废旧塑料回收利用技术

合集下载

常见废塑料回收处置方案

常见废塑料回收处置方案

常见废塑料回收处置方案废塑料是指不能应用于产品制造的塑料材料,主要来源于生活垃圾和工业废弃物等。

如果不加以处理,废塑料会对环境造成严重污染。

因此,废塑料回收和处置已成为全球各国关注的重大问题。

下面,本文将介绍常见的废塑料回收和处置方案。

机械回收机械回收是指通过机械设备对废塑料进行回收的方法。

这种方式适用于纯净的废塑料产品,如聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)等。

机械回收主要分为两种方式,即物理回收和化学回收。

1.物理回收物理回收是指通过物理方式对废塑料进行回收,如熔融挤出、压缩成型、热成型等。

这种方式对材料的纯度要求较高,一般限制在同类废塑料中,能实现较好的回收效果。

2.化学回收化学回收是指通过化学反应对废塑料进行回收,如催化裂解、热裂解等。

这种方式能够将复杂的废塑料转换成简单的原料,可实现高效利用。

热分解热分解是将废塑料在高温条件下分解成低分子质量的化合物的过程。

这种方式适用于各种废塑料,在处理过程中可以回收到有价值的化合物,如烷烃、芳香烃等。

热分解的基本原理是将废塑料在一定温度、压力和反应时间下分解成低分子量化合物。

热分解回收率高、过程简单,但需要高能耗、高成本。

化学回收化学回收是指通过化学反应将废塑料转化为成分相似的新材料的过程。

主要有两种方法:聚合和再生。

1.聚合聚合是指将废塑料转化为新的聚合物。

这种方式可以生产出和原料成分非常相似的新材料,质量优良,被广泛应用于各大领域。

但是,聚合需要较高的温度和压力,且处理过程对催化剂等条件要求高。

2.再生再生是指将废塑料进行物理或化学处理后,再制成经过特殊处理的、性能满足要求的再生塑料。

这种方式可以生产出相对低价的产品,可以用于制造地面材料、建筑材料和轻工业产品等。

生物降解生物降解是指将废塑料在特定的条件下通过微生物降解分解成二氧化碳和水的过程。

生物降解是环保和可持续的处理方式,适用于日用塑料制品和包装等。

但是,生物降解过程时间长,需要高温、高湿等条件,思考成本和效益之间的平衡。

目前废旧塑料处理的主要方法

目前废旧塑料处理的主要方法

主要方法塑料包装废弃物的处理基本上可分为填埋、焚烧和回收再生利用。

1.填埋法填埋方法是我国处理固体废弃物最传统的方法,是将固体废弃物放置在空旷的场地上,通过采取防水等措叶甘进行处理。

固体废弃物的填埋不能随便进行,必须合理选择填埋的场地。

目前我国填埋的技术有待发展,很多固体废弃物还是处于堆放的状态4。

填埋的方法具有经济实惠、处理效率高等特点,而且固体废弃物的运输比较方便。

填埋的方法能够及时处理多种废弃物,而且有利于促进我国进行环境保护,实现资源的循环利用。

填埋过程中会产生大量的沼气,可以利用到居民的日常生活中,实现资源的循环利用。

但是,固体废弃物填埋时要注意对渗滤液的控制。

鉴于渗滤液具有高度动态变化特性,因此在对固体废弃物进行填埋时,要对渗滤液进行分解,把硫酸根等硫化物分解掉再进行填埋。

填埋危险的固体,如果事先不进行有效的处理,会对我国的土地资源造成严重危害,因此在填埋时要对固体废弃物进行固化分析,进行稳定化处理,而且对填埋的场地要采取防渗措施。

废弃塑料具有大分子结构,废弃后长期不易分解腐烂。

填埋方法在短期内有一定的效果,但是填埋法简单消极,被填埋的塑料废弃物不见阳光,不经风雨,隔绝空气,难以风化;滞留土壤中会破坏土壤的透气性,降低土壤的蓄水能力,影响农作物生长;而且积累多了会阻碍地下水的疏通与渗透。

塑料密度小,体积大,不易分解,很快占满场地,降低填埋场处理垃圾的能力。

垃圾填埋对资源利用率低,不符合国家可持续发展战略,并不是理想方法。

2.焚烧法焚烧也是处理固体废弃物的有效方法之一,是指让固体废弃物在空气中产生化学反应,其原理为:固体废弃物+氧气=二氧化碳+灰烬+能量。

固体废弃物用焚烧的办法处理后,只剩下原体积的5%左右,可以减少占地面积。

在固体废弃物焚烧的过程中,可以将其中的有毒物质转化成无毒物质,其原理为:酸+碳酸钙=硫酸钙+水。

焚烧的方法可以有效处理那些没有回收价值的固体废弃物。

在固体废弃物焚烧的过程中,产生大量的电力,可以利用到居民的生活和生产中,实现资源的循环利用。

废塑料的回收及资源化利用

废塑料的回收及资源化利用

废塑料的回收及资源化利用引言随着工业化和城市化的不断发展,废塑料的数量也在迅速增长。

废塑料对环境和生态系统带来了严重的污染和破坏,并成为了全球环境问题的主要因素之一。

为了解决这一问题,人们开始关注废塑料的回收和资源化利用。

本文将介绍废塑料回收的重要性,以及目前已经存在的回收技术和资源化利用途径。

废塑料回收的重要性废塑料的回收对于实现可持续发展具有重要意义。

废塑料不仅占据大量的土地和水源,还会释放出有害物质,对生物多样性和生态平衡造成严重破坏。

通过回收废塑料,可以减少资源浪费,节约能源,并且降低对环境的负面影响。

废塑料回收技术目前,废塑料回收的主要技术包括物理回收、化学回收和能量回收。

物理回收物理回收是将废塑料进行分类和分离,然后利用再生塑料加工成新的塑料制品的过程。

常见的物理回收方法包括:•手工分拣:通过人工对废塑料进行分类和分离。

这种方法操作简单,适用于小规模回收。

•机械分类:通过机械设备对废塑料进行分类和分离。

这种方法效率高,适用于大规模回收。

•水浮选:利用水的浮力将废塑料与其他杂质分离。

这种方法适用于密度大于水的塑料。

化学回收化学回收是将废塑料通过化学反应转化为有用的化学原料或能源。

常见的化学回收方法包括:•溶解回收:将废塑料溶解在特定溶剂中,并通过后续的化学处理和沉淀将塑料分离出来。

•热解回收:将废塑料经过高温处理,分解为有机物和无机物。

有机物可以进一步用于化学合成,无机物可以用于土壤改良。

•水解回收:将废塑料经过水解反应,将其转化为小分子化合物,进一步可以用于化学合成。

能量回收能量回收是将废塑料燃烧或气化,产生热能或发电。

这种方法可以有效利用废塑料的能量价值,但会产生大量的二氧化碳和其他有害气体,对环境造成污染。

废塑料资源化利用途径除了回收,废塑料还可以通过资源化利用的方式进行再利用。

再生塑料制品通过物理回收将废塑料加工成再生塑料颗粒,再将再生塑料颗粒用于制造新的塑料制品。

再生塑料制品具有一定的强度和韧性,可以替代部分原料塑料制品。

各种塑料回收方法

各种塑料回收方法

各种废旧塑料回收方法废旧塑料品种多样,形态各异,在实践中已创造出许多再生利用的方法,下面简介一些实例供参考。

1,薄膜的回收薄膜是塑料制品中的一大烊,种类繁多,使用寿命一般较短,是回收再生利用的主要品种之一,下按用途,形态简介实例。

(1)农用薄膜,农用薄膜主要有地膜和棚膜,地膜主要为PE膜,棚模有PE,PE/EVA,PVC膜,在回收再生利用时,应将PE和PVC膜区分开来,农用薄膜一般较脏,且常夹带有泥土,沙石,草根,铁钉,铁丝等,要除去铁质杂质并清洗,回收利用的方法主要是造粒,如果,具人工分拣,清洗条件时,经清洗,干燥后的废膜即可直接用热挤压方法生产塑料制品,如盆,桶,塑料法兰等。

废农膜再生粒料用途如下:1、PE再生粒料,PE再生粒料可用来仍生产农膜,也可用来制造化肥包装袋,垃圾袋,农用再生水管,栅栏,树木支撑,盆,桶,垃圾箱,土工材料等。

2、PVC再生粒料,PVC再生粒料可用来生产重包装袋,农用水管,鞋底,等包装薄膜,包装薄膜的材料包括玻璃纸(赛珞玢),PE,PVC,PP,EVA,PVDC,PA,PET以及各种复合薄膜。

单层的一种材料的包装膜,在经分拣,清洗后,可如农用薄膜一样直接制成塑料制品或造粒后制成各种制品。

复合薄膜包括不同塑料的复合薄膜和塑料与纸,铝箔,等其他材料制成的薄膜,回收后的再生处理要复杂一些如:多层塑料复合薄膜,多层塑料复合薄膜有PE/PP,PE/EVA/PE,PE/粘合剂/PA/粘合剂/PE,PP/PVDC等,在再生利用前,首先要将不同的材料分离。

分离可用溶剂分离法。

(2)纸塑复合薄膜,纸塑复合薄膜在再生利用前需先将纸塑分离,这也是纸塑复合分离的方法,分离设备为一带有电加热的一镀铬空心料筒,料筒内装有一个带叶片的空心圆筒,料筒和空心圆筒以相反方向转动,破碎后的纸塑混合物加入料筒,在料筒中经加热的混合物上的塑料熔融后以料筒下部出料,空心圆筒中的空气将废气带走。

(3)铝塑复合薄膜,铝塑复合薄膜有BOPP/铝,PE/铝等,用于各种食品包装,使用后的铝塑复合软包装袋实际是一种混合废料,回收利用较为困难。

塑料废弃物回收利用技术研究

塑料废弃物回收利用技术研究

塑料废弃物回收利用技术研究塑料废弃物的大量产生和处理成为当今社会面临的重要挑战之一。

由于塑料的结构特殊,其降解速度极慢,导致环境污染和资源浪费。

因此,开发和应用塑料废弃物的回收利用技术成为解决这一问题的关键。

一、塑料废弃物的回收技术1. 机械回收技术机械回收技术是一种常见的塑料回收方法。

它通过将塑料废弃物进行破碎、清洗和分选,将其加工成再生颗粒或再生颗粒,再用于制造新的塑料制品。

机械回收技术具有简单、成本低、适应性强等优点,在回收塑料废弃物中起到了重要作用。

2. 化学回收技术化学回收技术通过将塑料废弃物进行加热处理,使其分解为原始单体或烃类化合物。

然后可以利用这些原始单体或化合物,重新合成塑料产品。

化学回收技术能够克服机械回收技术中颗粒质量不稳定的问题,并且可利用废弃塑料中的所有可用资源。

3. 热分解回收技术热分解回收技术是一种将废弃塑料加热至高温条件下进行分解的方法。

通过这种技术可以将塑料废弃物转化为可燃气体或液体燃料。

这种方法不仅可以回收废弃塑料中的能源,还可以减少废弃物的体积,并降低环境污染。

二、塑料废弃物回收利用技术的应用领域和前景1. 塑料再生颗粒的应用回收的塑料再生颗粒广泛应用于塑料制品的生产中。

例如,再生颗粒可以用于制造各种塑料包装材料、塑料容器、塑料管道等。

这种利用废弃塑料回收的再生颗粒生产塑料制品的方法,不仅能降低塑料制品的生产成本,还能减少对原生塑料的需求,达到资源节约和环境保护的目的。

2. 废塑料的能源回收利用热分解回收技术将废弃塑料转化为可燃气体或液体燃料,可以应用于发电、加热和工业生产等领域。

这种能源回收利用不仅可以减少对传统能源的需求,还可以降低废弃塑料对环境的影响。

3. 塑料废弃物的材料再利用除了制造再生颗粒和能源回收利用外,废弃塑料还可以用于其他材料的生产。

例如,对废旧塑料进行加工,可以制成塑木材料、塑料纤维和填充材料等。

这些材料可以应用于家具、建筑材料和汽车等领域,实现对废弃塑料资源的最大化利用。

(完整版)废弃塑料的处理与利用

(完整版)废弃塑料的处理与利用

(完整版)废弃塑料的处理与利用废弃塑料的处理与利用(完整版)摘要废弃塑料对环境造成了严重的污染和危害,因此处理和利用废弃塑料成为了一个迫切的问题。

本文将介绍几种废弃塑料的处理和利用方法,包括回收利用、焚烧和能源利用等,同时也会介绍一些新兴的塑料处理技术。

引言随着塑料制品的广泛应用,废弃塑料的数量不断增加,给环境带来了严重的危害。

废弃塑料的处理和利用成为了当前研究的热点之一。

本文将从回收利用、焚烧和能源利用等方面介绍几种处理废弃塑料的方法,并探讨一些新的技术。

回收利用传统回收利用方法- 塑料瓶回收:对废弃塑料瓶进行清洗、破碎、再加工,生产新的塑料制品。

- 塑料包装回收:将废弃的塑料包装转化为可再生能源或生产塑料制品。

- 塑料制品回收:对废弃的塑料制品进行再加工,生产新的塑料制品。

新兴回收利用技术- 生物降解塑料:将废弃的生物降解塑料分解为有机物,用于生产化肥或发酵生物质能源。

- 循环利用:将废弃的塑料制品进行循环再利用,减少对原料的依赖。

焚烧废弃塑料的焚烧是处理塑料废物的一种方式。

焚烧废弃塑料可以产生能源,如热能或电能。

同时,焚烧还可以减少废弃塑料的体积,降低对垃圾填埋场的依赖。

然而,焚烧也会产生二氧化碳等有害气体,对环境产生一定影响,因此需要进行科学合理的控制和管理。

能源利用废弃塑料中的聚合物可用于能源利用。

一种方法是通过热解将废弃塑料转化为燃料油或气体。

另一种方法是通过催化裂解将废弃塑料转化为液体燃料。

这些能源可用于发电、取暖和工业生产,同时减少了对传统能源的依赖。

新兴塑料处理技术随着科技的不断发展,一些新兴的塑料处理技术也逐渐应用于废弃塑料的处理和利用,例如:- 生物降解塑料:利用微生物或酶来分解塑料,从而实现废弃塑料的快速降解。

- 化学回收:利用化学反应将废弃塑料分解为可再生的原料,再进行再加工。

- 3D打印:将废弃塑料转化为3D打印材料,实现废弃塑料的再利用和再生产。

结论废弃塑料的处理和利用是一个重要的环保问题。

废弃资源综合利用的技术创新与转化案例分析

废弃资源综合利用的技术创新与转化案例分析

废弃资源综合利用的技术创新与转化案例分析随着全球资源短缺和环境问题日益严重,废弃资源的综合利用成为了一个重要的研究课题。

废弃资源综合利用是指将废弃物转化为有价值的资源,减少资源浪费和环境污染。

本文将分析一些废弃资源综合利用的技术创新与转化案例,以探讨其对环境保护和可持续发展的贡献。

技术创新案例1.废旧塑料回收利用技术废旧塑料的回收利用一直是废弃资源综合利用的难题之一。

近年来,一种新型的废旧塑料回收利用技术引起了广泛关注。

该技术采用高效破碎、清洗、干燥和造粒等工艺,将废旧塑料转化为高品质的塑料颗粒,再用于生产新的塑料产品。

这种技术不仅可以减少废旧塑料对环境的污染,还可以节约资源,实现可持续发展。

2.废弃电池回收处理技术废弃电池中含有有害物质,如铅、镉、汞等,如果处理不当,将对环境和人体健康造成严重危害。

一种新型的废弃电池回收处理技术通过化学反应将电池中的有害物质转化为无害的物质,并将其用于生产新的产品。

例如,废弃电池中的铅可以通过化学反应转化为硫酸铅,再用于生产铅酸电池。

这种技术不仅可以减少废弃电池对环境的污染,还可以回收其中的有价金属,提高资源利用率。

转化案例1.城市废弃物资源化利用城市废弃物是城市发展中的重要问题之一。

一些城市通过建立废弃物资源化利用体系,将废弃物转化为有价值的资源。

例如,一些城市建立了废弃物分类回收系统,将可回收物、有害垃圾和其他垃圾进行分类处理。

可回收物经过回收利用,有害垃圾进行安全处理,其他垃圾进行资源化利用,如焚烧发电或填埋处理。

这种转化案例不仅减少了城市废弃物对环境的污染,还提高了资源利用率,促进了可持续发展。

2.农业废弃物利用农业废弃物是指在农业生产过程中产生的废弃物,如秸秆、稻壳、畜禽粪便等。

一些农业废弃物利用案例展示了废弃物综合利用的潜力。

例如,秸秆可以通过发酵转化为生物质能源,用于发电或供暖;稻壳可以转化为生物质颗粒燃料或用于生产轻质建筑材料;畜禽粪便可以转化为有机肥料或生物天然气。

塑胶制品的回收利用和再生利用技术

塑胶制品的回收利用和再生利用技术

塑胶制品的回收利用和再生利用技术随着塑料制品的普及,塑料垃圾也越来越多。

然而,塑料垃圾的处理是一个长期而繁琐的过程。

塑料回收利用和再生利用技术是解决塑料污染问题的有效措施,它可以将废弃的塑料制品加工成新的产品。

一、塑料制品的回收利用回收利用是减少塑料垃圾污染的有效方法。

目前,回收利用主要有以下几种方式。

1.物理回收物理回收是指通过对塑料制品进行分类、清洗和粉碎等处理,将废弃塑料制品变成可用的塑料颗粒。

这些颗粒可以用来制造新的塑料制品。

物理回收目前是最主要的回收方式,种类包括高密度聚乙烯、聚丙烯、聚苯乙烯等。

2.化学回收化学回收是指在高温高压等条件下,将塑料废弃物转化为液体或气体状的化学品。

这些化学品可以再生回到塑料制品中。

化学回收需要投资高额成本,但可以回收更多种类的塑料制品。

3.热能回收热能回收是将塑料废弃物进行焚烧,产生能量的同时消除塑料废弃物。

然而,焚烧塑料废弃物对环境造成的污染比较大。

因此,在进行热能回收时需要进行严格的环保措施。

二、塑料制品的再生技术除了回收利用,再生利用也可以将废弃的塑料制品加工成新的产品,同时减少塑料垃圾的污染和资源的浪费。

再生利用主要分为以下几种方式。

1.生产木塑复合材料木塑复合材料是将塑料和木材定向压制在一起形成的一种新型建筑材料。

这种材料可以回收利用塑料垃圾和木材废弃物,也可以得到很好的市场价值。

2.塑木塑木是一种经特殊加工的塑料制品,具有长寿命、高强度、高弹性和耐腐蚀等特点。

因此,塑木广泛应用于户外休闲类产品,如栏杆、花箱、地板等。

3.再生填充料再生填充料是将废弃的塑料制品加工成固体小颗粒,可以作为填充料。

再生填充料可以广泛应用于家具、汽车、包装等领域,使得这些领域的材料更具轻便性能。

三、塑料回收利用和再生利用技术的未来随着社会和技术的不断发展,塑料回收利用和再生利用技术也会不断提升和完善。

目前,难以回收利用的塑料制品也可以通过新技术进行再生,如生物降解塑料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

废旧塑料回收利用技术废旧塑料回收利用技术范勇,邬素华(天津科技大学材料科学与化学工程学院,天津)本文综合介绍了废旧塑料的各种回收利用技术及产业现状,分析了现有技术所存在的优缺点,指出了废旧塑料回收利用的重要性。

近年来,随着生产的发展和人们消费水平的提高,塑料制品消费量不断增大,废旧塑料总量也迅速增加。

据统计,在大中城市,废旧塑料比例高达10%左右。

因此,采用积极对策,加强对废旧塑料废弃物的处理是保护良好的生态环境,促进塑料工业健康发展,构建和谐社会的重要措施。

由于经济、法律及民众意识等方面的原因,将废旧塑料用掩埋方法处理已越来越不可行。

在发达国家,环保意识的增加和可用的掩埋式垃圾处理场空间的减少促进了塑料回收工业的发展,但是现在只有大约5%~25%的废旧塑料被回收,占所有材料总量的8%。

大约18%的聚合物废弃物被堆在垃圾场,其中40%是塑料包装用品。

由于它们随处可见、种类多、生物降解性差、使用周期短,因而倍受关注。

数据表明,在欧洲,回收塑料方法包括焚烧能量回收、机械回收、原料或化学回收等。

下面就介绍一些废旧塑料的回收利用技术。

1分离技术废旧塑料回收的一个重要方法就是将其分离成单一组分,混合塑料一般价值低、产品性能差且不稳定,但分离后可用于价值高的制品。

所以为了能实现其最高价值,生产厂商推广使用能识别塑料种类的材质标识,不少发达国家的塑料产品都有明确的材质标识。

对没有标识的塑料材料,过去识别其种类最简单的方法是观其色(火焰的颜色和烟雾的颜色,外观),听其音(敲击声),闻其味(燃烧过程中产生的气味),而这些方法都需要丰富的经验,所以很难适应工业化生产的需要。

因此国外开发出很多塑料分离设备,为塑料再生利用的机械化和自动化提供了良好的基础。

有效分离塑料的自动鉴别技术包括:浮降法、空气分离、水旋法、近红外分光法、X射线分析法、静电分离技术、选择性溶解。

1.1浮降法(湿分离)浮降法分离是混合塑料片材分离的最早方法之一。

它通常由一种密度介于要分离塑料中间的流体介质来完成的,密度比介质小的塑料将上浮,而密度大的下沉。

从理论上讲,此法不受形状和大小的影响,尤其适用于分离粉碎不均匀的、密度差较小的塑料。

而且此工艺可以将废旧塑料上的残留食物有效地去除。

但这种分离方法的缺点是产生大量需要专门处理的废水。

1.2空气分离(干法分离)在干法分离中,浮降步骤将被空气分类或空气分离代替。

空气分离与震动传输联用可除去大颗粒物质,如金属成分、玻璃和重的厚塑料板。

分离装置有立式和卧式两种,流动空气作用于分离的物料,不同的物质按其密度的大小,分别降落在处于不同位置的装有锯齿形隔板的矩形箱内。

空气分离是使用最广泛的固体废料分离方法,但其缺点是回收品可能会有食品腐烂的味道或粘附在塑料制品上脂肪腐烂的气味。

1.3水旋法(离心分离)水旋法分离是采用离心加速器的原理使聚合物的混合物与杂质分离,它可将不同聚合物和杂质从粒状塑料组分中分离出来,而且出料量远高于悬浮分离法。

德国KHD Humbold Weda设计了一种以离心分离为基础的分离系统,叫做Censor。

这个系统可以有效地分离密度差别为0.005 g/cm3的塑料,而密度差异在0.05 g/cm3的组分即可按常规进行分离。

此系统的工作原理是将粉碎后的塑料粉末倒入悬液分离器的蓄水池中,然后进行搅动,使之形成均匀的悬浮液。

通常旋转分离器的外形为圆台状,沿其切线方向将悬浮液(含有塑料粉末)送入旋转分离器中,在旋转分离器高速转动产生的离心力作用下,较重的粒子移向分离器的内壁,而较轻的粒子则移到悬液分离器的中心。

伴随重粒子的涡流运动而成为底流,与重粒子一起从悬液分离器底部排出。

伴随轻粒子的涡流形成溢流,从旋转分离器上部与大多数水分一起排出。

由于离心分离对颗粒形状、尺寸不敏感,所以这项技术对聚合物纤维也是有效的,而且对于污染程度高的塑料膜如农用薄膜同样适用,它的重质成分是泥土、脏物,而轻质成分是回收的聚乙烯。

这种分离的缺点在于费用太高。

1.4近红外分光法近红外分光法是一种适于分析透明或轻度着色聚合物的方法。

此方法快速、可靠,而且在物料较脏时也可以正常工作。

法国Sydel EnsemblierIndustriel公司的DIBOP自动分离系统就是利用近红外分离法设计而成的。

它采用近红外传感器以500 kg/h的速度来分离所有瓶子(主要是以PVC、PET、HDPE为材料),这个系统对每个瓶子都有50~250个单独测量数据,保证了鉴别的准确性。

1.5 X射线分析法回收PET瓶中主要的问题是PVC成分的存在。

处在PET处理温度时,PVC会严重降解,结果PET产品表面出现一层黑斑,因此,人们开发了除去PVC杂质的精确分离技术。

X射线分析法(XRF)是一个专门分离PVC的方法。

在X射线的照射下,PVC中氯原子发射出低能X射线,而无氯的塑料反应就不同。

由高能X射线组成的入射光束(主光束)激发目标原子,片刻之后,激发的离子回到基态,产生了与入射光谱类似的荧光谱。

但是,由于荧光的时间延迟,这种光谱不像源光谱那样持续,因而使XRF与背景对比度高,灵敏度也很高。

由于PVC中含氯量几乎达50%,所以能用XRF来鉴别。

X射线荧光分离最早由National RecoveryTechnologies实现商业化,用以从HDPE、PET、PVC整瓶混合堆中分离出PVC。

它利用X射线确定哪些是用PVC制造的,进而采用空气吹出,用探测器检测到氯的存在,电脑记时的空气吹风机会将PVC从混合塑料中分离。

1.6静电分离技术静电分离技术的基本原理是利用静电吸引力之差来进行分选。

这种方法是将粉碎的塑料废弃物加上高压使之带电,再使其通过电极之间的电场进行分离。

由于湿度对筛选效果有影响,所以需要干燥工序。

静电分离的关键是使不同种类的塑料携带极性相反的电荷。

Chilworth Technology公司根据静电分离技术研制了一种电晕充电带分离设备。

整个装置(包括电源及设备)都进行了专门的密封,采用丙烯酸外层来提供一个可控的环境。

它的分离效率可通过分离废旧PVC和PET絮片来衡量,最佳情况下,可将PVC100%除去。

1.7选择溶解分离选择溶解分离工艺是由Renssnlaer Polytech-nic Institute设计。

这项工艺采用溶剂(主要是二甲苯)来分批溶解混合塑料,通过仔细选择溶剂,可实现聚合物的完全分离。

其优点如下:(1)可从混合物中分离出单组分塑料,包括从多层塑料制品中分离单组分塑料;(2)工艺不受典型杂质如脏物、泥土、残留牛奶等影响;(3)可分离一些紧密相关的聚合物,如ABS和PS或尼龙-6与尼龙-66;(4)回收得到的塑料化学成分均与原物质相当;(5)能回收染色和胶状塑料(其中的杂质在一般的机械回收中要引发许多问题);(6)过滤可除去添加剂和颜料;(7)将机械回收的多步回收统一为一步;(8)所需劳动量小。

但这项工艺的明显缺点是受环境影响,而且需处理大量溶剂。

此外,聚合物中的残留溶剂需要仔细监测。

2预处理回收塑料的预处理包括分离分选,清洗消毒,减小尺寸,熔融过滤,粉碎造粒,干燥。

废旧塑料通过预处理及各种成型方法,可直接再生利用制得制品,采用直接利用的方法,再生制品的成本较低,但再生料的制品力学性能大大下降,不适合制作高档次的制品。

要改善再生料的基本力学性能,满足专用制品的质量需要,需采用各种改性方法,如通过不同树脂的共混合使性能互补,添加具有一定活性的填料进行填充改性,用纤维进行增强改性,用弹性体增加废旧塑料的韧性,加入热稳定剂改善加工性、增加其耐热性及耐光性等,使废旧塑料制成再生制品,且性能达到或超过原树脂制品的性能。

2.1减小回收塑料尺寸为了便于运输、计量和下一道工艺,需要将颗粒减小到适当尺寸。

在一些情况下,减小密度可以减少运输费用,如PS发泡塑料。

另一情况如塑料包装膜,减小尺寸以使它可以统一的在挤出机中进行加料处理。

减小尺寸不但利于进行机械回收,还是原料回收甚至焚烧的必需步骤,因为它可使废料变为大小规则、形状一致的颗粒,方便后续的计量和加料。

典型机械法减小尺寸技术包括切细、成粒、稠化、压实、凝结和粉碎。

用来减小尺寸的设备根据需回收处理的物质来定,通常采用多种工艺来减小回收塑料尺寸。

如回收PU-RIM碎屑时,首先将它通过切细机,然后通过造粒机,最后通过研磨机(或粉碎机)。

减小尺寸也用来从复合物或多层产品中分离塑料,如从地毯、涂覆控制板等中分离塑料。

减小尺寸和空气淘洗结合可用来进行复合塑料的分类与分离,如织物增强塑料管、纤维增强塑料膜、泡沫席子和废地毯。

Result Technology AG设计的这种系统依靠层压物质在专门设计的机器里发生涡流时行为不同来分离,不同组分加速后的变形形态不同。

如铝会变成球形小颗粒,PE变成絮状,PS变成碎片,而PVC变成立方体。

由于各种分离成分有这样的几何形状差异及密度差异,可采用尺寸筛、空气分离器和振动空气平台进行分离。

这种方法对从刚性塑料中分离橡胶及金属铝非常有效。

2.2回收塑料的熔融过滤回收塑料常含有各种外来杂质,如尘土、纸、金属、纤维、玻璃和一些熔点高的不相容聚合物。

为了提高回收塑料的价值,扩大其应用范围,除去杂质是必要之举。

尤其在吹塑工艺中的杂质会引起产品壁上出现“瘤”,所以采用回收树脂吹塑时必须熔融过滤。

熔融过滤的目的是通过以下途径提高聚合物质量:截留偶然杂质(如纸、金属木屑等);除去未熔融的材料;除去交联形成的凝胶;匀化熔体;减少非熔物。

在提高回收产品质量的同时,熔融过滤还能提高质量,防止杂质损坏模具和后续工艺设备。

在生产过程中,过滤器是一道重要的关口,其寿命、成本、自动化程度和过滤效率都会直接影响生产效率和质量。

所以,随着生产要求的提高,连续的筛子更换器越来越受到生产厂商的青睐,其优点是在更换筛子时,压力波动很小,使得生产线能平稳运转,也可进行较细的过滤以生产出高质量的产品。

3回收料的改性3.1物理改性物理改性主要是指将再生料与其它聚合物或助剂通过机械共混,如增韧、增强、并用、复合活性粒子填充的共混改性,使再生制品的力学性能得到改善或提高,可以做档次较高的再生制品。

这类改性再生利用的工艺路线较复杂,有的需要特定的机械设备。

3.1.1填充改性填充改性是指通过添加填充剂,使废旧塑料再生利用。

此改性方法可以改善回收的废旧塑料的性能、增加制品的收缩性、提高耐热性等。

填充改性的实质是使废旧塑料与填充剂共混合,从而使混合体系具有所加填充剂的性能。

填充剂(也称填料)的品种有很多,按化学组成分为无机(如碳酸、陶土)和有机(如木粉纤维);按形状分为粉状、纤维状、片状、带状、织物、中空微孔等;按用途分为补强性(可改进物理、力学性能,赋予特殊功能性)和增量性(增加体积或质量以降低成本)。

相关文档
最新文档