五轴数控机床的运动精度检测
五轴数控机床的运动精度检测

五轴数控机床的精度检测方法分析摘要:本文首先对五轴数控机床的精度检测技术做了一个简要概括,然后介绍数控机床精度检测的必要性,指出数控机床常见的精度要求及传统检测方法,并介绍先进检测方法和检测仪器、工具,以及各个检测方法的特点。
关键词:五轴数控机床;精度检测Precision analysis of detection method of five axis CNC machine toolsAbstract: Firstly,this paper introduces the precision detection technology of five axis NC machine tools, and then introduces the necessity of CNC machine tool accuracy detection accuracy requirements of CNC machine tools, points out the common and the traditional detection method, and introduce advanced detection method and detection instruments, tools, and the characteristics of each detection method.Key words: Five axis NC machine tool;Precision detection1 引言五轴联动数控机床目前已大量用于航空制造等高端制造领域。
由于机床复杂的机械结构及控制系统,五轴联动机床加工精度检测及优化一直是机械制造行业内研究的热点和难点,成为影响产品加工质量及效率的关键。
对企业来说,购买数控机床是一笔相当大的投资,特别是购买大型机床。
实践表明,大多数大型数控机床解体发运给用户安装时,必须在现场调试才能符合其技术指标,因此,在新机床检收时,要进行严格的检定,使机床一开始安装就能保证达到其枝术指标预期使用性能和生产效率。
一种五轴联动机床动态精度检测及优化方法

A me a s u r i n g a n d o p t i mi z i n g me t h o d o f f i v e- a x i s mo v e me n t a c c u r a c y o f CNC ma c h i n e t o o l s
u r i n g r e s u h o f “ S ”t e s t - p a r t a n d t h e i f v e - a x e s d y n a mi c a c c u r a c y( R T C P)t e s t , t h e p r o b l e m a x e s c a n
t o o l ’ s ma c h i n i n g a c c u r a c y i s s a t i s ie f d wi t h t h e r e q ui r e me n t o f t h e p a r t s ’a c c u r a c i e s .Ba s e d o n t h e me a s -
ma c h i n e t o o l c a n b e me a s u r e d.By a n a l y z i n g t h e a mp l i t u d e a n d p h a s e o f t h e r e s p o ns e s a n d t h e c i r c u l a r i —
Abs t r a c t:Th i s p a p e r p r e s e n t s a f a s t d y na mi c a c c u r a c y c h e c k i n g a n d o pt i mi z i n g me t h o d f o r CNC ma c h i n e t o o l s .Af -
五轴机床回转轴精度检测

五轴机床回转轴精度检测摘要:与三轴机床相比,五轴机床能加工复杂曲面,具有加工效率高、装夹方便等优点。
然而,五轴机床的结构更复杂,两个回转轴会引入额外的几何误差,从而极大地影响了机床精度。
关键词:五轴机床;误差;检测五轴数控机床是现代制造技术的关键设备,用于加工高精度、复杂的曲面零件,其精度和技术水平在一定程度上决定了当前的工业水准。
五轴数控机床以其加工精度高、可靠性高、柔性好等优点,在航空航天、航海、医疗设备、军事等先进现代制造领域取得了巨大成就,得到了广大用户的认可,为制造企业的进一步研究做好了铺垫。
一、五轴数控机床发展概况五轴加工中心是一种专门用于加工机翼、叶轮、叶片、重型发电机转子等具有复杂空间曲面零件的高科技含量、高精密度的现代数控加工中心。
其优点为:①能加工一般三轴联动机床不能加工或无法一次装夹加工完成的自由曲面,节省装夹次数和时间。
②可提髙空间曲面加工精度、效率、质量。
一直以来,国内五轴数控机床相对于国外整体水平还较低,主要原因在于机床关键功能还未实现自主研发,与国外同类产品相比,国产机床稳定性、精度等指标较差,同时,在高精度技术含量精密机床方面,国外对我国实行技术封闭和进口限制,目前国内市场上的五轴机床仍以进口机床为主。
但国家十分重视机床行业的发展,2009年初启动了“高档数控机床与基础制造装备”国家科技重大专项,重点支持高档数控机床、基础制造装备、数控系统、功能部件、工具、关键部件、共性技术等方面的研发,且在各高校及相关企业的共同努力下,我国五轴数控机床技术也得到了飞速发展,已逐渐形成为较成熟的产品。
国内著名的五轴数控机床生产厂家有沈机集团、大连机床厂、济南二机床、昆明机床厂、普什宁江机床厂等。
随着经济的发展和国防建设的需要,用户对设备需求正向柔性、生产效率、功能多样和高性能等个性化需求方向转移,由此也促进了数控机床向高速高效化、模块化、高精度和复合加工等方向发展,对带动和提升我国机床工业水平具有重要战略意义。
五轴数控机床的运动精度检测剖析

五轴数控机床的运动精度检测剖析数控机床作为国家重点产业的支柱之一,长期以来在制造业和工业自动化领域中扮演着至关重要的角色。
五轴数控机床,作为现代数控机床的一种,具有多轴同时控制、高速高精、灵活性强等特点,其在航空航天、汽车制造等领域得到广泛应用。
机床的准确度和稳定性是保证产品质量的关键,而精度检测过程则是确保其运行状态的关键环节。
本文将分析五轴数控机床的运动精度检测方法和主要影响因素。
运动精度检测方法运动精度检测主要是通过测量机床的加工精度来评估其运动精度,主要包括以下几种方法。
定坐标法定坐标法是一种常用的运动精度检测方法,是利用五坐标测量仪(又称作CMM)进行机床定位精度和一至性误差测试的方法。
其具体步骤如下:1.规定一个标准坐标系;2.用五轴数控机床切削出一个精度比较高的工件;3.用五坐标测量仪测量工件上的基准点(一般为刀具中心);4.根据测量结果计算机床的误差。
数学建模法随着近年来数学计算机模拟技术的不断发展,数学建模法逐渐应用到运动精度检测中。
该方法是将机床的各种误差因素进行测量和分析并建立数学模型,预测机床的加工精度和稳定性。
传统联动测量法传统联动测量法是一种传统的运动精度检测方法。
其主要步骤是用高精度测量仪器分别测量两个传感器的测量信号,再经过计算机软件处理后获得机床的运动误差。
影响精度的因素五轴数控机床的精度主要受以下因素影响。
加工工件材料和加工过程参数加工工件材料和加工过程参数是影响机床轴向精度的重要因素。
加工工件材料不同、切削速度、进给速度、进给量、切削深度以及冷却液的使用等加工过程参数不同,对机床的精度影响也不同。
机床本身机床本身的精度是影响机床加工精度的重要因素,具体包括结构、精度等级、刚度、稳定性等方面。
另外,五轴数控机床的自重、惯性等参数也会对机床精度产生一定的影响,因此机床要保持平稳、平衡的状态。
操作人员操作人员的技术水平和工作态度也对机床加工精度有很大的影响。
无论是设定加工参数,还是刀具调整等操作,都需要操作人员的精细操作。
五轴数控机床误差补偿及精度可靠性评估

五轴数控机床误差补偿及精度可靠性评估五轴数控机床是一种高精度、高效率的加工设备,广泛应用于航空航天、汽车制造、模具制造等领域。
然而,由于各种因素的影响,五轴数控机床在加工过程中存在一定的误差。
为了提高加工精度和可靠性,需对误差进行补偿并进行评估。
五轴数控机床的误差主要包括几何误差和运动误差。
几何误差是由于机床结构的制造和组装误差、刚性变形等原因引起的,主要包括平行度误差、垂直度误差、位置误差和角度误差等。
运动误差是由于伺服系统、控制系统等原因引起的,主要包括滞后误差、迟滞误差和不平衡误差等。
这些误差会直接影响加工件的精度和表面质量,因此对误差进行补偿和控制是提高加工质量的关键。
误差补偿是通过测量和分析机床误差,通过数学模型将误差量纳入控制系统,使其在加工过程中进行补偿。
首先需要对机床进行检测和测量,获取机床的误差信息。
常用的检测方法包括激光干涉仪、刚度测试仪等。
其次,通过数学建模和仿真,分析机床误差的来源和特性,建立误差补偿模型。
最后,将误差补偿模型嵌入控制系统中,实现误差的实时补偿。
误差评估是对机床的精度和可靠性进行评价和监控。
通过定期对机床进行精度测试和性能测试,可以得到机床的测量数据。
然后,对测试数据进行统计分析和处理,计算出机床的误差指标,并与加工要求进行比较。
例如,常用的误差指标包括定位误差、重复定位误差、轮廓误差等。
对于超出允许范围的误差,需要进行调整和维修,以确保机床的加工精度和可靠性。
同时,还可以采用传感器和监控系统对机床进行实时监测和预警。
通过安装传感器在关键部位,可以实时感知机床的工作状态和性能,监测其误差变化和趋势。
一旦发现异常情况,监控系统可以及时报警,并进行相关维护和处理。
这样可以避免机床在加工过程中出现严重误差,保证加工质量和工作安全。
总结起来,五轴数控机床误差补偿和精度可靠性评估是提高加工质量和效率的重要手段。
通过对机床误差的测量、建模和补偿,以及对机床精度和可靠性的评估和监控,可以实现机床加工精度的提高和工作可靠性的保证。
五轴数控机床的检测与标定技术

五轴数控机床的检测与标定技术国家数控系统技术工程研究中心五轴数控机床的检测与标定技术摘要长期以来,一个普遍存在的问题一直困扰着使用大型机床进行生产、加工的企业,即企业所购买的价格不菲的高精度大型机床在生产加工过程中总会产生大大小小的误差,使其加工出的产品达不到精度要求。
数控机床的检测与标定技术就是为了解决这一难题,现在已成为提高机床加工精度和加工效率的关键技术之一。
本文介绍了检测和标定方法与原理,详细介绍了空间误差补偿技术。
关键词:机床误差,检测技术,标定技术,空间误差补偿技术国家数控系统技术工程研究中心1. 前言随着全球市场经济的一体化,市场竞争越来越激烈,市场向着个性化、小批量、高质量、交货周期短的方向发展。
现在,我国数控厂家多,但是产量都不大。
产量低的原因有很多,其中重要的一条是在机电联调过程中,要对机床的精度进行评价,测定机床的精度是否满足要求,同时对机床误差进行补偿。
提高机床的精度,原有的方法效率低、价格高、使用环境要求高,同时对操作者的要求也较高[1]。
提高数控机床的精度是保证加工件质量的重要途径。
数控机床精度的提高主要是通过误差补偿来实现。
现代制造业已经发展成为融合信息技术、数控技术、系统控制工程而生成的先进制造系统。
其发展趋势可归结为两个方向:一是以提高效率为目的的自动化,即将信息技术贯穿与整个制造过程,提高制造信息处理和控制的自动化程度,以此来提高效率,缩短生产周期;二是以提高加工精度为目的的精密化,通过先进的检测手段来实现超精密加工及检测,以控制产品质量。
采用先进的制造和检测技术来迅速的提高装备制造业的水平,是当前一个重要的发展方向,研究和发展现代检测技术有着广阔的市场前景。
2. 研究现状2.1. 机床误差产生原因普遍认为数控机床的误差有以下几方面的起因[2]:1.机床的原始制造误差。
它是指由组成机床各部件工作表面的几何形状、表面质量、相互之间的位置误差所引起的机床运动误差,是数控机床几何误差产生的主要原因。
五轴联动加工中心的精度检测方法

五轴联动加工中心的精度检测方法简介南京晨光集团有限责任公司计量中心作者:方明摘要: 对五轴联动加工中心的摆轴( 即A 轴) 全行程精度的检测提出了一种快速有效的解决方案。
详细叙述了该方案的具体操作步骤、注意事项以及在检测过程中采用的测量设备和依据的检测标准,同时对被检轴进行了有效地精度补偿。
1 、五轴联动简介五轴联动加工中心是指有五个坐标轴( 三个直线坐标轴: X,Y,Z 轴和两个旋转坐标轴: C,A 轴) ,可在计算机数控( CNC) 系统的控制下同时协调运动进行加工的数控加工设备。
通过A 轴与C 轴的组合,固定在工作台上的工件除了底面之外,其余的五个面都可以由立式主轴进行加工。
A 轴和C 轴最小分度值一般为0. 001°,又可以把工件细分成任意角度,加工出倾斜面、倾斜孔等。
A 轴和C 轴如与XYZ 三个直线轴实现联动,依靠先进的数控系统、伺服系统以及软件的支持可加工出复杂的空间曲面。
常见的立式五轴联动加工中心有两个回转轴,如图1 所示,一个是工作台回转轴,以X 轴方向为轴心线,± 90°来回摆动,定义为摆轴,也称A 轴; 一个就是设置工作台的中间的回转台,在图示的位置上环绕Z 轴方向360°回转,定义为C 轴。
图1 常见的立式五轴联动加工中心示意图加工中心XYZ 以及C 轴的精度检测,技术手段现在已经很成熟。
XYZ 三个直线轴一般是采用双频激光干涉仪作为标准进行检测,回转C 轴用双频激光干涉仪以及配套的回转分度器检测,或者用传统的正多面棱体配上自准直仪进行角分度检测,这里不再详述。
而对于A 轴,同样是角分度检测,也可用双频激光干涉仪回转分度器或者是正多面棱体和自准直仪作为标准进行检测。
但是如果是照搬全套C 轴的检测方法,将无法在全行程内完成测量,因为随着A 轴的转动,工作台将遮挡测量光路,无法继续检测,只能检测到部分角度,也就不能判断A 轴整个行程范围的精度。
五轴机床校准方法

五轴机床校准方法五轴机床校准方法:引言:五轴机床是一种能够在多个轴向上同时进行加工的高精度机床。
为了确保五轴机床能够精确地进行加工操作,校准是不可或缺的一步。
本文将详细介绍五轴机床的校准方法,包括定位误差的校准、旋转误差的校准以及补偿误差的校准。
让我们一步一步来回答这个问题。
第一步:定位误差的校准定位误差是指五轴机床在移动过程中出现的位置偏差。
为了校准定位误差,我们需要进行如下步骤:1.使用高精度的测量仪器,测量五轴机床在不同位置的实际坐标值。
2.将测量得到的实际坐标值与机床程序中给定的坐标值进行比较,计算出偏差值。
3.根据偏差值调整机床的参数,使得实际坐标值与给定坐标值尽可能接近。
第二步:旋转误差的校准旋转误差是指五轴机床在旋转过程中出现的角度偏差。
为了校准旋转误差,我们需要进行如下步骤:1.使用高精度的角度测量仪器,测量五轴机床在不同角度下的实际旋转角度。
2.将测量得到的实际旋转角度与机床程序中给定的角度进行比较,计算出偏差值。
3.根据偏差值调整机床的参数,使得实际旋转角度与给定角度尽可能接近。
第三步:补偿误差的校准补偿误差在五轴机床中是很常见的,主要是由于机床结构的刚度不足或者机床运动部件的磨损导致的。
为了校准补偿误差,我们需要进行如下步骤:1.使用高精度的测量仪器,测量五轴机床在不同加工条件下的实际加工结果。
2.将测量得到的实际加工结果与机床程序中给定的加工结果进行比较,计算出偏差值。
3.根据偏差值调整机床的参数,使得实际加工结果与给定加工结果尽可能接近。
总结:通过以上三个步骤的校准,我们可以有效地提高五轴机床的加工精度。
定位误差的校准可以减小机床的位置偏差,旋转误差的校准可以减小机床的角度偏差,补偿误差的校准可以减小机床的加工误差。
在实际操作中,我们需要根据机床的具体情况和要求选择适合的校准方法,并且经常进行校准以保证机床的加工精度和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五轴数控机床的精度检测方法分析摘要:本文首先对五轴数控机床的精度检测技术做了一个简要概括,然后介绍数控机床精度检测的必要性指岀数控机床常见的精度要求及传统检测方法,并介绍先进检测方法和检测仪器、工具,以及各个检测方法的特点。
关键词:五轴数控机床;精度检测Precision analysis of detection method of five axis CNGmachinetoolsAbstract: Firstly , this paper in troduces the precisi on detecti on tech no logy of fiveaxis NCmachine tools, and then introduces the necessity of CNCmachine tool accuracy detect ion accuracy requireme nts of CNCmach ine tools, points out the comm onand the traditi onal detect ion method, and in troduce adva need detect ion method and detecti on in strume nts, tools, and the characteristics of each detect ion method.Key words: Five axis NC mach ine tool ; Precisi on detect ion1引言五轴联动数控机床目前已大量用于航空制造等高端制造领域。
由于机床复杂的机械结构及控制系统,五轴联动机床加工精度检测及优化一直是机械制造行业内研究的热点和难点,成为影响产品加工质量及效率的关键。
对企业来说,购买数控机床是一笔相当大的投资,特别是购买大型机床。
实践表明,大多数大型数控机床解体发运给用户安装时,必须在现场调试才能符合其技术指标,因此,在新机床检收时,要进行严格的检定,使机床一开始安装就能保证达到其枝术指标预期使用性能和生产效率。
投入生产的数控机床使用一段时间后,必须再进行精度检定。
通常新机床在使用半年后需再次进行检定,以后每年检测一次,定期检测机床误差,并及时校正螺距及反向间隙等,可切实改善使用中的机床精度及零件加工质量,提高机床的生产率。
2数控机床精度检测技术研究现状常用的机床误差测量方法有直接测量法和间接测量法,其中间接测量法,如首先用典型工件试切或试加工,然后再对所试切的工件进行精度检测。
但这种方法的测量结果中包括了工艺、刀具和材料等因素在内,虽然可以通过试件的加工精度间接反映出机床的精度,但不能精确地用于指导机床的研发和改进。
而直接测量法如用微位移传感器测量装夹在主轴上的圆柱形基准棒或基准球,或者对装夹在工件台面上的基准量块或平尺直接进行测量,这种方法可以直接获得某项误差,但该方法测量效率低,测量的范围(如行程)有限。
目前世界各国对数控机床精度检测指标的定义、测量方法及数据处理方法等都有所不同。
国际上有五种精度标准体系,分别为:德国VDI标准、日本JIS标准、国际标准ISO标准、国标GB系列、美国机床制造商协会NMTBA其中NAS979是美国国家航空航天局在二十世纪七十年代提出的通用切削试件,”NAS试件”是通过检测加工好的圆锥台试件的“面粗糖度、圆度、角度、尺寸”等精度指标来反映机床的动态加工精度。
NAS试件已在三坐标数控机床的加工精度检测方面得到了很好的应用,但用NAS试件来检测五轴数控机床的加工精度还存在一些问题。
成都飞机工业(集团)有限责任公司于2011年提出了用于检验五轴数控机床的标准试件一一“ S形试件”,该试件是由一个呈“ S”形状的直纹面等厚缘条和一个矩形基座组合而成,通过检测加工试件的“外形轮廓尺寸、厚度、表面粗糙度”等指标,以及试件上的3条线共99个点的坐标位置来检验五轴数控机床的加工精度,“S形试件”是目前五轴数控机床精度检验通用的检测试件,该试件已于2011年申请美国国家专利,“ S形试件”模型图及检测点如图1.1所示。
S试件模型图测量方法需根据具体的测量仪器来制订,机床精度提髙的需求也促进了机床精度检测工具的发展。
根据检测轨迹的不同,检测仪器可分为圆轨迹运动检测和直线运动轨迹检测。
由于机床的圆轨迹运动包含了较多误差信息,因此开发一种用于检测机床轨迹运动的仪器也是国内外学者的研究重点。
Heide nhaim 公司研制的平面正交光栅(GGET),既可以检测圆轨迹又可以检测直线轨迹或不规则的异形平面运动。
Wei Gao等用光电自准直仪检测主轴偏角的误差,用电容位移测头测出了主轴的轴向跳动误差,用直尺和电容位移测头结合检测出了导轨的直线度误差。
用于直线运动轨迹检测的仪器,目前比较常用的有双频激光干涉仪和激光跟踪仪。
上海交通大学与美国光动公司合作,基于激光多普勒位移测量仪提出了一种沿体对角的机床空间几何误差的激光矢量测量方法,通过分步测量机床工作空间的4条体角线,并结合空间误差综合模型快速分离机床的19项误差。
该方法通过添加3个面上的6条对角线,可以实现分离出机床的21项几何误差。
根据国际生产工程协会(CIRP)的预测,至2012年,30%-50%的新机床将配备定位误差、直线度和各种转向误差的补偿功能。
随着数控机床使用数量的增加,在使用过程中如何对数控机床精度进行再标定及误差溯源,调整机床以排除故障或对其进行误差补偿,并定期地对数控机床误差进行检测和补偿的需求也会增加。
提高机床精度的关键步骤是误差检测,因此快速高效的误差检测方法也成为研究的重点,同时随着多轴数控机床的广泛应用,研究的对象也逐渐向多轴机床转移。
3五轴数控机床的传统精度检测方法五轴机床一般是比三轴机床多两个旋转轴。
首先,要对三个直线轴进行检测;其次,是针对两个旋转轴的检测;最后,要对五轴联动性能进行检测。
主要包括两个:(1)三个直线轴的检测方法和三轴铳床一样,所以这里不做叙述。
(2)两个旋转轴的检测因为旋转轴的各项精度对五轴加工精度的影响远远大于三个直线轴精度的影响,所以对五轴机床的检测重点是两个旋转轴的精度。
旋转轴的精度包括两个方面:一方面是旋转轴运动的精度,主要要检测每个旋转轴的重复定位精度;另一方面是两个旋转轴相互之间的关系,主要检测两个旋转轴轴线和主轴轴线之间空间几何关系是否正确。
4.1测量旋转轴的重复定位精度方法和直线轴测量方法类似:对于转台类型的旋转轴,在转台上固定一个方块,用千分表接触方块的表面,旋转转台一定角度,再反向旋转转台同样多角度,回到原位,观察两次表针接触方块表面时的表读数是否一致,误差多少(如图1);对于摆头类型的旋转轴,在主轴上装上检测用芯棒,用千分表指针接触芯棒来检测(如图2)。
图1测量转台的重复定位精度图2测量摆头的重复定位精度4.2测定两个旋转轴和主轴之间的空间几何关系这项需要按照五轴铳床的类型分为三种情况:(1)双转台结构的五轴铳床图3为一个双转台结构的示意图, 在图中标出了两个旋转轴的轴线,这两根轴线应该如 图中那样相交于一点。
如果这两个旋转轴的轴线不相交,则要测定出两个轴线的偏心距离。
图3双转台结构示意图 」 定方法如下:先彳厂C 轴转台校正,使 C 轴转台平行于XY 平面(方法略);再如图 4所示,分别旋转 B 轴+90。
和-90。
,测量两个方位下 B 轴转台侧面最高点的高度差。
如果高差为零,则双转台的空间几何关系符合理想情况,如果高差不为零,则 B 、C 轴的偏心量 为此高差的二分之一?台最高点J ]转台最高点’图4双转台轴线偏心量测定(2 )转台和单摆头结构的五轴铳床图5为单摆头结构的示意图, 图中标出了 B 轴的轴线和主轴的轴线, 这两个轴线应该相交于一点,如果它们不相交,需要测定出它们的距离,即主轴和摆动轴 B 轴的偏心量。
测定方法如下:先在主轴上装上检测用芯棒,校正 B 轴,使芯棒(主轴轴线)垂直于XY 平面(方法略);再如图 6中所示,分别旋转 B 轴+90°和-90。
,测量两个方位下芯棒 侧面最低点的高差。
如果高差为零,则摆头和主轴间的空间几何关系符合理想情况,如果高差不为零,则主轴和 B 轴的偏心量为此高差的二分之一。
图6摆头和主轴偏心量测定 (3 )双摆头结构的五轴铳床图7为双摆头结构示意图,图中标出了主轴轴线、B 轴轴线和C 轴轴线。
理想情况下, 主轴轴线和C 轴轴线应该重合,B 轴轴线和它们相交。
如果这三个轴线不符合这种理想情况, 需要测定出它们之间的偏心量。
图7双摆头结构示意图首先,测定B 轴和主轴的偏心量,方法和单摆头铳床的测定方法一样。
B 轴轴线C 轴轴线然后,测定C轴和主轴的偏心量,方法如下:如图8左边所示,在工作台上固定一个标准圆柱型,将千分表表座固定在C轴上,表针接触圆柱形侧面,调整机床XY轴的位置,使得C轴旋转时千分表读数不变,这样C轴轴线就和圆柱形的中心重合了,将这个位置机床的X、Y坐标值记录下来;如图8右边所示,先转动B轴,使主轴轴线垂直于工作台(XY平面),再在主轴上装上检棒,将表座固定在检棒上(主轴上),表针接触圆柱形侧面,调整机床XY轴的位置,使得检棒旋转时千分表读数不变,这样主轴轴线就和圆柱形中心重合了,将这时机床的X、Y坐标值同刚刚记录下来的坐标值比较,差值就是C轴轴线和主轴轴线的X、Y偏心量。
图8双摆头铳床C轴和主轴偏心测定综上所述,双转台铳床的B轴、C轴是结合为一体的双转台,要测定出B、C轴的偏心量;转台和单摆头铳床的B轴和主轴结合为一体,要测定出B轴和主轴的偏心量;双摆头铳床的B轴、C轴和主轴是结合为一体的双摆头,需要测定出B轴和主轴、C轴和主轴的偏心量。
三五轴联动性能的检测五轴联动性能的检测不需要按照五轴铳床的类型来分类。
五轴联动性能的检测的目的有两个:一是检测对五轴铳床几个轴之间空间几何关系测定的准确性,二是检测机床数控系统对五轴空间几何关系的补偿功能。
五轴联动性能的检测不能通过直接测量来检测,而是通过加工一些标准形状,再测量加工出形状的误差来检测的:(一)直线在一个平面上加工一条直线,加工时要求刀轴连续变化,图9中所示就是一种5轴加工直线的刀路,可以尝试用多种刀轴控制方法来加工。
加工用材料可以选择较易加工的非金属材料或者有色金属,刀具用球刀。
加工好以后,观察直线是否弯曲,如果明显弯曲,则需要重新检测机床各项精度,特别是重新测定两旋转轴和主轴间的偏心关系是否正确。
图9变刀轴加工直线刀路(二)平面用球刀精加工一个平面,将这个平面分为多段,分别用数个不同角度的固定刀轴和连续变化的刀轴来加工,图10中所示为这些加工刀路。