26何时获得最大利润新
九年级数学下册 2.6何时获得最大利润 教案新部编本 北师大版

2.做一做:
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
⑴
⑵利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.
(2)画出这个函数的图象;
(3)当a长多少时,S最大?
此例可以先由学生单独完成,然后老师作适当提点。
分析:是二次函数的最值问题,分析题意列出函数关系式.
当a=6时,S最大=36
三、课堂练习
P61(答案:提价5元,最大利润4500元)
四、课时小结
本节课经历了销售中最大利润问题的探究过程,体会了二次函数是一类最优化问题的数学模型,并感受了数学的应用价值,学会了分析和表示实际问题中变量间的二次函数关系,并运用二次函数的知识求实际问题中的最值,提高了解决问题的能力.
(2)销售额可以表示为;
(3)所获利润可以表示为;
(4)当销售单价是元时,可以获得最大利润,最大利润是.
引导分析:这是一个最值问题,而最值问题是二次函数的问题,因此,我们应先分析题意列出函数关系式.结果如下:
销售量可以表示为 即 ;
销售额可以表示为 即 ;
所获利润可以表示为 即 .
设总利润为y元,则y= .
二、讲授新课
1.有关利润问题:
某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?
设销售单价为x( )元,那么
(1)销售量可以表示为;
6.何时获得最大利润

第二章 二次函数
2.6
何时获得最大利润
授课人: 王秀莲
义安一中
九年级 数学
第二章 二次函数
2.6 何时获得最大利润 某大型商场的杨总到 T恤衫部 去视察,了解的情况如下:已知 成批购进时单价是20元.根据市 场调查,销售量与销售单价满足 如下关系:在一段时间内,单价 是35元时,销售量是600件,而单 价每降低1元,就可以多销售200 件.于是杨总给该部门王经理下 达一个任务,马上制定出获利最 多的销售方案,这可把王经理给 难住了?你能帮他解决这个问题 吗?
60500 60400 60300 60200
60100
60000
O
5
x1
10
x2
15
20
x/棵
九年级 数学
第二章 二次函数
感悟和反思 通过这节课的学习你有哪些 收获?
九年级 数学
第二章 二次函数
作业
1.单价是20元.根据 市场调查,销售量与销售单价满足如下关系:在一 段时间内,单价是35元时,销售量是600件,而单 价每降低1元,就可以多销售200件,问销售单价是 多少时获利最多 ?
• • • • •
如果设销售单价为x元,(20≤x≤35的整数) 35- x 每件降价____________ 元 600+200( 35- x ) 销售量可以表示_________________件 x -20 每件利润__________元 ( x -20 )[600+200( 35- x ) ] 获得的总利润y =_________________________
九年级 数学
第二章 二次函数
y (600 - 5 x)(100 x) -5 x 100 x 60000
何时获得最大利润

02
创新生产方式
特斯拉采用先进的生产技术和自动化生产线,提高生产效率,降低人工
成本。Leabharlann 03优化供应链特斯拉与供应商建立紧密的合作关系,确保供应链的稳定性和成本控制。
案例三:星巴克的营销策略
品牌定位 星巴克以高端咖啡品牌定位,通过提供优质咖啡和舒适的 消费环境吸引目标客户。
会员计划 星巴克推出会员计划,通过积分、优惠券等方式增加客户 粘性,提高客户复购率。
竞争导向定价
根据竞争对手的产品价格来制 定价格,保持竞争优势。
价值导向定价
根据产品对客户的价值来制定 价格,提供高性价比的产品。
成本控制策略
生产成本控制 通过提高生产效率、降低生产 损耗等方式来降低生产成本。 采购成本控制 通过优化供应商选择、降低采 购成本来降低产品成本。 销售成本控制 合理分配销售资源,降低销售 成本,提高销售利润。
文化营销 星巴克注重品牌文化和价值观的传播,通过举办文化活动、 推出限量版产品等方式吸引消费者。
案例四:苹果的市场定位
01
高品质产品
苹果始终坚持高品 质的产品设计和技 术创新,以满足消 费者对品质的追求。
02
精准定位
苹果对目标客户进 行精准定位,针对 不同客户群体推出 具有差异化的产品
和服务。
03
差异化竞争优势
通过创新、品牌、渠道等方面建立差异化竞争优势,提高自身竞 争力。
应对竞争变化
关注竞争对手的变化,及时调整自身策略,保持竞争优势。
产品生命周期
产品开发阶段 产品推广阶段 产品成熟阶段 产品衰退阶段 在产品开发阶段,注重研发和创新,提高产品质 量和降低成本,为后续销售打下基础。 在产品推广阶段,加大市场宣传和营销力度,提 高产品知名度和市场占有率。 在产品成熟阶段,注重维护客户关系和品牌形象, 保持稳定的销售业绩。 在产品衰退阶段,考虑产品的升级换代或退出市 场,以降低损失。
2.4.2何时获得最大利润上课课件

解:
假设销售单价为x(x≥30)元,销售利润为y元,则 y= -20(x-35)2+4500
y 4500 4420
若规定销售单价不得高于 33元,则如何提高售价,可 在半月内获得最大利润?
0
33
35
X
拓展
某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如 果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可 多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大? 分析:调整价格包括涨价和降价两种情况,我们先来看涨价的情况. (1)设每件涨价x元,则每星期卖出(300-10x)件,单件商品的利 润为(60+x - 40)元 y = (60+x)(300-10x) -40 (300-10x) 怎样确定x的 取值范围? 即
议一议
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙 子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接 受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结 5个橙子.问增种多少棵橙子树,可以使橙子的总产量最多? 等量关系:橙子的总产量=每棵橙子树的产量×橙子树的数量
3. 二次函数y=-3(x+4)2-1的对称轴是 直线x=-4 ,顶点 坐标是 (-4 ,-1) 。当x= -4 时,函数有最 大 值,是 -1 。 4.二次函数y=2x2-8x+9的对称轴是 直线x=2 ,顶点 坐标是 (2 ,1) .当x= 2 时,函数有最 小 值,是 1 。
探究
服装厂生产某种品牌的T恤成本是每件10元。根据市场调 查,以单价13元批发给经销商,经销商愿意经销5000件, 并且表示单价每降低0.1元,愿意多经销500件。请你帮助 分析,厂家批发单价是多少时可以获利最多?
何时获得最大利润1

O
27
28
29
30
31
x /元
总结 :
运用函数来决策定价的问题: 运用函数来决策定价的问题:
构建二次函数模型:将问题转化为二次函数的一个具体的表达式. 构建二次函数模型:将问题转化为二次函数的一个具体的表达式. 求二次函数的最大(或最小值) 求二次函数的最大(或最小值)
销售量
600 600+200 + 600+200×2 + × 600+200×3 + × 600+200×4 + ×
总利润
7500 11200 13000 14400 15400
0元 元 1元 元 2元 元 3元 元 4元 元
令王经理非常开心的结论: 令王经理非常开心的结论: Yes! 价格下降,销量增加,总利润不断增加!!! 价格下降,销量增加,总利润不断增加!!!
y=(100+x)(600-5x) = - 5x2+100x+60000 =-5(x-10)2+60500
∵a<0 ∴ y有最大值
b 4ac − b 2 4 × (−5) × 60000 − 100 2 ∴当 x = − = 10时,y = = = 60500 最大值 2a 4a 4 × (−5)
挑战新高
检查求得的最大值或最小值对应的自变量的值必 检查求得的最大值或最小值对应的自变量的值必 须在自变量的取值范围内 。
某商店购进一批单价为20元的日用品,如果以单价30元销售, 某商店购进一批单价为20元的日用品,如果以单价30元销售, 20元的日用品 30元销售 那么半个月内可以售出400 400件 根据销售经验, 那么半个月内可以售出400件.根据销售经验,提高单价会导 致销售量的减少,即销售单价每提高1 销售量相应减少20 致销售量的减少,即销售单价每提高1元,销售量相应减少20 如何提高售价,才能在半个月内获得最大利润? 件.如何提高售价,才能在半个月内获得最大利润?
《何时获得最大利润》教学课件

复习提问
1. 二次函数y=a(x-h)2+k的图象是一条抛物线, 二次函数 的图象是一条 直线x=h ,顶点坐标是 (h,k) . 它的对称轴是 直线
b 直 x =− 线 它的对称轴是 2a,顶点坐是
4ac −4a ;当
2 . 二次函数 二次函数y=ax2+bx+c的图象是一条抛物线 , 的图象是一条 2
2.某旅行社组团去外地旅游,30人起组团, 某旅行社组团去外地旅游, 人起组团 人起组团, 某旅行社组团去外地旅游 每人单价800元。旅行社对超过30人的团 元 旅行社对超过 人的团 每人单价 给予优惠,即旅行团每增加一人, 给予优惠,即旅行团每增加一人,每人的 单价就降低10元 单价就降低 元。当一个旅行团的人数是 多少时,旅行社可以获得最大营业额? 多少时,旅行社可以获得最大营业额?
解:设一个旅行团有x人时,旅行社营业额为y元. 设一个旅行团有x人时,旅行社营业额为y 则 y=〔 800-10(30y=〔 800-10(30-x) 〕·x =-10x2+1100x =-10(x-55)2+30250 10(x∴当x=55时,y最大=30250 x=55时 答:一个旅行团有55人时,旅行社可 一个旅行团有55人时, 55人时 获最大利润30250 30250元 获最大利润30250元
何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子. 某果园有100棵橙子树,每一棵树平均结600个橙子. 100棵橙子树 600个橙子 现准备多种一些橙子树以提高产量, 现准备多种一些橙子树以提高产量,但是如果多种 树,那么树之间的距离和每一棵树所接受的阳光就 会减少.根据经验估计,每多种一棵树, 会减少.根据经验估计,每多种一棵树,平均每棵树 就会少结5个橙子. 就会少结5个橙子. 如果增种x棵树 果园橙子的总产量为y 棵树, 如果增种 棵树,果园橙子的总产量为 那么y与 之间的关系式为 之间的关系式为: 个,那么 与x之间的关系式为: 那么 y=(600-5x)(100+x )=-5x²+100x+60000
【小节训练】2.6 何时获得最大利润

【小节训练】2.6 何时获得最大利润一、选择题(共10小题)1.(2010•金华)已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,﹣3),那么该抛物线有()A.最小值﹣3 B.最大值﹣3 C.最小值2 D.最大值22.(2008•潍坊)若一次函数y=(m+1)x+m的图象过第一、三、四象限,则函数y=mx2﹣mx()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣3.二次函数y=x2﹣2x+2有()A.最大值1 B.最大值2 C.最小值1 D.最小值24.(2003•台湾)下列为四个二次函数的图形,哪一个函数在x=2时有最大值3()A.B.C.D.5.(2002•鄂州)用长为100cm的金属丝制成一个矩形框子,框子的面积不能是()A.325cm2B.500cm2C.625cm2D.800cm26.(2006•舟山)二次函数y=x2+10x﹣5的最小值为()A.﹣35 B.﹣30 C.﹣5 D.207.(2006•南充)二次函数y=ax2+bx+c,b2=ac且x=0时y=﹣4,则()A.y最大=﹣4 B.y最小=﹣4 C.y最大=﹣3 D.y最小=﹣38.(2005•岳阳)已知抛物线y=2x2﹣4x﹣1,下列说法中正确的是()A.当x=1时,函数取得最小值y=3 B.当x=﹣1时,函数取得最小值y=3C.当x=1时,函数取得最小值y=﹣3 D.当x=﹣1时,函数取得最小值y=﹣39.(2000•嘉兴)二次函数y=x2+2x﹣5取最小值时,自变量x的值是()A.2B.﹣2 C.1D.﹣110.(1998•金华)已知二次函数y=2x2﹣2(a+b)x+a2+b2,a,b为常数,当y达到最小值时,x的值为()A.a+b B.C.﹣2ab D.二、填空题(共10小题)(除非特别说明,请填准确值)11.(2011•泸州)如图,半径为2的圆内接等腰梯形ABCD,它的下底AB是圆的直径,上底CD的端点在圆周上,则该梯形周长的最大值是_________.12.(2010•自贡)如图,点Q在直线y=﹣x上运动,点A的坐标为(1,0),当线段AQ最短时,点Q的坐标为_________.13.(2010•镇江)已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为_________.14.(2007•庆阳)试求f(x)=2x2﹣8x+7的极值为_________.15.(2009•荆门)函数y=(x﹣2)(3﹣x)取得最大值时,x=_________.16.(2008•庆阳)二次函数y=x2+4的最小值是_________.17.(2002•四川)函数y=x2﹣2x﹣1的最小值是_________.18.(2006•温州)二次函数y=2x2﹣4x+5的最小值是_________.19.(2006•海淀区)二次函数y=(x﹣1)2+2的最小值是_________.20.(2006•江西)二次函数y=x2﹣2x﹣3的最小值是_________.。
何时获得最大利润

最大利润的含义
最大利润
最大利润是指企业在一定时间内通过 生产和销售产品或提供服务所获得的 最大的收益。
利润最大化的意义
利润最大化是企业的主要目标之一, 它可以帮助企业实现资源的最优配置 ,提高企业的竞争力和市场地位。
研究目的和意义
研究目的
研究何时获得最大利润可以帮助企业制定合理的生产和销售 策略,实现资源的优化配置,提高企业的盈利能力和市场竞 争力。
算法基础。
利用二次函数求解最大利润
确定变量
首先需要确定影响最大利润的变量。这些变量可能是产品 的售价、成本、市场需求等。
建立二次函数
根据这些变量之间的关系,可以建立一个二次函数来描述 最大利润。这个二次函数可能是关于售价、成本、需求等 变量的二次多项式。
求导数
通过求导数,可以找到这个二次函数的极值点,也就是最 大利润点。
是企业或个人在一定时期内销售产品或提供服务所获得的收入扣除成本后的余 额。
销售量
表示企业在一定时期内销售出去的产品或服务的数量。
利润和销售量的关系建模
利润 = 销售收入 - 成本
由于销售收入 = 销售量 × 单价,因此利润 = (销售量 × 单价) - 成本
当成本不变时,销售量越大,利润越高。但是,当销售量达到一定水平时,再增加销售量, 利润反而会下降。这是因为随着销售量的增加,固定成本(如设备、场地等)逐渐增加,导 致单位产品的成本上升。
研究表明,成本结构对利润也 有重要影响。高固定成本的公 司需要更高的销售量来覆盖固 定成本,而低固定成本的公司 可以在更少销售量下实现盈利 。
对未来研究的展望
01
进一步探讨市场份额与利润的关系
未来的研究可以进一步探讨市场份额与利润之间的复杂关系。例如,市
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨井中学九年级数学学科导学案
执笔人:高慧审核人:课型:新授课时间:2014.12.17 小组:姓名:班级:教师评价:序号:71
集体备课备注栏
2.6. 何时获得最大利润
一、学习目标
1.能够分析和表示实际问题中变量之间的二次函数关系。
(重点)
2.运用二次函数的知识求出实际问题的最大(小)值,(难点)
二、教学过程
【温故知新】
1、求下列二次函数的顶点坐标,最值。
(1)
2
202004000 y x x
=-++
(2)
200
80
102+
+
-
=x
x
y
(3)
10000
700
102-
+
-
=x
x
y
2、课本第64页引例(完成在课本上)
【导学释疑】
问题一:某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件。
根据销售经验,销售单价每提高1元,销售量相应减少20件。
设每件提价x元,半月
内盈利
y元。
(1)列出
y与x之间的函数关系式:
解:先利用表格分析题目数量的关系:
单件销售利润/元半月的销售量/件总销售利润/元提价前
提价后
(2)每件提价多少元时,商店半月内的盈利达到最大?盈利最大是多少?此时售价是多少?
思考:若商店半个月内要盈利4320元,每件应提价多少元?
问题二:做一做(课本第64页)
问题三:议一议(课本第65页)
【检测反馈】
1.二次函数
5
)1
(22+
-
-
=x
y的图象开口向,顶点坐标为,当x>1时,y值
随着x值的增大而。
2.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件。
根据销售经验,销售单价每降价1元,销售量相应增加50件。
设每件降价x元,半月内盈利
y
元,每件降价多少元时,商店半月内的盈利达到最大?盈利最大是多少?
1杨中打印
2
杨中打印
【拓展延伸】
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每天销售量w (件)与销售单价x (元)之间的关系可近似的看作一次函数:50010+-=x w .设李明每天获得利润为y (元),当销售单价定为多少元时,每天可获得最大利润?
【学(教)后反思】。