(完整版)六年级数学找规律练习

合集下载

(完整版)六年级数学经典找规律专题

(完整版)六年级数学经典找规律专题

找规律专题一.解答题(共30小题)1.(2015•深圳)在生活中,经常把一些同样大小的圆柱管如图捆扎起来,下面我们来探索捆扎时绳子的长度,图中,每个圆的直径都是8厘米,当圆柱管放置放式是“单层平放”时,捆扎后的横截面积如图所示:那么,当圆柱管有100个时需要绳子厘米(π取3)2.(2015•龙泉驿区校级三模)摆一个六边形需要六根小棒,摆2个六边形需要11根小棒,3个需要16根小棒…问:摆10个六边形需要根小棒,摆100个六边形需要根小棒,摆n个六边形需要根小棒.3.(2015春•淮安校级期中)用计算器计算,再根据规律编写一道算式并直接写出得数.(24+25)×5=;(872+873)×5=;(2830+2831)×5=;(+)×=.4.(2015春•射阳县校级期中)根据规律填数.9×9+9=90 9876×9+6=8889098×9+8=890 98765×9+5=987×9+7=8890 987654×9+4=.5.(2015春•成都校级期中)如图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”最下层包含多少个小三角形?六层呢?七层呢?n层呢?(2)整个五层“宝塔”一共包含多少个小三角形?六层呢?七层呢?n层呢?6.(2015春•西安校级期中)仔细观察,根据发现的规律把表格填完整.第几幅图 1 2 3 5 …n共几个面在外面…7.(2015春•盐城校级期中)用小棒如图的方式搭正方形.搭1个正方形要4根小棒,搭2个正方形要7根小棒.(1)搭3个正方形要根小棒;(2)搭8个正方形要根小棒;8.(2015春•团风县期中)一串珠子按照3颗黑珠,2颗白珠,3颗红珠,2颗蓝珠的顺序排列.(1)第14颗珠子是珠子.(2)第998颗珠子是颜色珠子.9.(2015春•射阳县校级期中)想一想,填一填.用上面的图形在左边表里框出5个数,先算出这5个数的和,再想想算出的和与中间一个数有什么关系?如果5个数的和为795,请在上面图形里写出这5个数.10.(2015春•威宁县校级期中)表中一共有50个奇数,黑线框出的5个数之和是115;仔细观察后回答问题.(1)你能发现每次框出的5个数的和与中间数有什么关系吗?(2)如果框出5个数的和要是375,应该怎么框?(先在图中框一框,并在下面用文字说明)(3)能框出和是295的5个数吗?为什么?(4)一共可以框出多少个大小不同的和?11.(2015春•株洲校级月考)不计算,运用规律在横线上填上合适的数.7×9=6377×9=693777×9=69937777×9=69993…777777777×9=1÷7=0.142857142857…2÷7=0.285714285714…3÷7=0.428571428571…4÷7=0.575÷7=0.76÷7=7÷7=12.(2014•涟水县模拟)观察与计算.计算:1+2+3+…+99+100+99+98+…+3+2+1=13.(2014•金寨县校级模拟)找规律,填表.序号①②③④⑤…⑩数列A 1 3 5 7 9 …数列B 0 1 4 9 (81)14.(2014•宝安区校级模拟)观察下面3题的规律,然后算出(1)(2)两小题的结果.1+2+1=2×2=41+2+3+2+1=3×3=91+2+3+4+3+2+1=16(1)1+2+3+…+99+100+99+…+3+2+1=(2)+++…+++1+++…+++=15.(2014•绍兴)有些题目可以通过观察找出规律,知道答案.按照下图算式的规律不变,如果商是123456,括号中的“减数”应该是.(3﹣3)÷27=0(33﹣6)÷27=1(333﹣9)÷27=12(3333﹣12)÷27÷=123.16.(2014•武平县)观察图形找规律:(1)按照图形变化规律填表:1 2 3 4 5 …正方形个数直角三角0 4 8 …形个数(2)如果画8个正方形能得到个直角三角形,画n个正方形能得到个直角三角形.17.(2014•东莞)探寻规律.如图 是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个2×2的正方形图案(如图‚),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图ƒ),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.18.(2014•东台市)准备(1)每个都是棱长为1厘米的正方体.(2)一个挨着一个排成一排你要研究的问题是:正方体个数与拼成的长方体表面积之间的关系.探索过程:根据你的发现填空.当正方体个数为10时,所拼成的长方体表面积是平方厘米.当正方体个数为a时,所拼成的长方体表面积是平方厘米.当拼成的长方体表面积是202平方厘米时,正方体个数是.19.(2014•长沙)在如图所示的数表中,第100行左边的第一个数是.20.(2014•成都)有甲、乙两个同样的杯子,甲杯装满水,乙杯是空的.第一次将甲杯里的倒入乙杯,第二次将乙杯中水的倒回甲杯,第三次将甲杯中的倒回乙杯,第四次将乙杯中的倒回甲杯,…,这样反复倒2015 次后,甲杯中的水是原来的几分之几?21.(2014•陕西校级模拟)有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几?22.(2014•江油市校级模拟)有一串数,,,,,,,,,,…则是第个分数.23.(2014•临夏县模拟)找规律填数.1,4,9,16,,,49,,81.24.(2014•湖南模拟)分析推理找规律①1+2+1=4②1+2+3+2+1=9③1+2+3+4+3+2+1=16④1+2+…+49+50+49+…+2+1=⑤1+2+…+(n﹣1)+n+(n﹣1)+…+2+1=(n为自然数)25.(2014•江油市校级模拟)1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,…1+3+5+…+(2n ﹣1)=20132,则n=.26.(2014•宁远县校级模拟)如图,第6个图形一共由个小三角形组成,第n 个图形,一共由个小角形组成.27.(2014•广州模拟)为了美化城市,某商场在门前的空地上用花盆按如图所示的方式搭正方形.(1)填写下表正方形的层数 1 2 3 4 5该层所需花盆的个数 4 12(2)按这种规律搭下去,搭第n(n为正整数)层正方形,需要盆花.28.(2014•台湾模拟)如图所示,按一定规律用棉花棒摆放图案:第一组的图案用棉花棒2枝,第二组用棉花棒7枝,第三组用棉花棒15枝,如此类推,问第二十组的图案用棉花棒多少枝﹖29.(2014•成都校级模拟)下面的小点按如图所示的规律摆放:第1个图形有6个小点,第2个图形有10个小点,第3个图形有16个小点,第4个图形有24个点…,依次规律,第10个图形中点的个数是30.(2014•海安县模拟)用小棒按照如下的方式摆图形.摆1个八边形需要8根小棒,摆2个八边形需要15根小棒,…摆50个八边形需要根小棒;如果摆这样的八边形用了771根小棒,你知道摆了个八边形.。

六年级10道找规律题

六年级10道找规律题

六年级10道找规律题一、1, 4, 9, 16, 25, 36, 49, 64, 81, 100这组数字中的规律是每个数字都是前一个数字的平方。

二、2, 4, 8, 16, 32, 64, 128, 256, 512, 1024这组数字中的规律是每个数字都是前一个数字乘以2得到的。

三、1, 3, 6, 10, 15, 21, 28, 36, 45, 55这组数字中的规律是每个数字都比前一个数字大1、2、3、4、5、6、7、8、9。

四、3, 6, 9, 12, 15, 18, 21, 24, 27, 30这组数字中的规律是每个数字都是前一个数字加上3。

五、1, 3, 6, 10, 15, 21, 28, 36, 45, 55这组数字中的规律是每个数字都比前一个数字大1、2、3、4、5、6、7、8、9,与第三题的规律相同。

六、2, 6, 12, 20, 30, 42, 56, 72, 90, 110这组数字中的规律是每个数字都是前一个数字加上一个等差数列的项。

七、1, 4, 9, 16, 25, 36, 49, 64, 81, 100这组数字中的规律是每个数字都是一个完全平方数。

八、1, 2, 4, 7, 11, 16, 22, 29, 37, 46这组数字中的规律是每个数字都比前一个数字大1、2、3、4、5、6、7、8、9。

九、1, 4, 9, 16, 25, 36, 49, 64, 81, 100这组数字中的规律是每个数字都是一个完全平方数,与第七题的规律相同。

十、3, 5, 8, 12, 17, 23, 30, 38, 47, 57这组数字中的规律是每个数字都比前一个数字大1、3、5、7、9、11、13、15、17。

通过以上的十道找规律题,我们可以发现数列中的规律可以有很多种。

有些规律是比较简单的,例如等差数列、等比数列、完全平方数等;而有些规律则需要我们观察更多的数字,找出其中的规律。

在解决这些题目的过程中,我们需要灵活运用数学知识,例如加减乘除等运算,同时要有一定的观察力和逻辑思维能力。

六年级数学探索规律题练习卷(含解析)

六年级数学探索规律题练习卷(含解析)

1.如图,摆一个△用3根小棒,摆2个△用5根小棒,摆3个△用7根小棒.照这样,摆5个△用多少根小棒?用21根小棒可以摆多少△?2.现有若干圆环,它的外直径5厘米,环宽0.5厘米,将它们(如图)扣在一起,拉紧后测其长度.(1)根据规律,则2个圆环拉紧后的长度是多少厘米?10个圆环拉紧后的长度是多少厘米?(2)若拉紧后的长度是77厘米,它由多少个环扣成的?(3)设环的个数为a,拉紧后总长为S,请你用一个关系式表示你发现的规律。

3.甲种茶叶每千克40元,乙种茶叶每千克24元,按3:2的比例混合后共80千克,求混合后的茶叶每千克至少要卖多少元?4.某省原来用电收费标准统一为每度电0.65元.但由于当前物价上涨,省物价局决定,从2012年6月1日起,全省5.“学雷锋见行动”活动中,六年级部分学生为社区服务,其中男生人数和女生人数比是2:3.后来又有3名男生参加,有3名女生有事离开,这时男生人数是女生的75%.原来参加社区服务的男、女生各有多少人?6.(2014•荔波县模拟)有A、B两个容器,如图先把A装满水,然后倒入B中,B中水的深度是多少厘米?7.一件商品打九折后,现在的价格是990元,仍可获利10%.这件商品的成本价是多少元?这件商品的原来的价格是多少元?8.一个边长为8厘米的正方体,从如图示挖掉一侧面为正方形(边长为2厘米)的长方体,求剩余部分的表面积.元?(2)小文乘出租车从家到外婆家,共付费22.6元,小文家到外婆家相距多少千米?10.张华中心小学为了增强学生体质打算买60个足球,现有三个超市可以选择,三个超市足球的价格都是25元,但各2014年06月27日1583169的小学数学组卷参考答案与试题解析一.填空题(共2小题)1.如图,摆一个△用3根小棒,摆2个△用5根小棒,摆3个△用7根小棒.照这样,摆5个△用11根小棒,用21根小棒可以摆10△.2.现有若干圆环,它的外直径5厘米,环宽0.5厘米,将它们(如图)扣在一起,拉紧后测其长度.(1)根据规律,则2个圆环拉紧后的长度是9厘米,10个圆环拉紧后的长度是41厘米.(2)若拉紧后的长度是77厘米,它由19个环扣成的.(3)设环的个数为a,拉紧后总长为S,请你用一个关系式表示你发现的规律.S=4a+1.二.解答题(共7小题)3.甲种茶叶每千克40元,乙种茶叶每千克24元,按3:2的比例混合后共80千克,求混合后的茶叶每千克至少要卖多少元?由题意可知:混合后甲种茶叶的重量占总重的,乙种茶叶的重量占总重量的,把茶叶总重(×=48×=324.某省原来用电收费标准统一为每度电0.65元.但由于当前物价上涨,省物价局决定,从2012年6月1日起,全省5.“学雷锋见行动”活动中,六年级部分学生为社区服务,其中男生人数和女生人数比是2:3.后来又有3名男生参加,有3名女生有事离开,这时男生人数是女生的75%.原来参加社区服务的男、女生各有多少人?6.(2014•荔波县模拟)有A、B两个容器,如图先把A装满水,然后倒入B中,B中水的深度是多少厘米?V=sh 解:×=此题是考查圆柱、圆锥的体积计算,可利用它们的体积公式解答,同时不要漏了7.一件商品打九折后,现在的价格是990元,仍可获利10%.这件商品的成本价是多少元?这件商品的原来的价格是多少元?8.一个边长为8厘米的正方体,从如图示挖掉一侧面为正方形(边长为2厘米)的长方体,求剩余部分的表面积.元?(2)小文乘出租车从家到外婆家,共付费22.6元,小文家到外婆家相距多少千米?张华中心小学为了增强学生体质打算买60个足球,现有三个超市可以选择,三个超市足球的价格都是25元,但各商。

(完整)六年级数学找规律练习

(完整)六年级数学找规律练习

六年级找规律练习题班级姓名等级1、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=_ ___。

2、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102;…… ……由此规律知,第⑤个等式是。

3、如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,当边长为n根火柴棍时,若摆出的正方形所用的火柴棍的根数为S,则S=(用含n的代数式表示,n为正整数).4、如图是五角星灯连续旋转闪烁所成的三个图形。

照此规律闪烁,下一个呈现出来的图形是5、如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴根。

……6、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n个图形中,互不重叠的三角形共有个(用含n的代数式表示)。

7、小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子()枚(用含有n的代数式表示)8、在计算机程序中,二杈树是一种表示数据结构的方法。

如图,一层二杈树的结点总数是1,二层二杈树的结点总数是3,三层二杈树的结点总数是7,四层二杈树的结点总数是15……照此规律七层二杈树的结点总数是。

A B C D1条2条3条……图③图②图①9、瑞士中学教师巴尔末成功地从光谱数据、591216⋯⋯32362125、、中得到巴尔末公式,从而打开了光谱奥妙的大门。

请你按这种规律写出第七个数据是_________。

10、观察右面的图形(每个正方形的边长均为1)和相应等式,控究其中的规律;①211211-=⨯②322322-=⨯③433433-=⨯④544544-=⨯⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。

六年级找规律练习题57道

六年级找规律练习题57道

小学六年级总复习练习题(找规律练习题)1、一座拱形桥的两根望柱间隔1米,每侧各有15根望柱,这座拱形桥长几米?2、四年级一班有60人,排成两队,每两个同学相隔1米,队伍前后长几米?3、公园圆形草坪四周有10个小喷水池,每两个喷水池中间有2把休息椅。

你知道一共有几把休息椅吗?4、张强家住在6楼,从1楼到3楼需要走34级台阶。

如果各层楼台阶数相同,张强到家需要走多少级台阶?5、在一条路的两边装路灯,每隔15米装一盏。

如果路的两端都要装,一共需要装162盏。

这条路全长多少米?6、在一条公路的两侧栽树,每隔5米栽一棵,公路的两端都有树,公路长400米,公路每侧要植几棵树?两侧一共要植几棵树?7、张老师要沿200米圆形跑道每隔5米插一面彩旗,一共需要几面彩旗?8、在一张边长为3米的方桌周围摆水果,每个角上都要摆一盘。

如果每隔1米摆一盘,这张方桌上能摆几盘水果?每条边上有几盘?9、学校林荫路长54米,路的一边从一端到另一端一共栽了19棵树,每两棵树之间相距几米?10、为美化环境,园林公司在草坪的一侧每隔2米摆了一盆花,两端都摆共摆了56盆花,现在全部换成木桩做成护拦,这一侧共用了111根木桩,相邻两根木桩间相距几米?11、某人到高层建筑的10层去,他从1层到5层用了100秒,如果用同样的速度走到10层,还需要多少秒?12、科学家进行一项实验,每隔5小时做一次记录。

做第12次记录时,挂钟的时针正好指向9,问做第一次记录时,时针指向几?13、两棵树相隔115米,中间以相等距离增加22棵后,第16棵与第1棵之间相隔几米?14、有一条植着等距离树的路,哥哥和弟弟同时出发,从第一棵数到最后一棵树方向走去,哥哥每分钟走84米,弟弟每分钟走36米。

哥哥走到第22棵树时,弟弟走到第几棵树?15、一列火车共20节,每节长5米,每两节之间相距1米,这列火车以每分钟20米的速度通过81米长的隧道,需要几分钟?16、请你把9棵树平均栽成8行,每行栽3棵,你能否做到?如果能请画出栽树的示意图。

六年级的数学找规律练习题.doc

六年级的数学找规律练习题.doc

六年级数学找规律练习题班级 姓名等级例 1 假设 a#b=( a+b ) +(a —b );求 13#5 和 13#(5#4) 练习一1、将新运算定义为 a *b=(a+b )×(a —b );求 27*92、设 a *b=a 2 +2b ;求 10* 6 和 5*( 2*8)3、设 a *b=3a —b ×1;求 (15* 24)*( 10 *12)2例 2 设 p 、q 是两个数;规定: p # q=4×q —( p +q )÷2;求 3 #( 4# 6) 练习二1、设 p 、q 是两个数;规定: p # q=4×q —( p +q )÷2;求 5#( 6# 4)2、设 p 、q 是两个数;规定: p # q=p 2 +(p —q ) ×2;求 30#(5# 3)、设 M 、 N 是两个数;规定:MN ;求 10#20—13M # N=+4N M例 3 如果 1&5=1+11+111+1111+11111;2&4=2+22+222+2222;3&3=3+33+333 ;4&2=4+44 ; 那么 7&4= ;210&2= 。

练习三1、如果 1&5=1+11+111+1111+11111; 2&2=2+22 ;3&3=3+33+333 ⋯⋯ 那么 4&4= 。

2、规定 a&b=a+aa+aaa+aaaa+a ⋯⋯ a ( b 个 a );那么 8&5= 。

、如果1 ;3&2= 1 ; 4&3=1;那么( 6&3 )÷(2&6 )= 。

33 4442例 4 设 a@b=4a —2b+ 1ab ;求 x@(4@1) =34 中的未知数 x2练习四1、设 a@b=3a —2b ;已知 x@(4@1)=7;求 x、对两个整数 a 和 b 定义新运算“ & ”;a&b= 2a b ;求 6&4+9&82ba ba4xyx 和 y 定义新运算“ #”: x#y= (其中 m 是一个确定的整数) 。

六年级数学找规律练习题

六年级数学找规律练习题

六年级数学找规律练习题班级 姓名 等级例1 假设a#b=(a+b )+(a —b );求13#5和13#(5#4)练习一1、将新运算定义为a *b=(a+b )×(a —b );求27*92、设a *b=a 2+2b ;求10*6和5*(2*8)3、设a *b=3a —b ×21;求(15*24)*(10*12)例2 设p 、q 是两个数;规定:p # q=4×q —(p +q )÷2;求3 #(4# 6)练习二1、设p 、q 是两个数;规定:p # q=4×q —(p +q )÷2;求5#(6# 4)2、设p 、q 是两个数;规定:p # q=p 2+(p —q )×2;求30#(5# 3)3、设M 、N 是两个数;规定:M # N=N M +MN ;求10#20—41例3如果1&5=1+11+111+1111+11111;2&4=2+22+222+2222;3&3=3+33+333;4&2=4+44;那么7&4= ;210&2= 。

练习三1、如果1&5=1+11+111+1111+11111;2&2=2+22;3&3=3+33+333……那么4&4= 。

2、规定a&b=a+aa+aaa+aaaa+a ……a (b 个a );那么8&5= 。

3、如果2&1=21;3&2=331;4&3=4441;那么(6&3)÷(2&6)= 。

例4 设a@b=4a —2b+21ab ;求x@(4@1)=34中的未知数x练习四1、设a@b=3a —2b ;已知x@(4@1)=7;求x2、对两个整数a 和b 定义新运算“&”;a&b=()()b a b a ba -⨯+-2;求6&4+9&83、对任意两个整数x 和y 定义新运算“#”:x#y=ymx xy34+(其中m 是一个确定的整数)。

(完整word版)六年级数学总复习--找规律练习题.docx

(完整word版)六年级数学总复习--找规律练习题.docx

六年级数学总复习 --- 找规律练习题班姓名1、如, 1 个三角形需要 3 根小棒, 2 个三角形需要 5 根小棒, 3 个三角形需要 7 根小棒⋯,像 10 个三角形需要()根小棒, n 个三角形需要()根小棒;有 37 根小棒可以个的三角形.2、如上所示,用同的火柴棒正方形, 1 个正方形需要()根火柴棒, 2 个正方形需要()根火柴棒⋯⋯,如果 100 个正方形需要()根火柴棒,n个正方形需要()根小棒。

3、用同的小棍成如所示的形,照,第⑥个形用()根小棍,第n 个形用()根小棍。

4、像如下去, n 个六形需要()小木棒,当n=20,共用了()根小木棒。

5、六形(如).(1) 1 个六形需要()根小棒,2个六形需要()根小棒,3个六形需要()根小棒。

(2)照下去,n 个六形需要()根小棒(用含有字母n 的式子表示), 101 根可以()个六形。

5、用小棒按照如下方式形.(1) 1 个八形需要 8 根小棒, 2 个八形需要()根小棒,10 个八形需要()根小棒。

(2)如果想 n 个八形,需要()根小棒。

(3)有 2010 根小棒,可以()个的八形。

6、用小棒可成小,要 8 根,要14根,要20根⋯像,当成10 条小在一起的,需要()根小棒。

7、如下,用同大小的黑色棋子按所示的方式案,按照的律下去,第10 个案需棋子()枚,第 n 个案需棋子()枚。

8、用度相等的小木棒按照下的方式搭塔式三角形,按照的律搭下去,搭第 5 个形需要()根小木棒,搭第m 个形需要()根小木棒。

9、猜猜用火柴棒出大小不同的方形(如下).第1个方形需要()根火柴棒,第2个方形需要()根小棒,如果按的律下去,第10个方形共需要()根火柴棒。

8、如所示:用黑白两种色的正五形地按下所示的律,拼成若干个蝴蝶案,第7幅蝴蝶案中白色地有().9、用黑白两种色的正六形地面按如所示的律,拼成若干个案,第2012个案中有白色地面()。

10 、用同格的黑白两种色的正方形,按如方式拼,如果下去,那么第n个形要用()黑色正方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级找规律练习题
班级姓名等级
1、观察下面的几个算式:
1+2+1=4,
1+2+3+2+1=9,
1+2+3+4+3+2+1=16,
1+2+3+4+5+4+3+2+1=25,…
根据你所发现的规律,请你直接写出下面式子的结果:
1+2+3+…+99+100+99+…+3+2+1=_ ___。

2、已知下列等式:
① 13=12;
② 13+23=32;
③ 13+23+33=62;
④ 13+23+33+43=102;
…… ……
由此规律知,第⑤个等式是。

3、如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,当边长为n根火柴棍时,若摆出的正方形所用的火柴棍的根数为S,则S=(用含n的代数式表示,n为正整数).
4、如图是五角星灯连续旋转闪烁所成的三个图形。

照此规律闪烁,下一个呈现出来的图形是
A B C D
5、如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴根。

……
1条2条3条
6、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在
图3中,互不重叠的三角形共有10个,……,则在第n个图形中,互不重叠的三角形共有个(用含n的代数式表示)。

7、小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子
()枚(用含有n的代数式表示)
8、在计算机程序中,二杈树是一种表示数据结构的方法。

如图,一层二杈树的结点总数是1,二层二杈树的结点总数是3,三层二杈树的结点总数是7,四层二杈树的结点总数是15……照此规律七层二杈树的结点总数是。

……
图③
图②图①9、瑞士中学教师巴尔末成功地从光谱数据、
591216⋯⋯32
36
2125、、中得到巴尔末公式,从而打开了光谱奥妙的大门。

请你按这种规律写出第七个数据是_________。

10、观察右面的图形(每个正方形的边长均为1)和相应等式,控究其中的规律;
①211211-=⨯
②322322-=⨯
③433433-=⨯
④5
44544-=⨯
⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:
⑵猜想并写出与第n 个图形相对应的等式。

11、填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是
A .38
B .52
C .66
D .74 12、如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);
再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形。

0 2 8 4 2 4 6 22 4 6 8
44 m 6
(3)(2)(1)C 3B 3
A 3A 2C 1
B 1A 1
C B A C 2
B 2B 2
C 2A B C A 1B 1C 1A 2C 1B 1A 1C B A … 第5题 13、如图4,在图(1)中,A 1、B 1、C 1分别是△ABC 的边BC 、CA 、AB 的中点,在图(2)中,A 2、
B 2、
C 2分别是△A 1B 1C 1的边B 1C 1、C 1 A 1、 A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有 个。

14、如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成。

-
15、观察下列图形:
它们是按一定规律排列的,依照此规律,第9个图形中共有 个★。

16、如图3,有一个形如六边形的点阵,它的中心是一个点,作为第一层,第二层每边有两个点,第三层每边有三个点,依次类推,如果n 层六边形点阵的总点数为331, 则n 等于 。

(1)
(2) (3) ……
17、下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:
(1)五层的“宝塔”最下层包含多少个小三角形?六层呢?七层呢?n 层呢?
(2)整个五层“宝塔”一共包含多少个小三角形?六层呢?七层呢?n 层呢?
18、观察下列图形,则第n 个图形中三角形的个数是( )
A .22n +
B .44n +
C .44n -
D .4n
19、将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10
个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.
……
第1个 第2个 第3个
第1个图形 第2个图形 第3个图形 第4个图形

20、观察下列等式:
22
-=⨯;
2.5237
-=⨯;22
1.4135
22
4.74311
-=⨯
3.6339
-=⨯;22
…………
则第n(n 是正整数)个等式为.
21、王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,
第n个“中”字形图案需根火柴棒.
22、如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n个“广”字中的棋子个数是____________
23、下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个
图案由7个基础图形组成……第n(n是正整数)个图案中由个基础图形组成.
……
(1) (2) (3)
24、观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 .
25、下图是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,
设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )
26、下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .
27、用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).
1 2
3
……
n =1 n =2 n
=3
(1)
(2)
(3)
……
……
第1个第2个第3个。

相关文档
最新文档