matlab多重分形谱算法
多重分形谱程序

多重分形谱程序是一种用于分析复杂数据集的算法,它可以用来描述数据集中的不同尺度的结构和特征。
这种算法能够处理不同尺度上的变化和复杂性,并提供了一种有效的方式来描述和比较不同数据集的相似性和差异性。
多重分形谱程序的基本原理是通过计算数据集中不同尺度的子集的分布情况,来提取出数据集中的多重分形特征。
具体来说,它通过将数据集分成若干个子集,并计算每个子集的分布情况,然后利用这些分布情况来计算多重分形谱。
多重分形谱程序在许多领域都有广泛的应用,包括物理、生物学、医学、地理学和经济学等。
它可以用于描述各种复杂系统的结构和行为,例如股票市场的波动、地震活动的分布、人类语言的使用情况等。
要实现多重分形谱程序,需要编写相应的程序代码。
具体的实现方式可能会因不同的编程语言和工具而有所不同,但基本的思路是相似的。
一般来说,实现多重分形谱程序需要以下几个步骤:1.定义数据集:首先需要定义要分析的数据集,可以是数字、文本、图像等各种形式的数据。
2.分割数据集:将数据集分成若干个子集,每个子集包含一定数量的数据点。
子集的划分方式可以根据具体情况而定,例如可以按照大小、时间等维度进行划分。
3.计算子集的分布情况:对于每个子集,可以计算其分布情况,例如频率、概率等。
具体的计算方法可以根据数据类型和问题背景而定。
4.计算多重分形谱:利用子集的分布情况,可以计算出多重分形谱。
多重分形谱是一种描述数据集中不同尺度上的结构和特征的数学工具,可以通过特定的公式进行计算。
5.分析结果:根据计算出的多重分形谱,可以对数据集进行深入的分析和比较,例如寻找相似性和差异性、预测未来的趋势等。
总的来说,多重分形谱程序是一种强大的算法,可以用于处理和分析各种复杂的数据集。
但是,由于它涉及到一些数学和计算方面的知识,因此需要一定的专业背景和技能来理解和实现。
matlab分形

尽管分形几何的提出只有三十年左右的时间, 但它已经在自然科学的各个领域如数学、物理、 化学、地理、天文、材料、生命乃至经济、社会、 艺术等极其广泛的领域有着广泛的应用。
这里以迭代的观点介绍分形的基本特性以及生 成分形图形的基本方法。
生成元产生的分形图形
由IFS(迭代函数系)所生成的分形图形
一、生成元产生的分形图形
经过计算,可以得到如下结论: 当 z0 [1.5,1.5] 时,z值始终不会超出某个范围; 而当 z0 小于-1.5或大于1.5后,z值最终将趋于无穷。
现在,我们把这个函数扩展到整个复数范围。对 于复数 z0 x iy ,取不同的x 值和y 值,函数迭代的 结果不一样:对于有些 z0 ,函数值约束在某一范围内; z0 而对于另一些 ,函数值则发散到无穷。由于复数对 应平面上的点,因此我们可以用一个平面图形来表示。 z 我们用深灰色表示不会使函数值趋于无穷的 对于其0 ; z0 它的 ,我们用不同的颜色来区别不同的发散速度。 | z | 2 由于当某个时候 时,函数值一定发散,因此这 里定义发散速度为:使|z|大于2的迭代次数越少,则 发散速度越快。编程画出这个图形。
该吸引子就是一个分形。 利用I FS迭代可以生成各种漂亮的分形图形,而 且I FS迭代的优点是程序具有通用性,要想得到不同 的分形图形,只需改变仿射变换中的系数和概率的 值即可。
Barnsley(巴斯理)羊齿叶
w a
1 2 3 4 0 0.85 0.2 -0.15
b
c
d
e
f
0 1.6 1.6 0.44
由生成元产生的分形是一种规则分形,是数学 家按一定规则构造出来的,相当于物理中的模型。 这类图形的构造方式都有一个共同的特点:
matlab混沌,分形

matlab混沌,分形对于函数f(x)=λsin(πx),λ∈(0,1],使⽤matlab计算随着λ逐渐增⼤,迭代x=f(x)的值,代码如下:function y=diedai(f,a,x1)N=32;y=zeros(N,1);for i=1:1e4x2=f(a,x1);x1=x2;y(mod(i,N)+1)=x2;endend%f=@(a,x)a*x*(1-x);f=@(a,x)a*sin(pi*x);%x0=0.1;hold on;for x0=-1:0.05:1for a=0:0.01:1y=diedai(f,a,x0);for count=1:32plot(a,y(count),'k.');hold on;endendend得到的图像如下:其中横轴为λ,纵轴为x可以看到随着λ的逐渐增⼤,出现了倍周期分叉的情况。
由图中可以看出第⼀个分叉值⼤约在0.3附近,第⼆个在0.73到0.75之间,第三个在0.8到0.85之间,混沌⼤约出现在0.86附近。
接下来编写代码计算分叉值,代码如下:format long;x0=0.1;for a=0.3182:0.0000001:0.3183y=diedai(f,a,x0);if max(y)>0.001disp(a);break;endend得到第⼀个分叉值⼤约为0.3182298format long;x0=0.1;for a=0.7199:0.000001:0.72y=diedai(f,a,x0);if max(y)-min(y)>0.001disp(a);break;endend得到第⼆个分叉值⼤约为0.719911format long;x0=0.1;for a=0.8332:0.000001:0.8333y=diedai(f,a,x0);if abs(y(32)-y(30))>0.001disp(a);break;endend得到第三个分叉值⼤约为0.833267利⽤Feigenbaum常数估计第三个分叉值,得到0.805939分形图周常青画mandelbrot分形图,主要使⽤了三个函数:iter=mandelbrot1(x0,y0,maxIter),⽤来计算迭代后是否收敛,⽅程z=z2+z0。
MATLAB分形曲线与面积计算-1

x( t ) (1 t ) xk txk 1 , t (0,1) y( t ) (1 t ) yk tyk 1
Lk
ydx [(1 t ) yk tyk 1 ]( xk 1 xk )dt
1 0
1 ( xk 1 xk )( yk yk 1 ) 2
Koch分形曲线与面积计算
分形图形的基本特征 正交矩阵与正交变换 Koch分形曲线 Koch分形雪花面积计算
1/13
分形概念始现于数学家曼德勃罗 1967 年发表于美国《科学》杂志一篇论文
“英国海岸线有多长” 。 分形(Fractal)图形最基本特征是自相 似性,即某一对象的局部与整体在形 态、功能、信息、时间、空间等方面 具有相似性。 在自相似的图形中,局部只是整 体的缩影,而整体则是局部的放 大。适当的放大或缩小几何尺寸, 整个结构并不改变。
yk yk 1
MATLAB函数: polyarea(x,y)
8/13
面积计算的数学实验报告(三选一,或题材自选)
一、 Koch分形雪花 1.算法描述Koch分形雪花
2.证明Koch分形雪花图 Kn 的边数为
Ln 3 4n1
3.求Koch分形雪花图 Kn 的面积
lim Area ( K n )
(3) P5 ← P2; P2 ← Q1; P3 ← Q2; P4 ← Q3.
A是正交矩阵.
cos / 3 sin / 3 A sin / 3 cos / 3
功能:对向量做旋转变换.
MATLAB代码
function koch0(P,N) if nargin==0,P=[0 0;1 0];N=3;end n=max(size(P))-1; A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; for k=1:N p1=P(1:n,:);p2=P(2:n+1,:); d=(p2-p1)/3; q1=p1+d;q3=p1+2*d;q2=q1+d*A'; n=4*n;II=1:4:n-3; P(II,:)=p1;P(II+4,:)=p2; P(II+1,:)=q1;P(II+2,:)=q2;P(II+3,:)=q3; end plot(P(:,1),P(:,2)),axis off axis image
多重分形谱的一种算法

多重分形谱的一种算法
杜兴华
【期刊名称】《东北石油大学学报》
【年(卷),期】2004(028)003
【摘要】定义了多重分形的ODR维谱函数,给出了一种计算多重分形谱的实用方法.以非线性Cantor集为例进行了计算,从而说明了此方法的有效性.
【总页数】2页(P114-115)
【作者】杜兴华
【作者单位】大庆石油学院,数学系,黑龙江,大庆,163318
【正文语种】中文
【中图分类】O174.12
【相关文献】
1.求多重分形谱的一种实用算法 [J], 沈晨;乐友喜;王才经
2.基于多重分形谱的物理层帧结构检测算法研究 [J], 李歆昊;张旻;韩树楠
3.基于小波模极大值求取多重分形谱多重分形克里格算法探究 [J], 张庆敏;岳云娟
4.一种求地震记录多重分形谱的改进算法 [J], 高海霞;胡远来
5.基于多重分形谱的木材高光谱图像纹理分类算法 [J], 唐艳慧; 赵鹏; 王承琨因版权原因,仅展示原文概要,查看原文内容请购买。
分形几何中一些经典图形的Matlab画法+[文档在线提供]
![分形几何中一些经典图形的Matlab画法+[文档在线提供]](https://img.taocdn.com/s3/m/da97d930c5da50e2524d7ff5.png)
分形几何中一些经典图形的Matlab画法(1)Koch曲线程序koch.mfunction koch(a1,b1,a2,b2,n)%koch(0,0,9,0,3)%a1,b1,a2,b2为初始线段两端点坐标,n为迭代次数a1=0;b1=0;a2=9;b2=0;n=3;%第i-1次迭代时由各条线段产生的新四条线段的五点横、纵坐标存储在数组A、B中[A,B]=sub_koch1(a1,b1,a2,b2);for i=1:nfor j=1:length(A)/5;w=sub_koch2(A(1+5*(j-1):5*j),B(1+5*(j-1):5*j));for k=1:4[AA(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5),BB(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5)] =sub_koch1(w(k,1),w(k,2),w(k,3),w(k,4));endendA=AA;B=BB;endplot(A,B)hold onaxis equal%由以(ax,ay),(bx,by)为端点的线段生成新的中间三点坐标并把这五点横、纵坐标依次分别存%储在数组A,B中function [A,B]=sub_koch1(ax,ay,bx,by)cx=ax+(bx-ax)/3;cy=ay+(by-ay)/3;ex=bx-(bx-ax)/3;ey=by-(by-ay)/3;L=sqrt((ex-cx).^2+(ey-cy).^2);alpha=atan((ey-cy)./(ex-cx));if (ex-cx)<0alpha=alpha+pi;enddx=cx+cos(alpha+pi/3)*L;dy=cy+sin(alpha+pi/3)*L;A=[ax,cx,dx,ex,bx];B=[ay,cy,dy,ey,by];%把由函数sub_koch1生成的五点横、纵坐标A,B顺次划分为四组,分别对应四条折线段中%每条线段两端点的坐标,并依次分别存储在4*4阶矩阵k中,k中第i(i=1,2,3,4)行数字代表第%i条线段两端点的坐标function w=sub_koch2(A,B)a11=A(1);b11=B(1);a12=A(2);b12=B(2);a21=A(2);b21=B(2);a22=A(3);b22=B(3);a31=A(3);b31=B(3);a32=A(4);b32=B(4);a41=A(4);b41=B(4);a42=A(5);b42=B(5);w=[a11,b11,a12,b12;a21,b21,a22,b22;a31,b31,a32,b32;a41,b41,a42,b42];图1 V on Koch曲线(2)Levy 曲线程序levy.mfunction levy(n)% levy(16),n为levy曲线迭代次数%x1,y1,x2,y2为初始线段两端点坐标,nn为迭代次数n=16;x1=0;y1=0;x2=1;y2=0;%第i-1次迭代时由各条线段产生的新两条线段的三端点横、纵坐标存储在数组X、Y中[X,Y]=levy1(x1,y1,x2,y2);for i=1:nfor j=1:length(X)/3w=levy2(X(1+3*(j-1):3*j),Y(1+3*(j-1):3*j));[XX(3*2*(j-1)+1:3*2*(j-1)+3),YY(3*2*(j-1)+1:3*2*(j-1)+3)]=levy1(w(1,1),w(1,2),w(1,3),w(1,4) );[XX(3*2*(j-1)+3+1:3*2*(j-1)+3+3),YY(3*2*(j-1)+3+1:3*2*(j-1)+3+3)]=levy1(w(2,1),w(2,2),w( 2,3),w(2,4));endX=XX;Y=YY;endplot(X,Y)hold onaxis equal%由以(x1,y1),(x2,y2)为端点的线段生成新的中间点坐标并把(x1,y1),(x2,y2)连同新点横、纵坐%标依次分别存储在数组X,Y中function [X,Y]=levy1(x1,y1,x2,y2)x3=1/2*(x1+x2+y1-y2);y3=1/2*(-x1+x2+y1+y2);X=[x1,x3,x2];Y=[y1,y3,y2];%把由函数levy1生成的三点横、纵坐标X,Y顺次划分为两组,分别对应两条折线段中每条线%段两端点的坐标,并依次分别存储在2*4阶矩阵w中,w中第i(i=1,2)行数字代表第i条线段%两端点的坐标function w=levy2(X,Y)a11=X(1);b11=Y(1);a12=X(2);b12=Y(2);a21=X(2);b21=Y(2);a22=X(3);b22=Y(3);w=[a11,b11,a12,b12;a21,b21,a22,b22];图2 Levy 曲线(3)分形树程序tree.hfunction tree(n,a,b)% tree(8,pi/8,pi/8),n为分形树迭代次数%a,b为分枝与竖直方向夹角%x1,y1,x2,y2为初始线段两端点坐标,nn为迭代次数n=8;a=pi/8;b=pi/8;x1=0;y1=0;x2=0;y2=1;plot([x1,x2],[y1,y2])hold on[X,Y]=tree1(x1,y1,x2,y2,a,b);hold onW=tree2(X,Y);w1=W(:,1:4);w2=W(:,5:8);% w为2^k*4维矩阵,存储第k次迭代产生的分枝两端点的坐标, % w的第i(i=1,2,…,2^k)行数字对应第i个分枝两端点的坐标w=[w1;w2];for k=1:nfor i=1:2^k[X,Y]=tree1(w(i,1),w(i,2),w(i,3),w(i,4),a,b);W(i,:)=tree2(X,Y);endw1=W(:,1:4);w2=W(:,5:8);w=[w1;w2];end%由每个分枝两端点坐标(x1,y1),(x2,y2)产生两新点的坐标(x3,y3),(x4,y4),画两分枝图形,并把%(x2,y2)连同新点横、纵坐标分别存储在数组X,Y中function [X,Y]=tree1(x1,y1,x2,y2,a,b)L=sqrt((x2-x1)^2+(y2-y1)^2);if (x2-x1)==0a=pi/2;else if (x2-x1)<0a=pi+atan((y2-y1)/(x2-x1));elsea=atan((y2-y1)/(x2-x1));endendx3=x2+L*2/3*cos(a+b);y3=y2+L*2/3*sin(a+b);x4=x2+L*2/3*cos(a-b);y4=y2+L*2/3*sin(a-b);a=[x3,x2,x4];b=[y3,y2,y4];plot(a,b)axis equalhold onX=[x2,x3,x4];Y=[y2,y3,y4];%把由函数tree1生成的X,Y顺次划分为两组,分别对应两分枝两个端点的坐标,并存储在一维%数组w中function w=tree2(X,Y)a1=X(1);b1=Y(1);a2=X(2);b2=Y(2);a3=X(1);b3=Y(1);a4=X(3);b4=Y(3);w=[a1,b1,a2,b2,a3,b3,a4,b4];图3 分形树(4)IFS算法画Sierpinski三角形程序sierpinski_ifs.hfunction sierpinski_ifs(n,w1,w2,w3)%sierpinski_ifs(10000,1/3,1/3,1/3)%w1,w2,w3出现频率n=10000;w1=1/3;w2=1/3;w3=1/3;M1=[0.5 0 0 0 0.5 0];M2=[0.5 0 0.5 0 0.5 0];M3=[0.5 0 0.25 0 0.5 0.5];x=0;y=0;% r为[0,1]区间内产生的n维随机数组r=rand(1,n);B=zeros(2,n);k=1;% 当0<r(i)<1/3时,进行M1对应的压缩映射;% 当1/3=<r(i)<2/3时,进行M2对应的压缩映射;% 当2/3=<r(i)<1时,进行M3对应的压缩映射;for i=1:nif r(i)<w1a=M1(1);b=M1(2);e=M1(3);c=M1(4);d=M1(5);f=M1(6);else if r(i)<w1+w2a=M2(1);b=M2(2);e=M2(3);c=M2(4);d=M2(5);f=M2(6);else if r(i)<w1+w2+w3a=M3(1);b=M3(2);e=M3(3);c=M3(4);d=M3(5);f=M3(6);endendendx=a*x+b*y+e;y=c*x+d*y+f;B(1,k)=x;B(2,k)=y;k=k+1;endplot(B(1,:),B(2,:),'.','markersize',0.1)图4 Sierpinski三角形(5)IFS算法画Julia集程序julia_ifs.hfunction julia_ifs(n,cx,cy)% julia_ifs(100000,-0.77,0.08)% f(z)=z^2+c,cx=real(c);cy=image(c);n=10000;cx=-0.77;cy=0.08;% z^2+c=z0,x=real(z0);y=image(z0);x=1;y=1;B=zeros(2,n);k=1;% A为产生的服从标准正态分布的n维随机数组A=randn(1,n);for i=1:nwx=x-cx;wy=y-cy;if wx>0alpha=atan(wy/wx);endif wx<0alpha=pi+atan(wy/wx);endif wx==0alpha=pi/2;endalpha=alpha/2;r=sqrt(wx^2+wy^2);if A(i)<0r=-sqrt(r);elser=sqrt(r);endx=r*cos(alpha);y=r*sin(alpha);B(1,k)=x;B(2,k)=y;k=k+1;endplot(B(1,:),B(2,:),'.','markersize',0.1)图5 Julia 集(6)逃逸时间算法画Sierpinski垫片程序sierpinski.hfunction sierpinski(a,b,c,d,n,m,r)%sierpinski(0,0,1,1,12,200,200)%(a,b),(c,d)收敛区域左上角和右下角坐标,m为分辨率% n为逃逸时间,需要反复试探,r逃逸半径a=0;b=0;c=1;d=1;n=12;m=200;r=200;B=zeros(2,m*m);w=1;for i=1:mx0=a+(c-a)*(i-1)/m;for j=1:my0=b+(d-b)*(j-1)/m;x=x0;y=y0;for k=1:nif y>0.5x=2*x;y=2*y-1;else if x>=0.5x=2*x-1;y=2*y;elsex=2*x;y=2*y;endif x^2+y^2>rbreak;endendif k==nB(1,w)=i;B(2,w)=j;w=w+1;endendendplot(B(1,:),B(2,:),'.','markersize',0.1)图6 Sierpinski三角形垫片(7)元胞自动机算法画Sierpinski三角形程序一维元胞自动机sierpinski_ca1.hfunction sierpinski_ca1(m,n)%sierpinski_ca1(1000,3000)m=1000;n=3000;x=1;y=1;t=1;w=zeros(2,m*n);s=zeros(m,n);s(1,fix(n/3))=1;for i=1:m-1for j=2:n-1if (s(i,j-1)==1&s(i,j)==0&s(i,j+1)==0)|(s(i,j-1)==0&s(i,j)==0&s(i,j+1)==1) s(i+1,j)=1;w(1,t)=x+3+3*j;w(2,t)=y+5*i;t=t+1;endendendplot(w(1,:),w(2,:),'.','markersize',1)图7.1 一维元胞自动机画Sierpinski三角形二维元胞自动机sierpinski_ca2.hfunction sierpinski_ca2(m,n)%sierpinski_ca2(400,400)m=400;n=400;t=1;w=zeros(2,m*n);s=zeros(m,n);s(m/2,n/2)=1;for i=[m/2:-1:2,m/2:m-1]for j=[n/2:-1:2,n/2:n-1]ifmod(s(i-1,j-1)+s(i,j-1)+s(i+1,j-1)+s(i-1,j)+s(i+1,j)+s(i-1,j+1)+s(i,j+1)+s(i+1,j+1),2)==1 s(i,j)=1;w(1,t)=i;w(2,t)=j;t=t+1;endendendplot(w(1,:),w(2,:),'.','markersize',0.1)图7.2 二维元胞自动机画Sierpinski三角形(8)IFS算法画Helix曲线程序helix_ifs.hfunction helix_ifs(n,w1,w2,w3)%helix_ifs(20000,0.9,0.05,0.05)%w1,w2,w3为出现频率n=20000;w1=0.9;w2=0.05;w3=0.05;M1=[0.787879 -0.424242 1.758647 0.242424 0.859848 1.408065];M2=[-0.121212 0.257576 -6.721654 0.05303 0.05303 1.377236];M3=[0.181818 -0.136364 6.086107 0.090909 0.181818 1.568035];x=0;y=0;% r为[0,1]区间内产生的n维随机数组r=rand(1,n);B=zeros(2,n);k=1;% 当0<r(i)<1/3时,进行M1对应的压缩映射;% 当1/3=<r(i)<2/3时,进行M2对应的压缩映射;% 当2/3=<r(i)<1时,进行M3对应的压缩映射;for i=1:nif r(i)<w1a=M1(1);b=M1(2);e=M1(3);c=M1(4);d=M1(5);f=M1(6);else if r(i)<w1+w2a=M2(1);b=M2(2);e=M2(3);c=M2(4);d=M2(5);f=M2(6);else if r(i)<w1+w2+w3a=M3(1);b=M3(2);e=M3(3);c=M3(4);d=M3(5);f=M3(6);endendendx=a*x+b*y+e;y=c*x+d*y+f;B(1,k)=x;B(2,k)=y;k=k+1;endplot(B(1,:),B(2,:),'.','markersize',0.1)图8 Helix曲线。
几个分形的matlab实现资料

几个分形的matlab 实现摘要:给出几个分形的实例,并用matlab 编程实现方便更好的理解分形,欣赏其带来的数学美感关键字:Koch 曲线 实验 图像一、问题描述:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下图1在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch 分形曲线。
二、算法分析:考虑由直线段(2个点)产生第一个图形(5个点)的过程。
图1中,设1P 和5P 分别为原始直线段的两个端点,现需要在直线段的中间依次插入三个点2P ,3P ,4P。
显然2P 位于线段三分之一处,4P 位于线段三分之二处,3P 点的位置可看成是由4P点以2P 点为轴心,逆时针旋转600而得。
旋转由正交矩阵 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=)3cos()3sin()3sin()3cos(ππππA 实现。
算法根据初始数据(1P 和5P 点的坐标),产生图1中5个结点的坐标。
结点的坐标数组形成一个25⨯矩阵,矩阵的第一行为1P 的坐标,第二行为2P 的坐标……,第五行为5P 的坐标。
矩阵的第一列元素分别为5个结点的x 坐标,第二列元素分别为5个结点的y 坐标。
进一步考虑Koch 曲线形成过程中结点数目的变化规律。
设第k 次迭代产生的结点数为k n ,第1+k 次迭代产生的结点数为1+k n ,则k n 和1+k n 中间的递推关系为341-=+k k n n 。
三、实验程序及注释:p=[0 0;10 0]; %P为初始两个点的坐标,第一列为x坐标,第二列为y坐标n=2; %n为结点数A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵for k=1:4d=diff(p)/3; %diff计算相邻两个点的坐标之差,得到相邻两点确定的向量%则d就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上的点的坐标n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])四、实验数据记录:由第三部分的程序,可得到如下的Koch分形曲线:图2五、注记:1.参照实验方法,可绘制如下生成元的Koch 分形曲线:图3此时,旋转矩阵为:⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=0110)2cos()2sin()2sin()2cos(ππππA 程序和曲线如下:p=[0 0;10 0]; %P 为初始两个点的坐标,第一列为x 坐标,第二列为y 坐标n=2; %n 为结点数A=[0 -1;1 0]; %旋转矩阵for k=1:4d=diff(p)/3; %diff 计算相邻两个点的坐标之差,得到相邻两点确定的向量%则d 就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=5*n-4; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(6:5:m,:)=p(2:n,:); %迭代后处于5k+1位置上的点的坐标为迭代前的相应坐标 p(2:5:m,:)=q+d; %用向量方法计算迭代后处于5k+2位置上的点的坐标 p(3:5:m,:)=q+d+d*A'; %用向量方法计算迭代后处于5k+3位置上的点的坐标 p(4:5:m,:)=q+2*d+d*A'; %用向量方法计算迭代后处于5k+4位置上的点的坐标 p(5:5:m,:)=q+2*d; %用向量方法计算迭代后处于5k 位置上的点的坐标n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])图4由于中间三分之一部分是一个正方形时,有很多连接的部分。
MATLAB环境下图像分形维数的计算

也有采用递减序列进行像素点覆盖,递减序列 的构造有多种方法,普遍使用的是二等分序列,也 就是将图像逐次二等分.所采用的序列的最大值都 将取决于图像的大小.网格的最小值始终为1,这 是划分网格的极限.
根据分形维数的定义,块的尺寸越小,计算出 的图像的维数越精确,但对于存储在计算机内的分 形图像,只能分割到像素点尺寸,就不能再继续分 割下去了.因此,当讨论图像的分形性质时,可以取 一个像素点的尺寸作为尺度下限,为了避免奇异情 形的发生,在计算分形维数的过程中,要求有适当 多的测试点,至于尺度上限可根据具体情况和具体 要求进行确定.
(1.中国矿业大学资源与安全工程学院,北京100083;2.中原工学院数理系,河南郑州450007)
摘要:利用MATLAB的图像处理和数值计算功能,对大气可吸入颗粒物的场发射电镜
(FESEM)图像进行处理,得到颗粒物边界的二值图像;编制MATLAB程序,统计一系列以不同
像素数量为边长的正方形块覆盖二值图像时的个数,根据像素数量和正方形块个数之间的关系,
确定图像的计盒维数.结果表明:MATLAB对分形图像的处理简单、方便,通过科赫曲线、谢宾
斯基填料等有规分形图形分形维数的计算表明该方法计算出的结果准确、可靠.对大气颗粒物的
分形维数的计算表明,不同不规则程度的颗粒物有不同的分形维数,可以通过颗粒物分形维数的
计算分析颗粒物的来源和输运过程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab多重分形谱算法
MATLAB中的多重分形谱算法是一种用于分析信号和图像的技术,它可以帮助我们理解复杂系统的结构和特征。
多重分形谱算法通常
用于测量信号或图像的分形维度,以及它们的分形特征。
下面我将
从多个角度来解释MATLAB中的多重分形谱算法。
首先,多重分形谱算法可以用于计算信号或图像的分形维度。
分形维度是一种描述信号或图像自相似性的度量,它可以帮助我们
理解信号或图像的复杂性和规律性。
在MATLAB中,我们可以使用多
重分形谱算法来计算信号或图像的分形维度,从而得到关于其结构
和特征的信息。
其次,多重分形谱算法可以用于分析信号或图像的分形特征。
通过计算信号或图像的分形谱,我们可以得到关于其分形特征的信息,比如分形维度的分布情况、分形特征的变化趋势等。
这些信息
可以帮助我们理解信号或图像的复杂性和规律性,从而为进一步的
分析和处理提供参考。
此外,MATLAB中的多重分形谱算法还可以用于处理不同类型的
信号和图像。
无论是一维的时间序列信号还是二维的图像数据,多
重分形谱算法都可以进行分形维度和分形特征的计算,从而帮助我们理解不同类型数据的结构和特征。
总的来说,MATLAB中的多重分形谱算法是一种强大的工具,可以帮助我们分析信号和图像的分形特征,从而揭示其复杂性和规律性。
通过对多重分形谱算法的理解和应用,我们可以更好地理解和处理各种类型的数据。