雷达原理简介修订稿

合集下载

雷达基本工作原理课件-新版.ppt

雷达基本工作原理课件-新版.ppt

微波传输线 发射脉冲
发射机
T/R 触发器
天线 回波
接收机
电源
船电
显示器
Fig1-2 (2)
回波 船首线 方位
精品
T/R
Receiver
Transmitter
第二节 雷达的基本组成、作用
一、基本组成七部分及作用:
1、定时器(触发电路、同步电路等): 是雷达的指挥中心,产生周期性的窄脉冲——触发脉冲 送:1)发射机:控制发射开始 2)接收机:控制近距离增益 3)显示器:控制计时开始
船舶导航雷达
精品
第一章 雷达基本工作原理
引言
Radar —Radio detection and ranging
—无线电探测和测距
雷达:发射微波并接收目标反射回波,对目标进行探测 和测定目标信息
现代雷达 IBS的重要组成部分 定位、导航、避碰
主要传感器
精品
雷达 罗经 计程仪 GNSS AIS ECDIS
二、船用雷达单元构成:
1、三单元雷达: 收发机(触发电路、发射机、接收机、收发开关) 显示器、天线、中频电源
2、二单元雷达: 天线收发机、显示器、精中品频电源
荧光屏的单位长度:在不同量程代表不同的距离
二. 雷达测方位原理
1、利用收发定向天线 ,只向一个方向发射雷达波且 只接收此方向上的目标的反射回波
2、天线旋转依次向四周发射雷达波,则可探知周围 物标的方位——天线的精品方向即目标的方向
触发器
天线
方位与 船首线
收发机 回波
显示器
ARPA
Fig1-2(1)
第二节 雷达的基本组成、作用
5、接收机:超外差式,将微弱回波信号放大千万倍以符合

简述雷达工作原理

简述雷达工作原理

简述雷达工作原理
雷达是一种利用无线电波来探测目标物体的装置。

雷达的工作原理主要包括发射、接收和信号处理三个步骤。

首先,雷达系统会发射一束无线电波,这些波被称为脉冲。

这些脉冲被发射到空中,并按照一定的频率和功率进行发送。

发射的电波会沿着一定的方向传播并遇到目标物体。

当脉冲遇到目标物体时,一部分的能量会被目标物体反射回来。

这些反射回来的信号通过接收器接收。

接收器是一个专门设计的装置,它能够检测并测量接收到的信号的强度和时间。

接收到的信号经过放大和滤波后,被送到信号处理系统中进行处理。

信号处理系统会分析接收到的信号的特征,比如信号的强度、频率和相位等。

根据这些特征,可以推测出目标物体的位置、速度、方向和其他属性。

最后,雷达系统将处理后的信号转化为可视化的图像或数据,以便用户观察和分析。

这些数据可以用来确定目标物体的位置、形状、运动轨迹等信息。

总结来说,雷达的工作原理是通过发射无线电波并接收反射回来的信号,然后对信号进行处理和分析,从而实现目标物体的探测和识别。

雷达发明原理

雷达发明原理

雷达发明原理
雷达是一种利用电磁波来探测、测量和定位目标的技术,其发明原理主要包括以下几个方面:
发射原理:雷达通过发射电磁波(一般是微波),将信号发射出去,然后由目标反射回来,形成回波信号。

雷达发射的电磁波的频率和功率等参数取决于所需的探测距离和目标特性等因素。

接收原理:雷达接收到反射回来的回波信号后,将信号通过接收机进行放大、滤波和解调等处理,以提取出目标的信息和特征。

在信号处理过程中,也需要考虑到信噪比等因素的影响,以保证信号的准确性和可靠性。

雷达测距原理:雷达通过测量电磁波发射和接收之间的时间差,以计算出目标与雷达之间的距离。

通常,雷达的测距精度取决于电磁波的频率和功率、目标反射面积和形状等因素。

雷达测速原理:雷达还可以利用多普勒效应来测量目标的速度。

当目标靠近雷达时,反射回来的回波信号的频率会比发射时高,而当目标远离雷达时,回波信号的频率则会比发射时低,根据这个频率变化的差异,可以计算出目标的速度。

综上所述,雷达的发明原理是利用电磁波发射、接收和处理的方法,以实现对目标的探测、测量和定位等功能,其中包括雷达发射原理、接收原理、雷达测距原理和雷达测速原理等方面的内容。

雷达原理介绍

雷达原理介绍
雷达波束张角 与发射波长、天 线孔径D之间存在近似关系: /D
r
雷达发射信号
雷达发射脉冲 p(t) 的一般形式为: p(t) = a(t) exp(j2 f0t) a(t) 为信号的调制波形,称之为信号形式或信号包络; f0 是信号的载波频率,简称为信号载频。显然,发射脉冲p(t) 是信号包络a(t)被调制到载频 f0上的结果,因为只有振荡的 信号才能通过雷达天线发射到充满介质的自由空间形成发 射电磁波。当目标被发射电磁波照射才会产生反射电磁波, 反射电磁波被雷达接收从而发现目标。 矩形振幅是一种常用的信号包络 : a(t) = A rect(t / Tp)
式中的t 表示关于t的线性卷积,匹配滤波器响应h(t) 发射 信号包络a(t)之间存在时域、频域的对应关系: h(t) = a*(-t) H( f ) = A*( f ) 匹配滤波器的作用有两点: 1. 将分布于宽时段内的能量汇聚到窄时段内,从而提高 了SNR。 2. 将宽脉冲压缩成窄脉冲,从而提高了距离分辨率。
a( t ) A
Tp 0 2
Tp 2
t
雷达发射信号
雷达的工作频率是雷达系统的重要参数,不同的频率 参数赋予了雷达不同的功能特性。一般可用频带宽度B和 工作波段来描述雷达工作频率。大多数情况下,信号包络 a(t)的中心频率为零,它决定了带宽B ;当B f0 时,工作 波段主要决定于载频 f0。
基本原理
发射系统 目标 接收系统
将雷达的接收信号与发射信号进行比较,就可 以获得目标的位置、速度、形状等信息,根据这些 信息,雷达进而可以完成对目标的检测、跟踪、识 别等任务。
基本原理
发射信号:
Tp Tr t
雷达发射周期性脉冲,记脉冲宽度为 Tp,重复周期为 Tr,雷达峰值功率(即脉冲期间的平均功率)为Pt,雷达 平均功率(即周期内的平均功率)为Pav,工作比(即脉冲 宽度与重复周期之比)为D。显然有: D = Tp / Tr = Pt / Pav ≤ 1 当雷达发射信号是连续波时,其工作比D = 1。

雷达基本理论与基本原理

雷达基本理论与基本原理

雷达基本理论与基本原理一、雷达的基本理论1、雷达工作的基本过程发射机产生电磁信号,由天线辐射到空中,发射的信号一部分被目标拦截并向许多方向再辐射。

向后再辐射回到雷达的信号被天线采集,并送到接受机,在接收机中,该信号被处理以检测目标的存在并确定其位置,最后在雷达终端上将处理结果显示出来。

2、雷达工作的基本原理一般来说,会通过雷达信号到目标并从目标返回雷达的时间,得到目标的距离。

目标的角度位置可以根据收到的回波信号幅度为最大时,窄波束宽度雷达天线所指的方向而获得。

如果目标是运动的,由于多普勒效应,回波信号的频率会漂移。

该频率的漂移与目标相对于雷达的速度成正比,根据2rd v f λ=,即可得到目标的速度。

3、雷达的主要性能参数和技术参数 雷达的主要性能参数 雷达的探测范围雷达对目标进行连续观测的空域,叫做探测范围,又称威力范围,取决于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。

测量目标参数的精确度和误差精确度高低用测量误差的大小来衡量,误差越小,精确度越高,雷达测量精确度的误差通常可以分为系统误差、随机误差和疏失误差。

分辨力指雷达对两个相邻目标的分辨能力。

可分为距离分辨力、角分辨力(方位分辨力和俯仰角分辨力)和速度分辨力。

距离分辨力的定义:第一个目标回波脉冲的后沿与第二个目标回波脉冲的前沿相接近以致不能分辨出是两个目标时,作为可分辨的极限,这个极限距离就是距离分辨力:min ()2c R τ∆=。

因此,脉宽越小,距离分辨力越好数据率雷达对整个威力范围完成一次探测所需时间的倒数。

抗干扰能力指雷达在自然干扰和人为干扰(主要的是敌方干扰(有源和无源))条件下工作的能力。

雷达可靠性分为硬件的可靠性(一般用平均无故障时间和平均修复时间衡量)、软件可靠性和战争条件下雷达的生存能力。

体积和重量体积和重量决定于雷达的任务要求、所用的器件和材料。

功耗及展开时间功耗指雷达的电源消耗总功率。

展开时间指雷达在机动中的架设和撤收时间。

简述雷达的工作原理

简述雷达的工作原理

简述雷达的工作原理
雷达,嘿,这可真是个神奇的玩意儿!它就像是我们的超级眼睛,能在茫茫的空间中找到目标。

你想啊,雷达就像是一个敏锐的侦探,一刻不停地在扫描着周围的一切。

它通过发射电磁波,就像我们向周围抛出无数的小探子。

这些电磁波碰到物体后会反弹回来,然后被雷达这个聪明的“大脑”接收和分析。

这不就跟我们丢出一个球,然后根据球弹回来的情况来判断前方有什么差不多嘛!
雷达能探测到飞机、船只、车辆等等各种目标,不管是在白天还是黑夜,不管是晴天还是雨天,它都能坚守岗位,这多厉害呀!它难道不是我们的大功臣吗?它的工作原理说起来也不难理解,就是这么一发射一接收,然后通过复杂的计算和分析,就能准确地告诉我们目标在哪里,速度有多快,甚至还能知道目标的形状和大小呢!这就好像我们能通过听声音就知道是谁在说话一样神奇。

要是没有雷达,我们的生活得变成什么样啊?飞机飞行会变得很危险,船只在海上航行也会像没头苍蝇一样乱撞。

所以说,雷达可太重要啦!它就像我们的保护神,默默地守护着我们的安全。

雷达的存在让我们能更加安心地生活和工作,它让我们对周围的世界有了更清楚的认识。

它不断地发展和进步,变得越来越精确,越来越强大。

我们真应该好好感谢那些发明和改进雷达的科学家们,是他们让我们拥有了这样神奇的工具。

雷达,真的是科技的杰作,是人类智慧的结晶!它在我们的生活中发挥着不可或缺的作用,让我们的世界变得更加有序和安全。

2023年雷达原理知识点总结

2023年雷达原理知识点总结

【雷达任务:测目旳距离、方位、仰角、速度;从目旳回波中获取信息【雷达工作原理:发射机在定期器控制下,产生高频大功率旳脉冲串,通过收发开关抵达定向天线,以电磁波形式向外辐射。

在天线控制设备旳控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目旳上,二次散射电磁波旳一部分抵达雷达天线,经收发开关至接受机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目旳旳存在、方位、距离、速度等。

【影响雷达性能指标:脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。

【测角:根据接受回波最强时旳天线波束指向【雷达是怎样获取目旳信息旳?【雷达构成:天线,发射机,接受机,信号处理机,终端设备(电源,显示屏),收发转换开关【发射机工作原理:为雷达提供一种载波受到调制旳大功率射频信号,经馈线和收发开关由天线辐射出去。

【发射机基本构成:单级振荡式:脉冲调制器,大频率射频振荡器,电源。

主振放大式:脉冲调制器,中间和输出射频功放,电源,定期器,固体微波源(主控振荡器,用来产生射频信号)工作过程:(1)单级振荡式:信号由振荡器产生,受调制(2)主振放大式:信号由固体微波源通过倍频后产生,经射频放大链进行放大,各级都需调制(脉冲调制器),定期器协调工作。

优缺陷:单击振荡式:简朴经济轻便,频率稳定度差,无复杂波形;主振放大式:频率稳定度高,相位相参信号,有复杂波形,合用频率捷变雷达【发射机质量指标:(1)工作频率(波段)(2)输出功率:影响威力和抗干扰能力。

峰值功率(脉冲期间射频振荡旳平均功率)和平均功率(脉冲反复周期内输出功率旳平均值)。

(3)总效率Pt/P。

(4)调制形式:调制器旳脉冲宽度,反复频率,波形。

(5)信号稳定度/频谱纯度,即信号各项参数。

【调制器构成:电源,能量储存,脉冲形成【调制器任务与作用:为发射机旳射频各级提供合适脉冲,将一种信号载到一种比它高旳信号上【仿真线:由于雷达旳工作脉冲宽度多半在微秒级别以上,用真实线长度太长,因此在实际中是用集总参数旳网络替代长线,即仿真线【刚/软性开关:刚性开关旳电容储能部分放电式调制器,特点为部分放电,通电利索;软性开关旳人工线性调制器,特点为完全放电,效率高,功率大。

雷达的工作原理

雷达的工作原理

雷达的工作原理第一篇:雷达的工作原理雷达的工作原理蜻蜓的复眼我们知道,蜻蜓的每只眼睛由许许多多个小眼组成,每个小眼都能成完整的像,这样就使得蜻蜓所看到的范围要比人眼大得多。

与此类似,相控阵雷达的天线阵面也由许多个辐射单元和接收单元(称为阵元)组成,单元数目和雷达的功能有关,可以从几百个到几万个。

这些单元有规则地排列在平面上,构成阵列天线。

利用电磁波相干原理,通过计算机控制馈往各辐射单元电流的相位,就可以改变波束的方向进行扫描,故称为电扫描。

辐射单元把接收到的回波信号送入主机,完成雷达对目标的搜索、跟踪和测量。

每个天线单元除了有天线振子之外,还有移相器等必须的器件。

不同的振子通过移相器可以被馈入不同的相位的电流,从而在空间辐射出不同方向性的波束。

天线的单元数目越多,则波束在空间可能的方位就越多。

这种雷达的工作基础是相位可控的阵列天线,“相控阵”由此得名。

有源相阵控雷达和无源相阵控雷达的区别是就是无源是只有单个或者几个发射机子阵原只能接收,而有源是每个阵原都有完整的发射和接收单元!相控阵雷达的优点:(1)波束指向灵活,能实现无惯性快速扫描,数据率高;(2)一个雷达可同时形成多个独立波束,分别实现搜索、识别、跟踪、制导、无源探测等多种功能;(3)目标容量大,可在空域内同时监视、跟踪数百个目标;(4)对复杂目标环境的适应能力强;(5)抗干扰性能好。

全固态相控阵雷达的可*性高,即使少量组件失效仍能正常工作。

但相控阵雷达设备复杂、造价昂贵,且波束扫描范围有限,最大扫描角为90°~120°。

当需要进行全方位监视时,需配置3~4个天线相控阵雷达与机械扫描雷达相比,扫描更灵活、性能更可*、抗干扰能力更强,能快速适应战场条件的变化。

多功能相控阵雷达已广泛用于地面远程预警系统、机载和舰载防空系统、机载和舰载系统、炮位测量、靶场测量等。

美国“爱国者”防空系统的AN/MPQ-53雷达、舰载“宙斯盾”指挥控制系统中的雷达、B-1B轰炸机上的APQ-164雷达、俄罗斯C-300防空武器系统的多功能雷达等都是典型的相控阵雷达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雷达原理简介
WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-
雷达原理简介
首先,大家必须先了解雷达的基本原理,因为雷达仍是目前用来侦测移动物体最普遍的方法。

雷达英文为RADAR ,是Radio Detection And Ranging 的缩写。

所有利用雷达波来侦测移动物体速度的原理,其理论基础皆源自于「都卜勒效应」,其应该也是一般常见的都卜勒雷达(Doppler Radar),此原理是在19世纪一位澳地利物理学家所发现的物理现像,后来世人为了纪念他的贡献,就以他的名字来为该原理命名。

都卜勒的理论基础为时间。

波是由频率及振幅所构成,而无线电波是随着波而前进的。

当无线电波在行进的过程中,碰到物体时,该无线电波会被反弹,而且其反弹回来的波,其频率及振幅都会随着所碰到的物体的移动状态而改变。

若无线电波所碰到的物体是固定不动的,那么所反弹回来的无线电波其频率是不会改变的。

然而,若物体是朝着无线电线发射的方向前进时,此时所反弹回来的无线电波会被压缩,因此该电波的率频会随之增加;反之,若物体是朝着远离无线电波方向行进时,则反弹回来的无线电波,其频率则会随之减小。

下图为都卜勒雷达(Doppler Radar)的基本原理图标:
> <==车子朝着无线电波方向前进,其反弹的率频会增加
<==车子朝着无线电波传送的反方向前进,其反弹的率频
会减小
速度侦测装置(警方所使用的测速雷达)所应用的原理,就是可以侦测到发射出现的无线电波,及反弹回来的无浅电波其间的频率变化。

由这两个不同频率的
差值,便可以依特定的比例关系,而计算是该波所碰撞到物体的速度。

当然,此种速度侦测装置可以将所侦测到的速度,转换为「公里/小时」。

也许大家还是无法体会什么是「都卜勒效应」,但每个人在日常生活中应该都有「听」过「都卜勒效应」。

例如:当火车鸣笛或救护车的警报声一直朝着你接近时,会发现声音会一直在变化,这就是所谓的「都卜勒效应」,此例子是生活中最常见的例子,因为当声波一直朝着你接近时,该声波的频率会一直增加,所以听到的声音才会一直变。

这跟测速雷达所用到的原理是一样的,只不过测速雷达所使用的不是声波,而是无线电波。

由于警察的测速雷达总是侦测到一个较强的反单电波后,才决定该移动物体(车子)的速度;而通常体积较大的物体其反弹的电波也较强;另外,离发射电波较近的物体,其所反弹的电波也会较强。

根据这个原理,若有两辆大小相同的车子,同样都是超速时,测速雷达只会侦测到开在较前面车子的速度;若有一辆未超速的大卡车开在前方,而另一辆已超速的小客车开在后方时,测速雷达是无法侦测出该小客车已超速,除非该小客车已经超越了大卡车而继续超速。

这告诉我们,利用雷达波来侦测车速时,是无法在车阵中,侦测到特定车辆的速度,而只能侦测到开在车阵最前面,且体积较大的车子的速度。

二、雷达原理详述
下面的文章,将更详细地探讨雷达测速的各种影响因素:
?
?
?
?
下图显示出影响Muniquip K-GP手持雷达枪,其雷达波覆盖范围的因素:
<>
?
由上图可知大型挂车最容易被侦测到速度,只要在400公尺的范围,都可以被侦测。

Cosine因子
这里所说的Cosine就是以前大家所学的数学三角函数,像是
sin,cos,tan...,所谓的Cosine因子说明如下:
•雷达要正常地发挥测速功能,该雷达必须与被测车辆同一路径
•就如同GASTO测速照相系统一般,若雷达置放的位置与车辆行经的路径有一个角度,并不平行的话,则雷达所侦测到的速度将比实际上来的
慢。

而所减低的速度将正比于偏斜的角度取cosine值,简单地说,就是偏斜的角度越大的话,侦测到的速度将比实际速度低的越多。

•例如测速雷达置放的位置与车辆路径呈20度的夹角,虽然当时车子实际速度为105公里/小时,但被侦测到的时速应为105xcos(20)=公里/小
时,本来应是超速的,但在雷达侦测上出现误差。

•GATSO这类的测速照相系统也会考虑到Cosine,所以会加入一些补偿电路,来修正这样的误差,不过因为每次置放的角度都不同,因此在补偿
误差时,必须经过正确的设定才行,该设定值才须经过原厂的调校才能有较精准的表现,通常懒的设定或是不会设定。

•因此可以得到一个结论「Cosine因子永远都是偏袒驾驶人的」。

测速地点的选择
既然大家已经了解雷达测速的基本原理,其实是藉由车辆所反射回来的电波来计算车速,那么在道路上一些不会动的物体,如路标、路灯等,会不会影响雷达波的反射呢?由于路标、路灯等物体的体积都很小,尚不会对雷达电波产生太多的影响,但如果是一些较大的物体,如建筑物、停在路旁的大卡车,或是高速公路上一些路段的大型路标、广告板等,这些物体就一定会影响到雷达电波的反射,也就是说即使路上没有车辆经过,警方所使用的测速雷达还是会侦测到一些数据,只是这些数据可能速度都是0而已。

不过大家也不要以为在路上看到大型路标时就可以尽情超速了,因为一旦车辆位置超过了路标,而离雷达波越近的物体所反射的雷达波会越强,此时您还是会被侦测到超速的。

然而,在ACPO的使用手册中,很明确地指出「理想的测速照相地点,应该位在空旷无阻碍且没有大型反射物的道路上;在开始测速之前,选择地点是相当重要的;操作员在开始前,必须在车流前,选择一视线良好的位置,该视线上不能有如「公交车候车坪」、「大型路标」、「金属栅栏」、「防撞护栏」等物体。

警方确认超速的步骤
警方使用「手持雷达」来测速时,刚开始并未开机,先采取目测的方式,等到发现有车辆疑似超速时,再开机以手持雷达来验证是否真的超速。

ACPO在使用手册中指出「在测速雷达的侦测范围中,必须只有一辆车子才能立刻侦测速度」。

换句话说,若您的车子正处于车阵当中,警方是无法确定所侦测到的车速是哪一辆车。

此时警方必须先追踪某辆车最少3秒的时间,等到雷达出现「已锁定」的讯息时,警方才可以开始侦测车速。

因此要得到车辆的超速需要花费3秒钟的时间,而且警方在测速时也会将误差考虑进去,例如,在雷达侦测速度时,雷达屏幕上显示的速度为03-101,此时警方就可以确定您的车速为101到103公里/小时,然而,若在溜达屏幕上显示的数据为03-101,此时警方就认定这次的测速有相当大的误差而不采用该数据,您也有可能逃过一劫。

辐射危害
因为「雷达」在测速时会发射出强大的无线电磁波,当警方的雷达测速仪器接近身体在25公分时,雷达天线所发射出来的电磁波辐射将对人体造成某些程度的伤害,所以警方在使用雷达测速时,也不太喜欢一直保持开机的状态,因为他们距离测速雷达的距离最近。

所以常常会发现路旁的警车,虽然车上挂着测速雷达的天线,但是您所使用的雷达警示器却没有发出警告声,这是因为警
方也不喜欢一直开机,都是以目测的方式先观察车辆是否有超速的疑虑,然后再开机验证是否真的超速。

?
?
千万不要忘记——“便携式GPS导航是不能发现移动测速点地!!”
?
?
同时,也告诉,很多正在使用电子狗等反雷达测速设备的朋友,为什么你的机器有时明明见到警方测速雷达放在路边,而你的机器却不响!!!这是因为,警方雷达可能没有开机!!因为雷达常时间开机对人身是有害的!!。

相关文档
最新文档