数量遗传学知识点总结材料

合集下载

数量遗传学基础

数量遗传学基础

群体越小,遗传漂变的作用越大。
第二节 数量性状的遗传基础 性状的分类
质量性状 (Qualitative traits or characters)
遗传上受一对或少数几对基因控制,性状变 异不连续,表型不易受环境因素影响的性状,如: 毛色、角的有无等。
数量性状 (Quantitative traits)
配子相(Gametic phase)或连锁相(Linkage phase)
两个基因座A和B,每个基因座两个等位基因, 分别为A1、A2和B1、B2:可形成4种配子: A1B1、A1B2、A2B1、A2B2 相引相(Coupling phase): A1B1/ A2B2 相斥相(Repulsion phase):A1B2/ A2B1
质量性状、数量性状与阈性状的比较
质 量 性 状 数 量 性 状 阈 性 状
性状主要 品种特征、 类 型 外貌特征 遗传基础 单个或少数 主基因 变异表现 间断型 方 式 考察方式 描述 环境影响 不敏感
突变 (mutation): 如突变基因具有选择优势, 则 其 基 因 频 率 提 高 ; 如 是 中 性 突 变 (Neutral mutation),则其频率大小取决于遗传漂变。
迁移 (Migration): 通过不同频率的群体间 基因流动引起基因频率变化。可以是单向的, 也可以是双向的。
交配体制 (Mating system): 例如,近交提 高纯合基因型频率;杂交提高杂合基因型频率; 随交则对大的遗传平衡群体的遗传结构无影响。
遗传上受许多微效基因控制,性状变异连, 表型易受环境因素影响的性状,如:生长速度、 产肉量、产奶量等。
The generalized growth curve of young animals

《数量遗传学基础》课件

《数量遗传学基础》课件

03
人类健康与疾病研 究
利用数量遗传学方法研究人类复 杂疾病的发生机制,为疾病预防 和治疗提供新的思路和方法。
THANKS
感谢观看
3
疾病抵抗力增强
通过研究动物的疾病抗性基因,提高动物的疾病 抵抗力,降低养殖成本和动物疾病发生率。
人类遗传学研究
疾病预测与预防
利用数量遗传学方法,研究人类遗传性疾病的发病风险相关基因 ,为疾病的预测和预防提供科学依据。
个体差异研究
通过研究人类的数量性状基因,了解个体差异的遗传基础,为个性 化医疗和健康管理提供支持。
《数量遗传学基础》ppt课件
• 数量遗传学概述 • 数量遗传学的基本概念 • 数量性状的遗传模型 • 数量遗传学的研究方法 • 数量遗传学的应用 • 展望与未来发展
01
数量遗传学概述
定义与特点
定义
数量遗传学是研究生物群体中数量性状遗传规律的科学。
特点
数量性状是受多基因控制的,其遗传变异规律比质量性状复 杂。
04
数量遗传学的研究方法
统计分析方法
统计分析方法
QTL分析
关联分析
元分析
这是数量遗传学中最为常见和 基础的研究方法。通过统计分 析,可以对遗传数据进行分析 和解释,探究遗传变异的来源 、分布和作用机制。
数量性状位点(QTL)分析是 利用统计学方法定位控制数量 性状的基因位点,分析基因位 点对表型变异的贡献。
表型组学研究
结合新一代测序技术和成像技术,对动植物表型组进行深入研究, 以揭示表型变异与遗传变异之间的关系。
未来发展方向与挑战
01
跨物种比较研究
比较不同物种间的遗传差异,以 揭示物种进化的机制和规律,为 生物多样性保护提供科学依据。

数量遗传学的基础 第一节 性状的分类

数量遗传学的基础  第一节 性状的分类
对性状必须进行度量而不是进行简单的区分; 必须应用生物统计的方法进行分析归纳,方能了解数量
性状遗传变异的动态; 必须以群体为研究对象。
数量性状的特点
变异的连续性 对环境的敏感性 分布的正态性 多基因作用的微效性
数量性状的特征
对质量性状而言: • 不易受环境的影响而发生变异 • F1有显隐性之分 • F2代可明显分组,不会出现超亲遗传的现象
对数量性状而言:
玉米穗长(表)
• 易受环境的影响而发生变异 • 两个纯合的亲本杂交,F1代一般是双亲的中间类型,但有时
人的身ห้องสมุดไป่ตู้(图)
遗传特征:两个有差异的亲本杂交
1. F1为双亲中值,但有时会偏向某一亲本; 2. F2均值、F1均值、双亲中值相近 3. F2变幅增大,但是变异程度远远超过F1 4.易受环境条件影响 5.有超亲遗传的现象:当杂交的亲本不是极端类型的时候,杂 交后代中有可能会出现高于高值亲本或低于低值亲本的类型
质量性状与数量性状的关系
1 由于区分的着眼点不同 2由于杂交亲本的差别基因对数不同。数量性状一般由微效 多基因控制,但在某些情况下,也可由单一的主基因控制。 3 一因多效,一个基因可以同时控制质量性状和数量性状, 控制数量性状的基因与控制质量性状的基因可能连锁。
三、 阈性状
可以用等级或分类表示的性状,如猪肉 颜色分为5级;蛋黄颜色分为9级。
第十四章 数量遗传学基础
一、数量遗传学(quantitative genetics)
1.概念 “是遗传学原理与统计学方法相结合,研究
群体数量性状的遗传学分支科学。” 遗传学 统计学 群体 数量性状
动物生产中需要改良的性状大多是数量性状。
第一节 性状的分类

遗传学_ 数量性状遗传_

遗传学_ 数量性状遗传_

个体的基因型
✓ 个体性状的表现型数值,称为表现型值,以P表示。 ✓ 表现型值有两部分组成:
一个是基因型所决定的数值,称为基因型值,以G表示; 一个是环境条件引起的变异,用E表示。 ✓ 表现型值、基因型值,和环境变异值三者之间的数量关 系可用以下公式表示:P=G+E
环境条件的影响
✓ 表型变异用表型方差(即总方差)VP表示; ✓ 遗传变异用遗传方差(即基因型方差)VG表示; ✓ 环境变异用环境方差VE表示。 ✓ 三者的数量关系可用下式表示:Vp=VG +VE
三、纯系学说
(三)纯系学说的发展
“ 纯系的纯是相对的、暂时的,绝对的纯系
是不存在的,纯系内继续选择可能是有效的。 纯系繁育过程中,由于突变、天然杂交和机械 混杂等因素必然会导致纯系不纯,产生新的遗 传变异,可能出现更优个体。

遗传率及估算方法
一、数量性状变异的表示方法
生物性状 表现的 决定因素
超矮秆表型是由于D18的突变导致。 该种突变体除株高显著降低后,其他 农艺性状与野生型无显著性差异。
小麦粒色简单划分,表现质量性状,单细致 观察,籽粒颜色红到白,表现连续变异,数量性 状的特点。
二 、数量性状的概念及遗传特点
(三)数量性状和质量性状的相对性
生物还有一些性状为阈性性状: 表型呈非连续变异,而其基本物质 的数量呈潜在的连续变异的性状, 即只有超越某一遗传阈值时才出现 的性状,如动植物甚至包括人类的 抗病力、死亡率以及单胎动物的产 仔数等性状。
3 数量性状对环境条件的变化反应敏感。
4 研究方法上,依靠群体,必须用统计方法,对在杂种和后代进行分析。
二 、数量性状的概念及遗传特点
(三)数量性状和质量性状的相对性

数量遗传学知识点总结

数量遗传学知识点总结

第一章绪论一、基本概念遗传学:生物学中研究遗传和变异,即研究亲子间异同的分支学科。

数量遗传学:采用生物统计学和数学分析方法研究数量性状遗传规律的遗传学分支学科。

二、数量遗传学的研究对象数量遗传学的研究对象是数量性状的遗传变异。

1.性状的分类性状:生物体的形态、结构和生理生化特征与特性的统称。

如毛色、角型、产奶量、日增重等。

根据性状的表型变异、遗传机制和受环境影响的程度可将性状分为数量性状、质量性状和阈性状3类。

数量性状:遗传上受许多微效基因控制,性状变异连续,表型易受环境因素影响的性状,如生长速度、产肉量、产奶量等。

质量性状:遗传上受一对或少数几对基因控制,性状变异不连续,表型不易受环境因素影响的性状,如毛色、角的有无、血型、某些遗传疾病等。

阈性状:遗传上受许多微效基因控制,性状变异不连续,表型易受或不易受环境因素影响的性状。

有或无性状:也称为二分类性状(Binary traits)。

如抗病与不抗病、生存与死亡等。

分类性状:如产羔数、产仔数、乳头数、肉质评分等。

质量性状、数量性状与阈性状的比较质量性状数量性状阈性状性状主要类型品种特征、外貌特征生产、生长性状生产、生长性状遗传基础单个或少数主基因微效多基因微效多基因变异表现方式间断型连续型间断型考察方式描述度量描述环境影响不敏感敏感敏感或不敏感研究水平家系群体群体2.数量性状的特点:必须进行度量,要用数值表示,而不是简单地用文字区分;要用生物统计的方法进行分析和归纳;要以群体为研究对象;组成群体某一性状的表型值呈正态分布。

3.决定数量性状的基因不一定都是为数众多的微效基因。

有许多数量性状受主基因(major gene)或大效基因(genes with large effect)控制。

果蝇的巨型突变体基因(gt);小鼠的突变型侏儒基因(dwarf, df);鸡的矮脚基因(dw);美利奴绵羊中的Booroola基因(FecB);牛的双肌(double muscling)基因(MSTN);猪的氟烷敏感基因(RYR1)三、数量遗传学的研究内容数量性状的数学模型和遗传参数估计;选择的理论和方法;交配系统的遗传效应分析;育种规划理论。

11-1 数量遗传学的基础 - 第四节 遗传参数

11-1 数量遗传学的基础 - 第四节 遗传参数

问题:
4、育种学中认为“遗传力是性状遗传 给后代的能力”。设奶牛产奶量的 遗传力为0.3,这意思是:
(1)奶牛的产奶量有30%是遗传造成的;
还是(2)选择差部分有30%可以遗传给后代。
四、遗传相关(genetic correlation)
1.概念
(1)数量遗传学概念 性状育种值之间的相关。
rA

为了便于说明重复力的具体计算方法,这里只取了5
头猪的产仔纪录(表14),在实际工作中,样本应当扩大。
表8-2 由5头母猪的产仔纪录计算产仔数的重复力
———————————————————————————
母猪编号
胎次 1
2
3
4
5
总计
———————————————————————————
1
8
10
7
9 13
2
8
10
8
9 14
3
9
11
8 11
9
4
9
11 10 11
9
5
10
12
———————————————————————————
Σx
44
54 23 40 45
216
Σx2
390 586 277 404 527
2184
( Σx)2/ki 387.2 583.2 272.3 400 506.3 2149
—————————————————————————————————————————
第十四章 数量遗传学基础
第四节 遗传参数
概念 遗传参数:指为了进行基因型选择而估计育种值时
所必须参考的一些常数。 重复率(repeatability):指对同一个体某一性

遗传学第八章数量遗传课件.ppt

遗传学第八章数量遗传课件.ppt

F3的表现型方差:
33 VF3 4VA16VDVE
F4代的表现型方差:
77 VFr 8VA64VDVE
随着自交代数的增加,群体基因型方差中的可固
定遗传变异加性效应方差比重逐渐加大,而 不可固定的显性效应方差比重逐渐减小。
4. 回交世代的方差
B1群体: F1P 1 A aAA
其群体遗传组成: 1 AA 1 Aa 22
15
6
1
红粒有效基 6R 5R 4R 3R 2R 1R 0R 因数
红粒:白粒
63:1
小麦籽粒颜色生化基础:红粒基因R编码一种红色素合成 酶。R基因份数越多,酶和色素的量也就越多,籽粒的颜 色就越深。
当某性状由1对基因决定时,由于F1能够产生 具有等数R和等数r的雌配子和雄配子,所以
F1产生的雌配子与雄配子都各为,
两个方差加在一起 1 a 2 1 d 2 1 a 1 d a 2 1 d 2 1 a 1 d a 2 1 d 2 44 244 222
11 VB 1VB22VA2VD2VE
第四节 遗传率的估算及其应用
一、遗传率的概念
1、广义遗传率 遗传方差占总方差(表型方差)的比值
hB2
遗传方差 总方差
100 %
VG 100% VG VE
2、狭义遗传率:基因加性方差占总方差的比值
V P V A V D V I V E
h
2 N
基因加性方差 总方差
100 %
V A 100% VP
V A
VA VD VI
VE
100 %
二、遗传率的估算
•广义遗传率的估算
VE1 4VP11 2VF11 4VP2
第一节 数量性状的特征

2数量遗传学基础-文档资料62页

2数量遗传学基础-文档资料62页

1 2
0
14A2 116A2A
1 4
0 81A2 614A2A
1 8
1 16
1 4A 2 1 16 D 2 1 16 A 2 A2 15D 26 D 6 14 A 2 D
1 4
0
12A2 14A2A
1 2
0
14A2 116A2A
10
数量性状数学模型
数量性状表型值剖分
数量性状表型值(P)线性剖分为基因型值 (G)和环境效应值(E)两个部分,即:
P=G+E+IGE
(2.5)
IGE是基因型与环境的互作偏差效应值
假设 E 0 ,则在同一固定环境条件下可认


P G
影响数量性状表型值的环境效应,又可分为
系统性环境效应(或称固定环境效应)和随机环
若定义A1和A2基因的平均效应值分别为 1
和, 2 则有:
1 2 p p [ q d (q d [ (p p ) q ] ) 2 p]q q [d d (q p )] (2.8)
14
基因的平均效应 是指该基因随机地与群体
所有的基因效应 持久性环境效应 指时间上持久或空间上非局部效应
的环境因素对个体性状表现所产生的影响。
暂时性环境效应 一些暂时的或局部的特殊环境因素
对个体性状的某次度量值产生影响
26
重复力估计原理
从效应剖分看,可将环境效应( E)剖分为持久性环境效
应( E P ) 暂时性环境效应( E T )两部分 EEPET ,因此 P G E G E P E T
一般情况 Φ Φ '
1 A 2 A 2 D 2 D 2 2A 2 A 2 A A 2D 2 D 2D D A 2A 2 D D 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论一、基本概念遗传学:生物学中研究遗传和变异,即研究亲子间异同的分支学科。

数量遗传学:采用生物统计学和数学分析方法研究数量性状遗传规律的遗传学分支学科。

二、数量遗传学的研究对象数量遗传学的研究对象是数量性状的遗传变异。

1.性状的分类性状:生物体的形态、结构和生理生化特征与特性的统称。

如毛色、角型、产奶量、日增重等。

根据性状的表型变异、遗传机制和受环境影响的程度可将性状分为数量性状、质量性状和阈性状3类。

数量性状:遗传上受许多微效基因控制,性状变异连续,表型易受环境因素影响的性状,如生长速度、产肉量、产奶量等。

质量性状:遗传上受一对或少数几对基因控制,性状变异不连续,表型不易受环境因素影响的性状,如毛色、角的有无、血型、某些遗传疾病等。

阈性状:遗传上受许多微效基因控制,性状变异不连续,表型易受或不易受环境因素影响的性状。

有或无性状:也称为二分类性状(Binary traits)。

如抗病与不抗病、生存与死亡等。

分类性状:如产羔数、产仔数、乳头数、肉质评分等。

必须进行度量,要用数值表示,而不是简单地用文字区分;要用生物统计的方法进行分析和归纳;要以群体为研究对象;组成群体某一性状的表型值呈正态分布。

3.决定数量性状的基因不一定都是为数众多的微效基因。

有许多数量性状受主基因(major gene)或大效基因(genes with large effect)控制。

果蝇的巨型突变体基因(gt);小鼠的突变型侏儒基因(dwarf, df);鸡的矮脚基因(dw);美利奴绵羊中的Booroola基因(FecB);牛的双肌(double muscling)基因(MSTN);猪的氟烷敏感基因(RYR1)三、数量遗传学的研究容数量性状的数学模型和遗传参数估计;选择的理论和方法;交配系统的遗传效应分析;育种规划理论。

四、数量遗传学与其他学科间的关系理论基础奠定:孟德尔遗传学+数学+生物统计学理论体系完善:与群体遗传学关系最为密切;学科应用:与育种学最为密切,是育种学的理论基础和方法论; 学科发展:与分子生物学、生物进化学、系统科学和计算机科学密切结合,并产生了新的遗传学分支学科,如分子数量遗传学等。

五、数量遗传学与群体遗传学的关系群体遗传学以孟德尔定律为依据,分析群体控制质量性状的主基因的活动及其消涨规律,着重于基因频率变化规律的探讨。

其基本原理可用于育种学中质量性状的遗传改良。

数量遗传学着重分析群体数量性状的遗传变异规律,主要研究群体控制数量性状的多基因的数量效应。

其重点在于通过统计分析估计各种遗传变异的数量参数,进而用于育种学中数量性状的遗传改良。

第二章 数量遗传学基础第一节 均数与方差一、数量性状表型值的剖分数量性状的表型值,即观察值,是由遗传与环境共同作用的结果,即 P = G + E + IGE 其中,P 为表型值,G 为基因型值,E 为环境偏差,IGE 为遗传与环境效应间的互作。

通常,假定遗传与环境间不存在互作,即IGE=0,则有:P = G + E 基因型值G 是由基因的加性效应(additive effect, A )、显性效应(dominant effect, D )和上位互作效应(epistatic interaction, I )共同作用的结果。

假定3种遗传效应间的互作为0,则G = A + D + I 式中的D 和I ,由于世代传递中的分离和重组,不能真实遗传,因而在育种中不能被固定;而加性效应值A 则能稳定地遗传给后代,因此,育种中又称之为育种值。

二、表型值:一个多基因系统控制的数量性状能够直接度量或观察的数值。

基因型值:表型中由基因型决定的那部分数值。

环境偏差: 表型值与基因型值的离差。

加性效应:等位基因间和非等位基因间的累加作用引起的遗传效应。

显性效应:同一基因座上等位基因间的互作所产生的遗传效应。

上位效应:不同基因座间非等位基因相互作用所产生的遗传效应。

环境偏差又可剖分为一般环境偏差Eg 和特殊环境偏差Es ,即E = Eg + Es ,综上所述,有:P = G + E = A + D + I + Eg + Es ,从育种学角度来看,上式中,只有A 可以真实遗传,通常将A 和D 合并到环境偏差中,称为剩余值(residual value, R ),即:P=A+R 大群体中,D 、I 和E 的值有正有负,则: P G E P G N N N ==+=∑∑∑即: 而: A D I A G A N N N N =++==∑∑∑∑0D I E ===∑∑∑三、一般环境:是指影响个体全身的、时间上是持久的、空间上是非局部的环境。

例如奶牛在生长发育早期营养不良,生长发育受阻,成年后无法补尝,影响是永久的。

特殊环境:是指暂时的或局部的环境。

例如,成年奶牛因一时营养条件差而泌乳量减少,但如果环境有了改善,其产量仍可恢复正常。

永久性环境:对某一特定个体的性能产生持久影响,而且是以相似的方式影响一个个体的每个记录的环境。

暂时性环境:只对某一特定性能产生影响的环境。

永久性环境和暂时性环境的剖分,是针对重复测定性状而言的。

群体的平均表型值就等于平均基因型值,也等于平均育种值。

四、群体平均值显性水平与显性度设一对等位基因A 1、A 2的频率分别为p 和q ,三种基因型A 1A 1、 A 1A 2 、A 2A 2的基因型值分别为+a 、d 、和-a 。

其中d 决定于基因的显性程度大小,即显性水平。

基因型值的标准尺度群体平均值的计算 ①用上式计算出的群体平均基因型值也等于群体的平均表型值(各基因型值是以与两纯合子平均值的离差度量的);②涉及多个基因座时,根据加性原理,由多个基因座产生的群体平均值是各基因座各献之和,即: MP =∑a (p - q) +2∑pqd五、基因的平均效应概念:在一个群体,携带某一基因的配子,随机和群的配子结合,所形成的全部基因型的均值与群体平均基因型值的离差。

计算:设A 1、A 2基因的平均效应值分别为α1、α2,A 1可以与A 1、A 2 形成两种基因型A 1A 1、A 1A 2,其均值为pa+qd ;同样A 2可以与A 1、A 2形成两种基因型A 1A 2、A 2A 2,其均值为pd –qa 。

配 产生基因型的频率 基因型显性水平 显性基因 d负向超显性 负向完全显性 负向部分显性 无显性 正向部分显性 正向完全显性 正向超显性 A2 A2 A2 无 A1 A1 A1 d < -a d = -a 0>d>-ad = 0 0<d<ad = ad > a基因型 基因型频率(f ) 基因型值 (x ) 频率×基因型值(fx ) A 1A 1 p 2 +a p 2a A 1A 2 2pq d 2pqd A 2A 2 q 2 -a -q 2a 群体平均值= ∑基因型频率×基因型值 M = ∑fx =[ p 2a+2pqd+q 2 (-a) ]=a (p - q) + 2pqd 故: P G A==子 A 1A 1(a) A1A 2(d) A 2A 2(-a) 平均值A1 p q - pa+qdA 2 - p q pd-qaα1 =[ pa + qd ]-[ a (p - q)+2pqd ] =q [a+d (q-p) ]α2 =[ pd - qa ]-[ a (p - q) +2pqd ]=-p [a+d(q -p) ]基因替代的平均效应(两个平均效应之差)设α1与α2之差为,即:α=α1-α2=a +d (q - p),于是:α1=α+α2=q α;α2=α1-α=-p α;α被称为基因替代的平均效应六、育种值(BV )概念:育种值即加性遗传效应值,为组成某一基因型的两个等位基因平均效应之和。

计算:A (A 1A 2) =2α1= 2q α; A (A 1A 2) =α1+α2= (q - p)α; A (A 1A 2) =2α2 = -2p α 说明:育种值是用群体平均值的离差表示的;一个HW 平衡的大群体,平均育种值等于0,即:Ā=ΣfA=2p 2q α+2pq (q - p)α-2q 2p α=2pq α(p+q-p-q)=0;如用绝对值表示,则平均育种值等于平均基因型值,也等于平均表型值。

七、显性离差(显性遗传效应)概念:考虑一个基因座时, 特定基因型值G 与育种值A 之差, 称为显性离差,常用D 表示。

计算:将各基因型值表示为与群体平均值的离差:G d (A 1A 1) = a-M =2q(α-qd);G d (A 1A 2) = d- M =(q-p)α+2pqd ; G d (A 2A 2) =-a- M =-2p(α+pd)D = Gd-A ,有D (A 1A 1) = Gd (A 1A 1)–A (A 1A 1) = -2q 2d ;D (A 1A 2) = Gd (A 1A 2)–A (A 1A 2) = 2pqd ;D (A 2A 2) = Gd (A 2A 2)–A (A 2A 2) = -2p 2d 所有基因型的显性离差都是平均显性离差值为0,即:D =ΣfD= -2p 2q 2d + 4p 2q 2d - 2p 2q 2d= 0八、上位互作离差如果考虑两个以上的基因座, 基因型值可能包含基因座间非加性组合产生的互作离差。

令G A 和G A 分别为A 、B 二基因座的基因型值,则I AB 为两个基因座基因的互作离差,即:G = G A + G B + I AB由于数量性状涉及的基因座很多,互作的情况相当复杂,难以将各单基因型 A 1A 1 A 1A 2 A 2A 2频率(f ) p 2 2pq q 2基因型值(G) +a d -a离差基因型值 (Gd) 或 2q (a-pd) a(q-p)+d(1-2pq) -2p (a+qd)2q (α-qd) (q-p)α+2pqd -2p (α+pd)育种值(A) 2q α (q - p)α -2p α显性离差(D) -2q 2d 2pqd -2p 2d一基因间的作用都区分开来。

就一群体而言,∑I = 0。

九、数量性状表型方差的剖分假定,遗传效应间、环境效应间及遗传及环境效应间无互作,即不考虑协方差的情况,则:V P = V G + V E=V A + V D + V I + V Eg + VEs式中,V G称为基因型方差,V A称为加性遗传方差,V D称为显性方差,V I称为互作方差,V D+V I =V NA称为非加性遗传方差,VE称为环境方差。

V Eg和VEs分别为一般和特殊环境方差。

育种值方差:V A=ΣfA2=p2 (2qα)2 + 2pq [(q-p)α]2 + q2 (-2pα)2 =2pqα2 =2pq[a+d(q-p)]2显性遗传方差:V D=∑fD2= p2 (-2q2d)2 + 2pq (2pqd)2 + q2 (-2p2d)2 = (2pqd)2基因型值方差:若d = 0,即无显性时,VG = VA = 2pqα2若d = a,即完全显性时,V G = V A + V D= 8pq3a2+ 4p2q2a2= 4p2q2a2(1+q)若0<d<a,即不完全显性时,V G = V A + V D= 2pq[a+d(q-p)]2 + [2pqd]2均数、方差与协方差第二节数量性状的遗传机制微效多基因假说一、多基因:数量性状是由许多基因的联合效应控制的。

相关文档
最新文档