数和第 16 个数都是 22,因此中位数是 22.应选 C.点本题考察了众数的定义:一组数据中出现次数最多的数据叫做众数.也考察了评:条形统计图和中位数.8.(3 分)(2015?北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示太和门的点的坐标为( 0,﹣ 1),表示九龙壁的点的坐标为(4,1),则表示以下宫殿的点的坐标正确的选项是()A.景仁宫( 4,2)?B.养心殿(﹣ 2,3)C.保和殿( 1,0)D.武英殿(﹣ 3.5 ,﹣ 4)考坐标确立地点. 12999 数学网点:分依据平面直角坐标系,找出相应的地点,而后写出坐标即可.析:解解:依据表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),答:可得:原点是中和殿,因此可得景仁宫( 2,4),养心殿(﹣ 2,3),保和殿( 0,1),武英殿(﹣3.5 ,﹣3),应选 B点本题考察坐标确立地点,本题解题的重点就是确立坐标原点和x,y轴的地点及评:方向.9.(3 分)(2015?北京)一家游泳馆的游泳收费标准为30 元/ 次,若购置会员年卡,可享受以下优惠:会员年卡种类办卡花费(元)每次游泳收费(元)A 类5025B 类20020C 类40015比如,购置 A 类会员年卡,一年内游泳20 次,花费 50+25×20=550 元,若一年内在该游泳馆游泳的次数介于45~55 次之间,则最省钱的方式为()A.购置A 类会员年卡B.购置B 类会员年卡C.购置C类会员年卡D.不购置会员年卡考一次函数的应用.12999 数学网点:分设一年内在该游泳馆游泳的次数为x 次,花费的钱数为y 元,依据题意得:析: y A=50+25x,y B=200+20x,y C=400+15x,当 45≤x≤50 时,确立 y 的范围,进行比较即可解答.解解:设一年内在该游泳馆游泳的次数为x 次,花费的钱数为 y 元,答:依据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当 45≤x≤50 时,1175≤y A≤1300;1100≤y B≤1200;1075≤y C≤1150;因而可知, C类会员年卡花费最低,因此最省钱的方式为购置C类会员年卡.应选: C.点本题考察了一次函数的应用,解决本题的重点是依据题意,列出函数关系式,评:并确立函数值的范围.10.(3 分)(2015?北京)一个寻宝游戏的寻宝通道如图 1 所示,通道由在同一平面内的 AB,BC,CA,OA,OB,OC构成.为记录寻宝者的前进路线,在 BC的中点 M处搁置了一台定位仪器.设寻宝者前进的时间为 x,寻宝者与定位仪器之间的距离为 y,若寻宝者匀速前进,且表示 y 与 x 的函数关系的图象大概如图 2 所示,则寻宝者的前进路线可能为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O考动点问题的函数图象.12999 数学网点:分依据函数的增减性:不一样的察看点获取的函数图象的增减性不一样,可得答案.析:解解: A、从 A 点到 O点 y 随 x 增大向来减小到 0,故 A 不切合题意;答:B.从 B到 A点小再增大,但在y 随 x 的增大先减小再增大,从A 到 C点 y 随 x 的增大先减A 点距离最大,故 B不切合题意;C.从 B到 O点 y 随 x 的增大先减小再增大,从O到 C点 y 随 x 的增大先减小再增大,在 B、C点距离最大,故 C 切合题意;D.从 C到 M点 y 随 x 的增大而减小,向来到y 为 0,从 M点到 B 点 y 随 x 的增大而增大,显然与图象不符,故D不切合题意;应选: C.点本题考察了动点问题的函数图象,利用察看点与动点 P之间距离的变化关系得评:出函数的增减性是解题重点.二、填填空题(本题共18 分,每题 3 分)11.(3 分)(2015?北京)分解因式: 5x3﹣10x2+5x= 5x(x﹣1)2.考点:提公因式法与公式法的综合运用.12999 数学网剖析:先提取公因式 5x,再依据完好平方公式进行二次分解.解答:解:5x3﹣10x2+5x=5x(x2﹣2x+1)=5x(x﹣1)2.故答案为: 5x(x﹣1)2.评论:本题考察了提公因式法,公式法分解因式,提取公因式后利用完好平方公式进行二次分解,注意分解要完全.12.(3 分)(2015?北京)如图是由射线A B,BC,CD,DE,EA构成的平面图形,则∠1+∠2+∠3+∠4+∠5= 360°.考点:多边形内角与外角. 12999 数学网剖析:第一依据图示,可得∠ 1=180°﹣∠ BAE,∠ 2=180°﹣∠ ABC,∠ 3=180°﹣∠BCD,∠ 4=180°﹣∠ CDE,∠ 5=180°﹣∠ DEA,而后依据三角形的内角和定理,求出五边形 ABCDE的内角和是多少,再用 180°×5减去五边形ABCDE的内角和,求出∠ 1+∠2+∠3+∠4+∠5等于多少即可.解答:解:∠ 1+∠2+∠3+∠4+∠5=(180°﹣∠ BAE) +(180°﹣∠ ABC) +(180°﹣∠ BCD) +(180°﹣∠ CDE)+(180°﹣∠ DEA)=180°× 5﹣(∠ BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣( 5﹣ 2)× 180°=900°﹣ 540°=360°.故答案为: 360°.评论:本题主要考察了多边形内角和定理,要娴熟掌握,解答本题的重点是要明确:(1)n 边形的内角和 =(n﹣2)?180 ( n≥3)且 n 为整数).(2)多边形的外角和指每个极点处取一个外角,则 n 边形取 n 个外角,不论边数是几,其外角和永久为 360°.13.(3 分)(2015?北京)《九章算术》是中国传统数学最重要的着作,确立了中国传统数学的基本框架.它的代数成就主要包含开方术、正负术和方程术.此中,方程术是《九章算术》最高的数学成就.《九章算术》中记录:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假定有 5 头牛、 2 只羊,值金 10 两; 2 头牛、 5 只羊,值金 8 两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为.考点:由实质问题抽象出二元一次方程组.12999 数学网剖析:依据“假定有 5 头牛、 2 只羊,值金 10 两; 2 头牛、 5 只羊,值金 8 两”,获取等量关系,即可列出方程组.解答:解:依据题意得:,故答案为:.评论:本题考察了由实质问题抽象出二元一次方程组,解决本题的重点是找到题目中所存在的等量关系.14.(3 分)(2015?北京)对于 x 的一元二次方程 ax2+bx+ =0 有两个相等的实数根,写出一组知足条件的实数 a,b 的值: a= 4 ,b= 2 .考点:根的鉴别式. 12999 数学网专题:开放型.剖析:因为对于 x 的一元二次方程ax2+bx+ =0 有两个相等的实数根,获取 a=b2,找一组知足条件的数据即可.解答:对于 x 的一元二次方程ax2+bx+ =0 有两个相等的实数根,∴△ =b2﹣4× a=b2﹣a=0,∴a=b2,当 b=2 时, a=4,故 b=2,a=4 时知足条件.故答案为: 4, 2.评论:本题主要考察了一元二次方程根的鉴别式,娴熟掌握鉴别式的意义是解题的重点.15.(3 分)(2015?北京)北京市 2009﹣2014 年轨道交通日均客运量统计以下图.根据统计图中供给的信息,预估 2015 年北京市轨道交通日均客运量约 980 万人次,你的预估原因是依据 2009﹣2011 年呈直线上涨,故 2013﹣2015 年也呈直线上涨.考点:用样本估计整体;折线统计图.12999 数学网剖析:依据统计图进行用样本估计整体来预估即可.解答:解:预估 2015 年北京市轨道交通日均客运量约980 万人次,依据 2009﹣2011年呈直线上涨,故 2013﹣2015 年也呈直线上涨,故答案为: 980;依据 2009﹣2011 年呈直线上涨,故 2013﹣2015 年也呈直线上涨.评论:本题考察用样本估计整体,重点是依据统计图剖析其上涨规律.16.(3 分)(2015?北京)阅读下边资料:在数学课上,老师提出以下问题:小芸的作法以下:老师说:“小芸的作法正确.”请回答:小芸的作图依照是到线段两个端点距离相等的点在线段的垂直均分线上.考点:作图—基本作图. 12999 数学网专题:作图题.剖析:经过作图获取 CA=CB,DA=DB,则可依据线段垂直均分线定理的逆定理判断CD 为线段 AB的垂直均分线.解答:解:∵ CA=CB,DA=DB,∴CD垂直均分 AB(到线段两个端点距离相等的点在线段的垂直均分线上)故答案为:到线段两个端点距离相等的点在线段的垂直均分线上.评论:本题考察了基本作图:基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直均分线;作已知角的角均分线;过一点作已知直线的垂线.三、解答题(本题共 72 分,第 17-26 题,每题 5 分,第 27 题 7 分,第 28 题 7 分,第 29 题 8 分)解答应写出文字说明,演算步骤或证明过程.17.(5 分)(2015?北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.考点:实数的运算;零指数幂;负整数指数幂;特别角的三角函数值.12999 数学网剖析:原式第一项利用负整数指数幂法例计算,第二项利用零指数幂法例计算,第三项利用绝对值的代数意义化简,最后一项利用特别角的三角函数值计算即可获取结果.解答:解:原式 =4﹣1+2﹣+4×=5+.评论:本题考察了实数的运算,娴熟掌握运算法例是解本题的重点.18.(5 分)(2015?北京)已知 2a2+3a﹣6=0.求代数式 3a(2a+1)﹣( 2a+1)(2a﹣1)的值.考点:整式的混淆运算—化简求值.12999 数学网专题:计算题.剖析:原式第一项利用单项式乘以多项式法例计算,第二项利用平方差公式化简,去括号归并获取最简结果,把已知等式变形后辈入计算即可求出值.解答:解:∵ 2a2+3a﹣6=0,即 2a2+3a=6,∴原式 =6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.评论:本题考察了整式的混淆运算﹣化简求值,娴熟掌握运算法例是解本题的重点.19.(5 分)(2015?北京)解不等式组,并写出它的全部非负整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.12999 数学网专题:计算题.剖析:分别求出不等式组中两不等式的解集,找出解集的公共部分确立出不等式组的解集,即可确立出全部非负整数解.解答:解:,由①得: x≥﹣ 2;由②得: x<,∴不等式组的解集为﹣ 2≤x<,则不等式组的全部非负整数解为:0,1,2,3.评论:本题考察认识一元一次不等式组,以及一元一次不等式组的整数解,娴熟掌握运算法例是解本题的重点.20.(5 分)(2015?北京)如图,在△ ABC中, AB=AC,AD是 BC边上的中线,BE⊥AC于点 E.求证:∠ CBE=∠BAD.考点:等腰三角形的性质. 12999 数学网专题:证明题.剖析:依据三角形三线合一的性质可得∠CAD=∠BAD,依据同角的余角相等可得:∠CBE=∠CAD,再依据等量关系获取∠CBE=∠BAD.解答:证明:∵ AB=AC,AD是 BC边上的中线, BE⊥AC,∴∠ CBE+∠C=∠CAD+∠C=90°,∠ CAD=∠BAD,∴∠ CBE=∠BAD.评论:考察了余角的性质,等腰三角形的性质:等腰三角形的顶角均分线、底边上的中线、底边上的高相互重合.21.(5 分)(2015?北京)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013 年末,全市已有公租自行车25 000 辆,租借点600 个.估计到 2015 年末,全市将有公租自行车 50 000 辆,而且均匀每个租借点的公租自行车数目是 2013 年末均匀每个租借点的公租自行车数目的 1.2 倍.估计到 2015年末,全市将有租借点多少个?考点:分式方程的应用. 12999 数学网剖析:依据租借点的公租自行车数目变化表示出2013 年和 2015 年均匀每个租借点的公租自行车数目,从而得出等式求出即可.解答:解:设到 2015 年末,全市将有租借点x 个,依据题意可得:×1.2=,解得: x=1000,经查验得: x=1000 是原方程的根,答:到 2015 年末,全市将有租借点1000 个.评论:本题主要考察了分式的方程的应用,依据题意得出正确等量关系是解题重点.22.(5 分)(2015?北京)在 ?ABCD中,过点 D作 DE⊥AB于点 E,点 F 在边 CD上,DF=BE,连结 AF,BF.(1 )求证:四边形BFDE是矩形;(2 )若 CF=3,BF=4,DF=5,求证: AF均分∠ DAB.考点:平行四边形的性质;角均分线的性质;勾股定理的逆定理;矩形的判断. 12999 数学网专题:证明题.剖析:(1)依据平行四边形的性质,可得AB与 CD的关系,依据平行四边形的判断,可得 BFDE是平行四边形,再依据矩形的判断,可得答案;(2 )依据平行线的性质,可得∠DFA=∠FAB,依据等腰三角形的判断与性质,可得∠ DAF=∠DFA,依据角均分线的判断,可得答案.解答:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF, BE=DF,∴四边形 BFDE是平行四边形.∵DE⊥AB,∴∠ DEB=90°,∴四边形 BFDE是矩形;(2 )解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠ DFA=∠F AB.在 Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠ DAF=∠DFA,∴∠ DAF=∠FAB,即 AF均分∠ DAB.评论:本题考察了平行四边形的性质,利用了平行四边形的性质,矩形的判断,等腰三角形的判断与性质,利用等腰三角形的判断与性质得出∠ DAF=∠DFA是解题重点.23.(5 分)(2015?北京)在平面直角坐标系 xOy 中,直线 y=kx+b(k≠0)与双曲线y= 的一个交点为 P(2,m),与 x 轴、 y 轴分别交于点 A,B.(1 )求 m的值;(2 )若 PA=2AB,求 k 的值.考点:反比率函数与一次函数的交点问题.12999 数学网剖析:(1)将点 P的坐标代入反比率函数的分析式即可求得m的值;(2 )作 PC⊥x轴于点 C,设点 A 的坐标为( a,0),则 AO=﹣a,AC=2﹣a,依据PA=2AB获取 AB:AP=AO:AC=1:2,求得 a 值后辈入求得 k 值即可.解答:解:∵ y= 经过 P(2,m),∴2m=8,解得: m=4;(2 )点 P(2,4)在 y=kx+b 上,∴4=2k+b,∴b=4﹣ 2k,∵直线 y=kx+b(k≠0)与 x 轴、 y 轴分别交于点A,B,∴A(2﹣,0),B(0,4﹣2k),如图,∵PA=2AB,∴AB=PB,则 OA=OC,∴ ﹣2=2,解得 k=1;评论:本题考察了反比率函数与一次函数的交点问题,解题的重点是表示出A的坐标,而后利用线段之间的倍数关系确立k 的值,难度不大.24.(5 分)(2015?北京)如图,AB是⊙O的直径,过点 B 作⊙O的切线 BM,弦CD∥BM,交 AB于点 F,且 = ,连结 AC,AD,延伸 AD交 BM于点 E.(1 )求证:△ ACD是等边三角形;(2 )连结 OE,若 DE=2,求 OE的长.考点:切线的性质;等边三角形的判断与性质.12999 数学网剖析:(1)由 AB是⊙O的直径, BM是⊙O的切线,获取 AB⊥BE,因为 CD∥BE,获取CD⊥AB,依据垂径定理获取,于是获取,问题即可得证;(2 )连结 OE,过 O作 ON⊥AD于 N,由(1)知,△ACD是等边三角形,获取∠DAC=60°又直角三角形的性质获取 BE= AE,ON= AO,设⊙O的半径为: r 则 ON= r ,AN=DN= r ,因为获取EN=2+,BE= AE=,在R t△DEF与R t△BEO中,由勾股定理列方程即可获取结论.解答:(1)证明:∵ AB是⊙O的直径, BM是⊙O的切线,∴AB⊥BE,∵CD∥BE,∴CD⊥AB,∴,∵= ,∴,∴AD=AC=CD,∴△ ACD是等边三角形;(2 )解:连结 OE,过 O作 ON⊥AD于 N,由( 1)知,△ ACD是等边三角形,∴∠ DAC=60°∵AD=AC,CD⊥AB,∴∠ DAB=30°,∴BE= AE,ON=AO,设⊙O的半径为: r ,∴ON= r ,AN=DN= r ,∴EN=2+,BE= AE=,在 R t△DEF与 R t△BEO中,22222OE=ON+NE=OB+BE,即=r 2+,∴r=2,2∴OE=+25=28,∴OE=2 .评论:本题考察了切线的性质,垂径定理,等边三角形的判断,直角三角形的性质,勾股定理,过 O作 ON⊥AD于 N,结构直角三角形是解题的重点.25.(5 分)(2015?北京)阅读以下资料:2015 年清明小长假,北京市属公园展开以“清明踏青,春光满园”为主题的游园活动,固然气温小幅走低,但旅客踏青赏花的热忱很高,市属公园旅客招待量约为 190 万人次.此中,玉渊潭公园的樱花、北京植物园的桃花遇到了旅客的热捧,两公园的旅客招待量分别为38 万人次、 21.75 万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春光成为旅客的重要目的地,旅客招待量分别为26 万人次、20 万人次、 17.6 万人次;北京动物园旅客招待量为 18 万人次,熊猫馆的旅客密集度较高.2014 年清明小长假,天气晴好,北京市属公园旅客招待量约为200 万人次,此中,玉渊潭公园旅客招待量比2013 年清明小长假增添了25%;颐和园旅客招待量为万人次, 2013 年清明小长假增添了 4.6 万人次;北京动物园旅客招待量为22 万人次.2013 年清明小长假,玉渊潭公园、陶然亭公园、北京动物园旅客招待量分别为32 万人次、 13 万人次、 14.9 万人次.依据以上资料解答以下问题:(1 )2014 年清明小长假,玉渊潭公园旅客招待量为40万人次;(2 )选择统计表或统计图,将2013﹣2015 年清明小长假玉渊潭公园、颐和园和北京动物园的旅客招待量表示出来.考点:条形统计图;统计表. 12999 数学网剖析:(1)2013 年的人数乘以( 1+25%)即可求解;(2 )求出 2014 年颐和园的旅客招待量,而后利用统计表即可表示.解答:解:(1)2014 年,玉渊潭公园的旅客招待量是:32×( 1+25%)=40(万人).故答案是: 40;(2 )2013 年颐和园的旅客招待量是:26.4 ﹣4.6=21.8 (万元).玉渊潭公园颐和园北京动物园2013 年322014 年40222015 年382618评论:本题考察了数据的剖析与整理,正确读懂题意,从所列的数据中整理出2013﹣2015 年三年中,三个公园的旅客数是重点.26.(5 分)(2015?北京)有这样一个问题:研究函数y= x2+ 的图象与性质.小东依据学习函数的经验,对函数y= x2+ 的图象与性质进行了研究.下边是小东的研究过程,请增补完好:x≠0;(1 )函数 y= x2+ 的自变量 x 的取值范围是(2 )下表是 y 与 x 的几组对应值.x﹣3﹣2﹣1﹣﹣ 1 23y﹣﹣﹣m求 m的值;(3 )如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4 )进一步研究发现,该函数图象在第一象限内的最低点的坐标是(1,),联合函数的图象,写出该函数的其余性质(一条即可)该函数没有最大值.考点:二次函数的图象;反比率函数的图象;反比率函数的性质;二次函数的性质. 12999 数学网剖析:(1)由图表可知x≠0;(2 )依据图表可知当x=3 时的函数值为 m,把 x=3 代入分析式即可求得;(3 )依据坐标系中的点,用光滑的直线连结即可;(4 )察看图象即可得出该函数的其余性质.解答:解:(1)x≠0,(2 )令 x=3,2∴y= ×3+=+ = ;∴m= ;(3 )如图(4 )该函数的其余性质:①该函数没有最大值;②该函数在 x=0 处断开;③该函数没有最小值;④该函数图象没有经过第四象限.故答案为该函数没有最大值.评论:本题考察了二次函数的图象和性质,反比率函数的图象和性质,依据图表画出函数的图象是解题的重点.27.(7 分)(2015?北京)在平面直角坐标系 xOy 中,过点( 0,2)且平行于 x 轴的直线,与直线y=x﹣1 交于点A,点 A 对于直线x=1 的对称点为B,抛物线C1:y=x2+bx+c经过点 A,B.(1 )求点 A,B 的坐标;(2 )求抛物线 C1的表达式及极点坐标;(3 )若抛物线 C2:y=ax2(a≠0)与线段 AB恰有一个公共点,联合函数的图象,求a的取值范围.考点:二次函数的性质;待定系数法求二次函数分析式.12999 数学网剖析:(1)当 y=2 时,则 2=x﹣1,解得 x=3,确立 A(3,2),依据 AB对于 x=1 对称,因此 B(﹣ 1,2).2+bx+c 得,求出 b,c(2 )把( 3,2),(﹣ 2,2)代入抛物线 C :y=x1的值,即可解答;(3 )画出函数图象,把A,B代入 y=ax2,求出 a 的值,即可解答.解答:解:(1)当 y=2 时,则 2=x﹣1,解得: x=3,∴A(3,2),∵点 A 对于直线 x=1 的对称点为 B,∴B(﹣ 1,2).(2 )把( 3,2),(﹣ 2,2)代入抛物线 C1:y=x2+bx+c 得:解得:∴y=x2﹣2x﹣1.极点坐标为( 1,﹣2).(3 )如图,当 C2过 A点, B点时为临界,代入 A(3,2)则 9a=2,解得: a= ,代入 B(﹣ 1,2),则 a(﹣ 1)2=2,解得: a=2,∴评论:本题考察了二次函数的性质,解集本题的重点是求出二次函数的分析式,并联合图形解决问题.28.(7 分)(2015?北京)在正方形 ABCD中,BD是一条对角线,点 P 在射线 CD上(与点 C、D不重合),连结 AP,平移△ ADP,使点 D挪动到点 C,获取△ BCQ,过点 Q 作QH⊥BD于 H,连结 AH,PH.(1 )若点 P在线段 CD上,如图 1.①依题意补全图1;②判断 AH与 PH的数目关系与地点关系并加以证明;(2 )若点 P在线段 CD的延伸线上,且∠ AHQ=152°,正方形 ABCD的边长为 1,请写出求 DP长的思路.(能够不写出计算结果)考点:四边形综合题. 12999 数学网剖析:(1)①依据题意画出图形即可;②连结 CH,先依据正方形的性质得出△ DHQ是等腰直角三角形,再由 SSS定理得出△ HDP≌△ HQC,故 PH=CH,∠ HPC=∠HCP,由正方形的性质即可得出结论;(2 )依据四边形 ABCD是正方形, QH⊥BD可知△ DHQ是等腰直角三角形,再由平移的性质得出 PD=CQ.作 HR⊥PC于点 R,由∠ AHQ=152°,可得出∠ AHB及∠DAH 的度数,设 DP=x,则 DR=HR=RQ,由锐角三角函数的定义即可得出结论.解答:解:(1)①如图 1;②如图 1,连结 CH,∵四边形 ABCD是正方形, QH⊥BD,∴∠ HDQ=45°,∴△ DHQ是等腰直角三角形.∵DP=CQ,在△ HDP与△ HQC中.∵,∴△ HDP≌△ HQC( SSS),∴PH=CH,∠ HPC=∠HCP.∵BD是正方形 ABCD的对称轴,∴AH=CH,∠ DAH=∠HCP,∴∠ AHP=180°﹣∠ ADP=90°,∴AH=PH,AH⊥PH.(2 )如图 2,∵四边形 ABCD是正方形, QH⊥BD,∴∠ HDQ=45°,∴△ DHQ是等腰直角三角形.∵△ BCQ由△ ADP平移而成,∴PD=CQ.作 HR⊥PC于点 R,∵∠ AHQ=152°,∴∠ AHB=62°,∴∠ DAH=17°.设 DP=x,则 DR=HR=RQ= .∵tan17 °=,即 tan17 °=,∴x=.评论:本题考察的是四边形综合题,波及到正方形的性质、图形平移的性质、全等三角形的判断与性质等知识,难度适中.29.(8 分)(2015?北京)在平面直角坐标系 xOy 中,⊙C的半径为 r ,P是与圆心 C 不重合的点,点 P对于⊙C的反称点的定义以下:若在射线 CP上存在一点 P′,满足 CP+CP′=2r,则称 P′为点 P 对于⊙C的反称点,如图为点 P 及其对于⊙C 的反称点 P′的表示图.特别地,当点P′与圆心 C重合时,规定 CP′=0.(1 )当⊙O的半径为 1 时.①分别判断点M(2,1),N(, 0),T(1,)对于⊙O 的反称点能否存在?若存在,求其坐标;②点 P在直线 y=﹣x+2 上,若点 P对于⊙O的反称点 P′存在,且点 P′不在 x 轴上,求点 P的横坐标的取值范围;(2 )⊙C的圆心在 x 轴上,半径为 1,直线 y=﹣x+2与x轴、y轴分别交于点A,B,若线段 AB上存在点 P,使得点 P 对于⊙C的反称点 P′在⊙C的内部,求圆心 C 的横坐标的取值范围.考点:圆的综合题. 12999 数学网剖析:(1)①依据反称点的定义,可适当⊙O的半径为1时,点M(2,1)对于⊙O的反称点不存在; N(,0)对于⊙O的反称点存在,反称点 N′(,0);T(1,)对于⊙O的反称点存在,反称点T′(0, 0);222②由 OP≤2r=2 ,得出 OP≤4,设 P(x,﹣ x+2),由勾股定理得出OP=x +(﹣x+2)2=2x2﹣4x+4≤4,解不等式得出 0≤x≤2.再分别将 x=2 与 0 代入查验即可;(2 )先由y=﹣x+2 ,求出A(6,0),B(0,2 ),则= ,∠OBA=60°,∠OAB=30°.再设C(x,0),分两种状况进行议论:①C 在OA上;②C在A 点右边.解答:解:(1)当⊙O的半径为 1 时.①点 M(2,1)对于⊙O的反称点不存在;N(,0)对于⊙O 的反称点存在,反称点N′(,0);T(1,)对于⊙O的反称点存在,反称点T′( 0,0);2②∵ OP≤2r=2 , OP≤4,设 P(x,﹣ x+2),2222∴OP=x +(﹣ x+2) =2x ﹣4x+4≤4,∴2x2﹣4x≤0,x(x﹣2)≤ 0,∴0≤x≤2.当 x=2 时, P( 2,0),P′( 0,0)不切合题意;当 x=0 时, P( 0,2),P′( 0,0)不切合题意;∴0<x<2;(2 )∵直线 y=﹣x+2与x轴、y轴分别交于点A,B,∴A(6,0),B(0,2),∴= ,∴∠ OBA=60°,∠ OAB=30°.设 C(x,0).①当 C 在 OA上时,作 CH⊥AB于 H,则 CH≤CP≤2r=2 ,因此 AC≤4,C 点横坐标 x≥2(当 x=2 时, C点坐标( 2,0),H点的反称点 H′( 2,0)在圆的内部);②当 C 在 A 点右边时, C到线段 AB的距离为 AC长, AC最大值为 2,因此 C 点横坐标 x≤8.综上所述,圆心C的横坐标的取值范围是2≤x≤8.评论:本题是圆的综合题,此中波及到一次函数图象上点的坐标特点,特别角的三角函数值,勾股定理,一元二次不等式的解法,利用数形联合、正确理解反称点的意义是解决本题的重点.2020-2-8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22. 解: 设小明家到单位的路程是 x 千米. 分 依题意,得
1 3 2 .3( x 3) 8 2 ( x 3) 0 .8 x
x 8 . 2 .
……………………… 1
.
…………… 3 分
解这个方程,得
………………………… 4 分
答:小明家到单位的路程是 8.2 千米.
朝阳区
22.列方程或方程组解应用题:
22. 解:设小白家这两年用水的年平均下降率为 x. …………………………………………1 分 由题意, 得 解得
3000 36 % (1 x )
2
64000 12
.
………………………………………2 分 ……………………………………………3 分
x1 1 . 8 , x 2 0 . 2 .
丰台 22.列方程或方程组解应用题: 为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张 家距上班地点 10 千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车 的方式平均每小时行驶的路程少 45 千米,他从家出发到上班地点,骑公共自行车方式 所用的时间是自驾车方式所用的时间的 4 倍. 小张用骑公共自行车方式上班平均每小时 行驶多少千米? 22. 解:设小张用骑公共自行车方式上班平均每小时行驶 x 千米,根据题意列方程得:…1 分
10 x 4 10 x 45
………3 分
解得: x 1 5 ………4 分 经检验 x 1 5 是原方程的解且符合实际意义. 答:小张用骑公共自行车方式上班平均每小时行驶 15 千米. ………5 分
西城区
21.列方程(组)解应用题: 某超市的部分商品账目记录显示内容如下: 商品 牙膏(盒) 牙刷(支) 营业额(元) 时间 第一天 7 13 121 第二天 14 15 187 第三天 ? 12 124
门头沟区
22.列方程或方程组解应用题: 2014 年北京市生产运营用水和居民家庭用水的总和为 5.8 亿立方米, 其中居民家庭用水 比生产运营用水的 3 倍还多 0.6 亿立方米, 问生产运营用水和居民家庭用水各多少亿立方米.
22. (本小题满分 5 分) 解:设生产运营用水 x 亿立方米,则居民家庭用水 ( 5 .8
设
小
明 题
家
到
学 意
校
的
距 ,
离
为
x 得
米.……………………………………………………………………..1 分
.………………………………………………………………………..3 分得 Nhomakorabea解
x 6 0 0 0 . ……………………………………………………………………..4 分
答:小明家到学校的距离为 6000 米. ………
(1 2 4 1 2 5 ) 8
8
(盒) . ……………………………………………… 4 分 答:第三天卖出牙膏 8 盒.……………
昌平区
22. 自从 2012 年 9 月 1 日昌平区首批 50 辆纯电动出租车正式运营以来, 电动出租车以绿色 环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶 15 公里以内普通燃
∵ x 1 . 8 不符合题意,舍去. ∴ x 20 %.
………………………………………………4 分 ………………………………5 分
答:小白家这两年用水的年平均下降率为 20 %.
[来源 :学_科_网 Z_X_X_K]
东城区
21. A,B 两个火车站相距 360km.一列快车与一列普通列车分别从 A,B 两站同时出发相 向而行,快车的速度比普通列车的速度快 54km/h,当快车到达 B 站时,普通列车距离 A 站还有 135km.求快车和普通列车的速度各是多少? 21.解:设普通列车的速度为 xkm/h,则快车的速度为(x+54)km/h……1 分 由题意,得:
x)
亿立方米.…… 1 分 分 分 分 分
依题意,得 5 .8 x 3 x 0 .6 .………………………………………… 2 解得 x 1 .3 ……………………………………………………………… 3 ∴ 5 .8 x 5 .8 1 .3 4 .5 . … … … … … … … … … … … … … … … … … 4 答:生产运营用水 1 .3 亿立方米,居民家庭用水 4 .5 亿立方米. ……………… 5
360 x+54 360 135 x L L 2分
解得:x=90……3 分 经检验得:x=90 是这个分式方程的解.……4 分 x+54=144.……5 分 答:普通列车的速度为 90km/h,快车的速度为 144km/h.
丰台区
22.列方程或方程组解应用题: 为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张 家距上班地点 10 千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车 的方式平均每小时行驶的路程少 45 千米,他从家出发到上班地点,骑公共自行车方式 所用的时间是自驾车方式所用的时间的 4 倍. 小张用骑公共自行车方式上班平均每小时 行驶多少千米?
求第三天卖出牙膏多少盒. 21.解:设牙膏每盒 x 元,牙刷每支 y 元.…………………………………1 分 由题意,得
7 x 1 3 y 1 2 1, 1 4 x 1 5 y 1 8 7 .
……………………………………… 2 分
解得
x 8, y 5.
……………………………………………………… 3 分
海 淀 区
21.列方程或方程组解应用题: 小明坚持长跑健身.他从家匀速跑步到学校,通常需 30 分钟.某周日,小李与同学相 约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了 40 米,结果七点五十 五分就到达了学校,求小明家到学校的距离. 21. (本小题满分 5 分) 解 : 由
x 30 40 x 25
油出租车和纯电动出租车的运营价格: 车型 普通燃油型 纯电动型 起步公里数 3 3 起步价格 13 元 8元 超出起步公里数后的单价 2.3 元/公里 2 元/公里
老张每天从家去单位打出租车上班 (路程在 15 公里以内) , 结果发现正常情况下乘坐纯电动 出租车比燃油出租车平均每公里节省 0.8 元,求老张家到单位的路程是多少公里?