塑料的生产与回收利用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塑料的生产与回收利用

祝巢人41164054 材化1101

人类社会的高速发展已经来到了21世纪,随着科学技术水平的飞速提高,人们对于材料的研究和使用技术已经达到了空前的先进水平。从石器时代到青铜时代再到铁的时代,源源不断的新材料推动着社会的稳定发展,材料的利用是支持科学技术发展的基础。20世纪人们发现了高分子材料并获得了制作其的方法。最早的高分子材料只是一些天然的材料如蚕丝、棉麻、木材、毛线等。19世纪30年代末出现了合成高分子材料。1953年,德国科学家Zieglar和意大利科学家Natta发现了一种催化剂,大幅度地扩大合成高分子材料的原料来源,使聚乙烯和聚丙烯能够真正的用于生产使用,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。

时至今日,甚至连导电高分子材料以及优秀机械性能的材料的性能和制备都已经被探索到,高分子功能材料的出现将会把科技进步推向到一个新的高潮。源源不断的原材料,各式各样可选的加工工艺和巨大的市场需求使得高分子材料年产量超过2亿吨,其经济效益可见一斑。然而高分子材料在生产。加工和回收、废弃的过程也给环境带来了巨大的压力和负担。在生产时会产生大量的边角料,使用时也多来自商品的包装还有农用的地膜类制品,这些垃圾废物被称作“白色污染”,是多数城市处理垃圾的头痛难题。我国的城市垃圾日产量将近百万吨,其中塑料类占有10%左右,体积占到40%,而且难于分类及处理,行程污染影响人类的生态环境。此外,现在多数处理方式为直接填埋,这样做不仅浪费资源,同时也会污染土壤水体,大部分的塑料会缓慢释放一些有害的添加成分,并且自然降解时间会花上百年。塑料不可降解导致废弃物长期存在行程一个不可不治的环境问题。

当今世界上作为材料使用的大量高分子化合物是以煤、石油、天然气等为原料催化裂解为小分子有机化合物,再经聚合形成的高分子材料。这些小分子物质被称为“单体”。在进行聚合的过程中,需要的条件较高较复杂,通常需要高温高压的环境以及一些金属或催化剂的存在,在生产中属于比较复杂的环节,同时也会相应产生大量的能耗。另一方面,高分子材料在环境中的危害也是不可忽视的,因为高分子材料不仅仅是合成的聚合物,其中也会添加很多的添加剂,这些添加剂是小分子物质,容易从垃圾废料中脱离,其中有很多是不易被环境降解的物质,而且在环境中有富集作用,会成为环境激素对人和其他生物有害的因素,控制这些添加剂的危害也是很重要的。比如,在生产聚氯乙烯时,原料氯乙烯会引起人体急性或慢性中毒,聚氯乙烯作为一种热敏性塑料,在加工时需要添加近10种添加剂,其中用作稳定剂的镉系、铅系等重金属化合物毒性很大,其他某些增塑剂虽属微毒和无毒,但难以降解,对生物有致癌作用。

高分子材料的优良性能使得他的使用者越来越多,但是其中的缺点也同样要被人们重视到。比如油漆中含有的挥发性成分以及复合板材和硬质纤维板中含有的游离甲醛对人体都有很大的毒性。一份来自北京儿童医院的调查显示,近年来小儿白血病的患者明显增加,众多患儿家庭居住环境调查发现家里都是刚刚装修过的,这与广岛原子弹爆炸后白血病人数增多的现象有些许吻合。医学界预测,白血病极可能与环境污染有关。

目前能够解决高分子材料的环境污染问题可以着手两个方面,一是绿色可降解材料高分子的生产,二是合理的回收循环利用,两方面的发展和进步才能逐步缓解地球环境日益紧张的情况。关于绿色可降解材料的研究,国内外有许多相关报道,近些年来此方向的研究也成为了热点,随着环境议题的日益激烈,研究者们也在进行各式各样的尝试。

现有的绿色高分子塑料可以分为生物降解类,光降解类,光降解/生物降解双降解类。

光降解高分子是指聚合物吸收紫外光使之产生水解、胺解、酸解、氧化等化学反应,导致聚合物分子断裂成小分子物质,其机理主要是通过生成自由基活性中间体进行反应。这类高分子材料可以利用太阳能设备进行降解,优点是无污染,低能耗,但离大规模应用还有一定的发展时间。

生物降解类的高分子材料是指那些在土壤、生物体内等自然环境中能够被生物微生物等自行分解裂解成小分子物质的塑料制品,这些物质不会长期留在土壤中占用土地资源,因此对环境来说危害可以降到很低。此外,面对日以昂贵的石油资源,传统的高分子材料的制作成长也将越来越高,因此现在人们希望用可再生资源作为制造“天然”生物降解高分子材料。同时这些材料再废弃之后可以作为微生物的食物来源,从而将材料的生产技术与自然界本身包含的生物圈融为一体,减少对自然资源的消耗。这类物质分为三种类型。

◆直接从天然提炼

使用直接从天然产品提炼的原料,比如淀粉就是其中重要的一种。大多数商业化的产品以淀粉基复合材料形式出现,例如,淀粉+聚己内酯、淀粉+纤维素+矿物质配方、淀粉+大豆蛋白、淀粉+酪蛋白等等。

◆由大规模发酵过程生产商业化生物降解材料,聚羟基烷羧酸酯(一种天然存在的聚酯)是典型代表。

◆由天然存在的单体聚合而来的代表是聚乳酸,其大规模生产乳酸单体已成为可能。

尽管在科学研究还是工业生产都在追求大规模生产的目标,但是这项技术可能带来很多生态问题,除了其性能和成本方面的不足,最大的缺点是如果以农作物为原料生产高分子一次性产品,那么农作物作为食物和材料的竞争会十分严峻,处理不当将会对人类和环境造成威胁!使用可再生资源不等于生态可以接受,也不等于可持续发展。

生产材料的问题只是一方面,另外还有废弃物的处理问题。为了治理废弃物带来的危害,我们需要将废弃的材料循环利用,目前的主流治理方案分为4个级别的循环利用。

◆一级循环

使用原来废旧材料物品制造相同的产品,如塑料瓶等。

◆二级循环

使用循环的材料制成新的产品,如原用于制牛奶桶的HDPE再生料制垃圾桶或排水管。

◆三级循环

从废材料回收化学原料或能量,如回收溶剂、裂解聚合物、回收油等。

◆四级循环

把废料进行焚烧处理以回收能量,用于加热、发电等。

对环境最好的方式是一级循环,即对材料进行完全的回收再利用,用来生产全新的产品,将材料置于一个循环中,但是这种方式经济效益并不适应于可持续发展,高分子材料的回收困难主要来自于原料的复杂性。现已有10余种类的主要高分子原料和上千种树脂与共混物,并且这些材料通过混合夹层之类的处理以及各种添加剂的应用,使得分类进行回收变得异常困难,在垃圾堆中找到一种的塑料就像在大海捞针一样。

综合来讲,目前比较可行的方式就是焚烧处理和化学回收。

焚烧技术可以将大量占用空间资源的废料进行焚烧,优点在于其不需要对燃烧废料进行细致的分类预处理,并且可以利用高分子材料中所包含的丰富的能量,混合塑料的热值(40MJ/kg)高于煤(30MJ/kg),可以利用其能量发电供热,缺点显然是废气的处理以及如二噁英这类有毒物质的处理,日本在焚烧处理上有着多年的经验,其结果是二噁英的控制非常困难。

相比较下,化学回收更有污染小的优势,解聚获得单体或碳氢化合物的混合物可以称为真正意义上的材料循环利用,混合塑料废弃物与石油有着相似的化学结构,加热到高温会产生裂解成小分子原料或染料,效率高,但是热裂解工艺消耗能量较高,开发高效催化剂、提高热裂解效率,应当是重点。

另外,政府在处理塑料垃圾的问题上也应当花费一些力度,制定相应政策,尤其在我国这样严峻的环境问题考验下。在发达国家,垃圾回收已成为人们必须要做的事情,从垃圾来源也就是家家户户那里就能够做好相当的处理工作了,不仅塑料被分离出来,而且不同种类的

相关文档
最新文档