数理统计(第一章)
《概率论与数理统计》第01章习题解答

第一章 随机事件及其概率第1章1、解:(1){}2,3,4,5,6,7S = (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P 4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。
解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48 5、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率(1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。
数理统计教程课后重要答案习题

第一章:统计量及其分布19.设母体ξ服从正态分布N(),,2σμξ和2n S 分别为子样均值和子样方差,又设()21,~σμξN n +且与n ξξξ,,,21 独立, 试求统计量111+--+n n S nn ξξ的抽样分布. 解: 因为ξξ-+1n 服从⎪⎭⎫⎝⎛+21,0σn n N 分布. 所以()1,0~121N nn n σξξ+-+ 而()1~222-n nS nχσ且2n S 与ξξ-+1n 独立,, 所以()1~1111--÷+--+n t S n n n n S nnn σξξ分布. 即111+--+n n S nn εε服从()1-n t 分布. 20.(),,,1,,n i i i =ηξ是取自二元正态分布N()ρσσμμ222121,,,的子样,设()∑∑∑===-===n i i i ni n i i n S n n 12111,1,1ξξηηξξξ2,()2121∑=-=n i i n S ηηη和 ()()()()∑∑∑===----=ni i ni ii ni ir 12211ηηξξηηξξ试求统计量()122221--+---n S rS S S ηξηξμμηξ的分布.解: 由于().21μμηξ-=-E ()()=-+=-ηξηξηξ,c o v 2D D D nn nn2122212σσρσσ-+.所以()()n 212221212σρσσσμμηξ-+---服从()1,0N 分布 .()()()()()()()[]211212121222122ηξηξηηξξηηξξ---=----+-=-+∑∑∑∑====i ini i i ni i ni i ni S rS S S ni i ηξ-是正态变量,类似于一维正态变量的情况,可证ηξηξS rS S S 222-+与ηξ-相互独立.()()1~22221222122--+-+n S rS S S n χσρσσσηξηξ, 所以 统计量()122221--+---n S rS S S ηξηξμμηξ()()()()1)2(222122212221222121--+-+-+---=n S rS S S n nσρσσσσρσσσμμηξηξηξ服从()1-n t 分布.第二章:估计量1. 设n ξξ,,1 是来自二点分布的一个子样,试求成功概率p 的矩法估计量.解: p E =ξ ξ=∴pˆ 3. 对容量为n 的子样,求密度函数()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计3. 对容量为n 的子样,求密度函数 ()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计量. 解: ()322adx x a ax E a=-=⎰ξ 令ξ=3a 得ξ3ˆ=a . 4. 在密度函数 ()()10,1<<+=x x a x f a中参数a 的极大似然估计量是什么? 矩法估计量是什么? 解: (1) ()()()∏∏==+=+=ni i ni nni x x L 111ααααα ()i i x ∀<<1∴()().ln 1ln ln 1⎪⎪⎭⎫⎝⎛⋅++=∏=n i i x n L ααα令()0ln 1ln 1=++=∂∂∑=i ni x nL ααα, 得 ∑=--=ni iL xn1ln 1ˆα。
数理统计课后题答案完整版

第一章3. 解:因为i i x ay c-=所以 i i x a cy =+11nii x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑所以 x a c y =+ 成立因为 ()2211n x i i s x xn ==-∑()()()22122111ni i ini i nii a cy a c y n cy c y n c y y n====+--=-=-∑∑∑又因为 ()2211n y i i s y yn ==-∑所以 222xys c s = 成立 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=- 2710yx=+= ()2211lyi i i s m y yn ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s == 7解:*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11li i i s m x xn ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大) -4,,,,,0,0,,,,,,()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--==== 9解:121211121211n n i j i j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n i ji j x xn n x x n x n x n n n n n s x n sx n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n sn n n n +-++++-=+++-+=+++12. 解:()ix P λ i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i nni i i i n E X E x Ex n n n n DX D x Dx n nn n λλλλ============∑∑∑∑13.解:(),ix U a b 2i a b Ex += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中()1,1i x U - 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i nni ii i E X E x Ex n n DX D x Dx n nn ==========∑∑∑∑14.解:因为()2,iXN μσ 0i X Eμσ-= 1i X Dμσ-=所以 ()0,1i X N μσ- 1,2,,in =⋅⋅⋅由2χ分布定义可知()222111nniii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以 ()2Yn χ15. 解:因为()0,1iX N1,2,,i n =⋅⋅⋅()1230,3X X X N ++0=1=所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知 13C =16. 解:(1)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x dx σχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200ny n nY y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(2) 因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311n i Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000y n Y y f y y σ-⎧>=≤⎩ (4)因为()20,iX N σ 1,2,,i n =⋅⋅⋅所以()()1224210,11ni ni N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰ 故()242000yY y f y y σ-⎧>=≤⎩17.解:因为 ()Xt n存在相互独立的U ,V()0,1UN ()2Vn χ 使X = ()221Uχ则 221U X V n=由定义可知 ()21,F n χ18解:因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫ ⎪⎝⎭∑所以()1nniX Yt m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以 ()221122211,ni n i ii n mn mi ii n i n X m X n Y F n m X n X mσσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ=查表得 0.01 2.33U =代入上式计算可得()20.01909031.26121.26χ=+=20.解:因为()2Xn χ 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P ≤=≤22lim t n P dt -→∞-∞≤==Φ 故 {}PX c ≤≈Φ第 二 章 1.,0()0,0()()1()111x x x x xe xf x x E x f x xdx xe dxxe e d x e xλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有1x λ∧= 2.()111121).()(1)(1)1111k k x x E x k p p p k p ppp ∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p =X所以有1p X ∧=2).其似然函数为1`11()(1)(1)ni x i i nX nni L P P p p p -=-=∑=-=-∏1ln ()ln ()ln(1)ni i L P n p X n p ==+--∑1ln 1()01ni i d L n X n dp p p ==--=-∑解之得11nii np X X∧===∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12ni i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=⎪⎨⎪=⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b 2()a 4. 解:(1)设12,,n x x x 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0nni i i nii in i i L x x i nL n x d L nx d θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1nii X x n E x X X Xθ=∧===-∑令得5.。
应用数理统计(基于MATLAB实现)第1章 数理统计的基本概念

第1章 数理统计的基本概念
数理统计的基本概念
目录 contents
1 总体与样本 2 样本经验分布函数 3 统计量与估计量 4 抽样分布
2024/4/19
PART 1
总体与样本
前言 数理统计学是探讨随机现象 统计规律性 的一门学科,它以概率论为理论基础, 研究如何以有效的方式收集、整理和分析 随机数据 ,从而对所研究对象进行 统计推断。
2024/4/19
1.2 从样本认识总体的方法 1 频数表
2 直方图
2024/4/19
1.2 从样本认识总体的方法
例3. 由于随机因素的影响,某铅球运动员的铅球出手高度可看成一个随机变量,现有一组出手高度的 统计数据(单位:cm)如下:
200
195
210
211
201
205
185
197
183
177
2024/4/19
引例
引例1:研究一批灯泡的寿命分布,需明确该批灯泡中每个灯泡的寿命长短。 引例2:研究某一湖泊的深度,需测量湖面上每处到湖底的深度。 总体:在数理统计中,我们把研究对象的全体所构成的集合称为总体,而把组成总体的每个元素称为个
体,总体中所包含个体的个数称为总体的容量.
这两张图是大家再熟悉不过的两个成语了:一叶知秋、盲人摸象。
参数
分布的数 字特征
某事件的 概率等
参数
2024/4/19
PART 3
样本的经验分布函数
3 样本经验分布函数 1 经验分布函数的定义
2024/4/19
3 样本经验分布函数 2 例题 例1.2.5
某食品厂生产午餐肉罐头,从生产线上随机抽取5只罐头,称其净重(单位:g)为: 351, 347, 355, 344, 351
01第一章 数理统计的基础知识

为推断总体分布及其各种特征,一般方法是按一定规则从总体中抽取若干 个体进行观察,称为抽样。
2
第一章 数理统计的基础知识
第一节 总体与样本
一 . 总体与样本
定义1:研究的对象称为总体,总体往往以某一项数量指标为其特征。实 际上总体就是一个随机变量 X 。
为推断总体分布及其各种特征,一般方法是按一定规则从总体中抽取若干 个体进行观察,称为抽样。 定义2:从总体中抽取的 n 个个体 (X1,X2,…,Xn) 称为样本,实际上样本就 是一个 n 维随机变量(或向量)。
简单随机样本: (X1,X2,…,Xn) 是相互独立的随机变量(独立性);且 Xi ~ X (同分布) 。 样本容量 n:样本中所含个体数目,为已知的一个自然数。 样本观察值: (X1,X2,…,Xn) = (x1,x2,…,xn)
上例中,若某次抽样得: (X1,X2,X3,X4,X5) = (0,0,1,0,1)
P(Y 15) f ( y)dy
15
10 0 15 20 y y 1 3 7 dy dy 10 100 100 2 8 8
例3:设总体 X ~ b(1,p)。现从中抽取容量为 2 的样本,得到样本 (X1, X2),求样本的函数 Y = X12 + X22 的概率分布,并求出事件 P(Y < 15) 的概率。
i 1 n
如上例:总体 X ~ b(1,p),概率分布为:P(X = x) = (1 – p)1 – x p x (x = 0,1) 则样本 (X1,X2,…,Xn) 的联合分布为:
P( X 1 x1 , X n xn ) p x1 (1 p)1 x1 p xn (1 p)1 xn p i1 (1 p)
概率论与数理统计 第一章 随机事件与概率

推广:
(1)n个事件A1,A2, An至少有一个发生
所构成的事件,称为 A1, A2, An的和或并,
记为
n
A1 A2 An Ai
i1
当A1, A2, An互斥时
n
n
Ai Ai
i1
i1
(2)可列无限多个事件 A1, A2, 至少有一个
(1kn)的不同排列总数为:
n n n nk
例如:从装有4张卡片的盒中 有放回地摸取3张
第1张 第2张 第3张
1 2 34
n=4,k =3
1
1
1
2
2
2 共有4.4.4=43种可能取法
3
3
3
4
4
4
2、组合: 从n个不同元素取 k个
(1kn)的不同组合总数为:
C
k n
Ank k!
n! (n k)!k!
Ai
i1
三.互不相容事件(互斥事件)
若A与B不能同时发生,即 AB 则称A与B
互不相容(或互斥)。S与 互斥。
S
A
B
推广:n个事件 A1,A2, An互斥
A1, A2, An 中任两个互斥,即,
i≠j, i, j=1,2,3 ,……n.
四.事件的和(并) 事件A与B至少有一个发生所构成的事件, 称为A与B的和(并)记为A∪B。当A与B 互斥时,A∪B =A+B。
六. 对立事件(逆事件) 由A不发生所构成的事件,称为A的对立事件
(逆事件)。记为 A
A
A
AA ,A A S,A A.
例1.掷一质地均匀的骰子,A=“出现奇数点”= {1,3,5},B=“出现偶数点”= {2,4,6},C=“出现4或6”={4,6}, D=“出现3或5”={3,5},E=“出现的点 数大于2”={3,4,5,6}, 求 A B,C D,AE,E.
数理统计课后答案-第一章

3
2
5
5
可以看作是有 15 个空位子, 每个班级各有 5 个 解法二 将 15 名新生平均分配到三个班级, 空位子。从这 15 个空位子中任意选 3 个位子放运动员(其余位子自然是放非运动员,可不 考虑) ,共有 C15 种不同做法。 (1) 每个班级各有一名运动员, 相当于从每个班级的 5 个空位子中任意选 1 个位子放运 动员,有 C 5 C 5 C 5 种不同做法,所以,
k =0
a
3 k −3 e ≥ 0.99 。 k =0 k !
a
直接计算或查书后附录中普阿松分布的概率表,可以求得:
8 3 k −3 3 k −3 e ≈ 0 . 988 < 0 . 99 , e ≈ 0.996 > 0.99 。 ∑ ∑ k = 0 k! k = 0 k! 7
由此可见,月初至少要进货 8 件,才能以 99% 以上的概率满足顾客的需要。 已知随机变量 ξ 的概率密度为 ϕ ( x ) = Ae
1.5 无线通信中,由于随机干扰,当发出信号为“ • ”时,收到信号为“ • ” 、 “不清” 、 “—” 的概率分别为 0.7、0.2 和 0.1;当发出信号为“—”时,收到信号为“—” 、 “不清” 、 “• ” 的概率分别为 0.9、 0.1 和 0.如果整个发报过程中 “• ” 、 “—” 出现的概率分别为 0.6 和 0.4, 当收到信号“不清”时,原发信号是什么?试加以推测. 解 设 A = { 收到“不清”}, B = { 发出“·”}, B = { 发出“-”},由题意可知,
1 2 C1 C k −1 C k2−1 于 k 的 k − 1 个球中取 2 个球,所以 P{ξ = k} = = ( k = 3, 4, 5 ) 。 3 10 C5
数理统计第一章

n
例1.4 总体X~B(1,p),0<p<1,写出其样本的联合概率函数
总体
样品
X ~ P ( X x ) p ( 1 p ) ( x 0 ,1 )
x 1 x
X ~ P ( X x ) p ( 1 p ) , ( x 0 ,1. i 1,2 , , n )
xi 1 x i i i i
全部信息。 一个好的统计方法,是使由局部推断出的有关整体的信 息尽可能地准确。
第一章
数理统计的基本概念
第一节 随机样本
一.总体与个体
1.总体 在一个统计问题中,把所研究对象的全体称为总体。
构成总体的每个成员称为个体。
如:例一中的一大批灯泡叫总体。而每个灯泡叫做个体。 把含有有限个个体的总体称为有限总体 把含有无限个个体的总体称为无限总体
在数理统计学中,我们总是对随机现象进行有限 次的观察或试验,以获取数据。通过对数据的分析与 推断去寻找隐藏在数据中的统计规律性。 由于是对随机现象进行观察或试验,因此,观察或 试验数据是带有随机性的。为此需要我们从中尽可能地 排除随机性的干扰,以作出合理的推断。 数理统计是研究怎样以有效的方式收集、 整理和分 析带有随机性的数据,在此基础上,对所研究的问题作 出统计推断,直至对可能作出的决策提供依据和建议。
则其简单随机样本的联合分布函数为
F ( x )F ( x )F ( x ) F ( x )
1 2 n
n
(2)若总体X为连续随机变量,概率密度函数为f(x), 样品X i 的概率密度函数为 f ( xi ), (i 1,2,, n)
i 1
i
则样本 ( X1, X 2 , X n ) 的联合概率密度函数为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理统计学•主讲人: 沈玉波
•办公室地址: 校本部,大黑楼B1005
•办公室电话: 84708351-8205
•E-mail: shenyubo@
•大连理工大学概率统计教研室
常见的离散型随机变量
1.二项分布:()
p B ,”分布“11-0=()
为参数为自然数,其中10<<p n ().的二项分布,服从参数为则称随机变量p n X 显然,当n=1 时
()
()
n k p p C k X P k
n k
k n
,,, 101)(=-==-()
p n B X ,记作~如果随机变量X 的分布律为
()
∑=--n
k k
n k
k
n
p p C
1()[]1
1=-+=n
p p
4.帕斯卡分布(负二项分布)
如果随机变量X 的分布律为
()
,,21,)
1()(11
++=-==---r r r k p
p C k X P r
r
k r k ()
为常数
其中10<<
p 则称随机变量X 服从参数为r , p 的帕斯卡分布.
)
B(r,~p N X 记为:
1)独立重复试验,第r 次成功时实验次数的分布律。
则
独立同分布,且已知),(~,,,)221p G X X X X i r )
,(~21p r NB X X X r +++
1. 概念设X 是一个随机变量,x 是任意实数,函数
)
()(x X P x F ≤=称为X 的分布函数.
2. 分布函数的性质
1
)(0,)
1≤≤∈x F R x 1
)(lim )(,0)(lim )()2==∞==-∞∞
→-∞
→x F F x F F x x 分布函数
.
)(),()0()5是右连续的即x F x F x F =+3) F (x ) 是一个不减的函数.
)()(}{)41221x F x F x X x P -=≤<。