数控机床精度及性能检验
数控机床的精度检测与调整方法

数控机床的精度检测与调整方法数控机床是现代制造业中不可或缺的一种设备,它的精度对于产品的质量和性能起着至关重要的作用。
本文将介绍数控机床的精度检测与调整方法,帮助读者更好地了解和应用这些技术。
一、精度检测方法1. 几何误差检测几何误差是数控机床精度的重要指标,包括直线度、平行度、垂直度、圆度等。
常用的几何误差检测方法有激光干涉仪、三坐标测量仪等。
通过这些设备,可以精确测量机床各个轴向的几何误差,并得出相应的数据。
2. 理论切削路径与实际切削路径对比在数控机床的加工过程中,理论切削路径与实际切削路径之间可能存在偏差。
通过对比理论切削路径与实际切削路径,可以判断数控机床的精度是否达标。
常用的方法是使用光学测量仪器,对切削路径进行高精度的测量和分析。
二、精度调整方法1. 机床结构调整数控机床的结构调整是提高其精度的重要手段。
首先,需要检查机床各个部件的紧固情况,确保机床的刚性和稳定性。
其次,根据几何误差的检测结果,对机床的导轨、滑块等部件进行调整,以减小误差。
2. 控制系统调整数控机床的控制系统对于其加工精度起着至关重要的作用。
通过调整控制系统的参数,可以改善机床的运动精度和定位精度。
常用的调整方法包括增加控制系统的采样频率、优化控制算法等。
3. 刀具与工件的匹配调整刀具与工件的匹配对于加工精度有很大影响。
在数控机床的加工过程中,需要根据工件的要求选择合适的刀具,并对刀具进行调整和校准。
同时,还需要对工件进行检测,确保其尺寸和形状与设计要求一致。
三、精度检测与调整的重要性数控机床的精度检测与调整是保证产品质量和性能的关键环节。
只有通过科学的检测方法,准确地了解机床的精度情况,才能及时采取相应的调整措施,提高机床的加工精度。
这对于提高生产效率、降低成本、提升产品竞争力具有重要意义。
四、未来发展趋势随着制造业的不断发展,数控机床的精度要求也越来越高。
未来,数控机床的精度检测与调整方法将更加精细化和智能化。
数控卧式车床精度检验标准

数控卧式车床精度检验标准数控卧式车床是一种广泛应用于机械加工领域的设备,其加工精度直接影响到工件的质量和加工效率。
因此,对数控卧式车床的精度进行检验是非常重要的。
本文将介绍数控卧式车床精度检验的标准和方法,以便相关人员能够准确、全面地进行检验工作。
一、外观检验。
1. 数控卧式车床的外观应该整洁、无明显损伤和变形。
2. 床身、床板、滑架等零部件的连接应该紧固,无松动现象。
3. 各操作手柄、按钮应灵活、方便,无卡滞。
二、尺寸精度检验。
1. 对数控卧式车床的加工尺寸进行测量,与设计图纸进行对比,检验其尺寸精度是否符合要求。
2. 测量工件的圆度、圆柱度、平面度等尺寸精度指标,确保其在允许范围内。
三、定位精度检验。
1. 进行数控卧式车床的定位精度检验,包括工件的定位精度、夹具的定位精度等。
2. 检验数控卧式车床在进行定位加工时,工件的位置是否准确,夹具的夹持是否牢固。
四、运动精度检验。
1. 对数控卧式车床的各轴运动进行检验,包括X、Y、Z轴的定位精度、重复定位精度等。
2. 检验数控卧式车床在运动过程中,各轴的运动是否平稳、无抖动,定位精度是否稳定。
五、加工精度检验。
1. 进行数控卧式车床的加工精度检验,包括工件的表面粗糙度、加工尺寸偏差等。
2. 检验数控卧式车床在加工过程中,工件的表面质量是否达到要求,加工尺寸是否准确。
六、维护保养。
1. 对数控卧式车床的润滑系统、冷却系统等进行检查,确保其正常运转。
2. 定期清洁数控卧式车床的各部件,及时更换磨损的零部件,延长设备的使用寿命。
总结:数控卧式车床的精度检验是确保设备正常运行和加工质量的重要环节,只有通过严格的检验,才能保证数控卧式车床的稳定性和可靠性。
因此,相关人员在进行精度检验时,应严格按照标准和方法进行,确保检验结果的准确性和可靠性。
同时,定期维护保养数控卧式车床,也是保证其精度的重要措施,只有保持设备的良好状态,才能保证其精度和加工质量。
数控机床精度检验内容

数控机床精度检验内容数控机床是一种高精度、高效率的加工设备,其精度直接影响着加工零件的质量和精度。
因此,对数控机床的精度进行检验是非常重要的。
下面将介绍数控机床精度检验的内容。
首先,数控机床的精度检验包括几个方面,几何精度、运动精度和位置精度。
几何精度是指机床各轴线的几何误差,包括直线度、平行度、垂直度等;运动精度是指机床在运动过程中的动态精度,包括加工速度、加速度、减速度等;位置精度是指机床在停止状态下的定位精度,包括定位误差、重复定位精度等。
这些精度指标直接影响着数控机床加工零件的精度和表面质量。
其次,数控机床精度检验的方法主要包括几种,静态检验、动态检验和综合检验。
静态检验是指在机床停止状态下对各轴线的几何精度进行检测,可以通过测量仪器进行测量,如千分尺、角尺等;动态检验是指在机床运动状态下对运动精度进行检测,可以通过加工模拟零件进行加工,然后进行测量分析;综合检验是指将静态检验和动态检验相结合,对机床的整体精度进行评估。
另外,数控机床精度检验的标准主要包括国家标准和行业标准。
国家标准是指由国家相关部门颁布的针对数控机床精度的检验标准,如GB/T19001-2008《数控机床检验标准》等;行业标准是指由行业协会或企业制定的针对特定类型数控机床的检验标准,如《数控车床精度检验标准》等。
在进行数控机床精度检验时,需要严格按照相关标准进行检验,以确保检验结果的准确性和可靠性。
最后,数控机床精度检验的意义在于保证机床加工零件的精度和质量,提高加工效率和加工精度,降低加工成本,提高产品的竞争力。
通过定期对数控机床进行精度检验,可以及时发现机床的精度问题,进行调整和维护,确保机床的稳定性和可靠性,延长机床的使用寿命。
综上所述,数控机床精度检验内容包括几何精度、运动精度和位置精度,检验方法包括静态检验、动态检验和综合检验,检验标准包括国家标准和行业标准。
通过精度检验可以保证机床的加工精度和质量,提高产品的竞争力,具有重要的意义和价值。
数控机床动态性能测试与评估

数控机床动态性能测试与评估数控机床是现代制造业中的重要设备,其动态性能的好坏直接影响到工件加工的精度和质量。
为了确保数控机床在工作过程中的稳定性和准确性,必须对其动态性能进行测试与评估。
本文将介绍数控机床动态性能测试的方法和评估的相关指标,以期提供参考和指导。
一、测试方法数控机床的动态性能测试主要包括加速度测试、速度测试和定位精度测试三个方面。
下面将详细介绍这三个测试方法。
1. 加速度测试加速度测试旨在评估数控机床在快速启停过程中的稳定性能。
测试时,通过设置不同的加速度值,使数控机床在规定时间内加速至最高速度,然后再减速停下来。
通过测量加速度过程中的振动情况和减速停顿过程中的位置误差,可以评估机床的加速度性能。
2. 速度测试速度测试是评估数控机床在运行过程中的速度变化和稳定性能。
测试时,通过设置不同的速度值,使机床在规定的时间内运行一段距离。
通过测量运行过程中的位置误差和速度波动情况,可以评估机床的速度性能。
3. 定位精度测试定位精度测试是评估数控机床在停下来后,重新启动时的位置回归能力。
测试时,通过将机床移动至一个位置,然后停下来,再重新启动,通过测量重新启动后的位置与目标位置之间的偏差,可以评估机床的定位精度。
二、评估指标数控机床的动态性能评估需要考虑多个指标,下面将介绍几个常用的评估指标。
1. 加速度度量指标加速度的度量指标主要包括最大加速度、平均加速度和加速度时间。
最大加速度表示在加速过程中达到的最高加速度值,平均加速度表示加速过程中的平均加速度大小,加速度时间表示加速过程所需的时间长度。
2. 速度度量指标速度的度量指标主要包括最大速度、平均速度和速度波动。
最大速度表示运行过程中达到的最高速度值,平均速度表示运行过程中的平均速度大小,速度波动表示速度变化的波动情况,波动越小表示机床的速度稳定性越好。
3. 定位精度度量指标定位精度的度量指标主要包括位置误差和重复定位精度。
位置误差表示机床在停下来后重新启动时与目标位置之间的偏差大小,重复定位精度表示机床在多次停下来后重新启动时的位置回归能力。
数控机床的精度检测方法与标准

数控机床的精度检测方法与标准数控机床是一种高精度的机床设备,广泛应用于制造业的各个领域。
为了确保数控机床的工作精度,需要进行精度检测。
本文将介绍数控机床的精度检测方法和标准,为读者提供参考。
一、数控机床精度检测方法1. 几何精度检测几何精度是指数控机床在工作过程中,工件表面形状、位置、尺寸等与理论位置之间的差异。
常用的几何精度检测方法包括:平行度检测、垂直度检测、直线度检测等。
这些检测方法可以通过使用测量仪器(例如投影仪、三坐标测量机等)进行测量和比较,以确定数控机床是否满足工作要求。
2. 运动精度检测运动精度是指数控机床在运动中达到的位置是否准确。
常用的运动精度检测方法包括:位置误差检测、重复定位精度检测、速度误差检测等。
这些检测方法可以通过使用激光干涉仪、激光漂测仪等测量设备进行测量,以确定数控机床的运动精度是否符合要求。
3. 刚度检测刚度是指数控机床在受力时的变形情况。
常用的刚度检测方法包括:静刚度检测、动刚度检测等。
静刚度可以通过在数控机床各个部位施加力并测量其变形情况来进行检测;动刚度可以通过在数控机床运动状态下进行控制并测量位移来进行检测。
二、数控机床精度检测标准为了统一数控机床的精度检测标准,国内外制定了相应的标准,其中最有代表性的是国家标准GB/T16857-1997《数控机床精度检验方法》。
该标准规定了数控机床的几何精度、运动精度和刚度等指标的检测方法和要求。
以几何精度为例,该标准包括对工件表面形状、位置、尺寸等几何误差的检测,在该标准中,提供了一系列的测量方法,包括投影法、三坐标法、机床内检测法等。
此外,该标准还规定了几何误差的允许值,即数控机床在工作过程中允许存在的误差范围。
除了国家标准,国际标准也对数控机床的精度检测进行了规范,例如ISO 230-1和ISO 230-2等,这些标准主要用于指导和规范制造商以及使用单位在数控机床精度检测方面的操作。
近年来,随着数控机床技术的不断发展,对精度的要求也越来越高。
数控机床的精度与重复定位精度检测方法

数控机床的精度与重复定位精度检测方法数控机床是现代制造业中不可或缺的设备之一,它的精度和重复定位精度对产品的质量和生产效率有着重要的影响。
本文将探讨数控机床的精度以及重复定位精度的检测方法。
一、数控机床的精度数控机床的精度是指其加工零件的尺寸和形状与设计要求的偏差程度。
数控机床的精度受到多种因素的影响,包括机床本身的结构和性能、刀具的质量、工件的材料等。
为了确保数控机床的精度,需要进行精度检测。
二、数控机床精度检测方法1. 几何误差检测几何误差是指数控机床在加工过程中由于机械结构和运动控制系统等方面的因素引起的误差。
常见的几何误差包括直线度误差、平行度误差、垂直度误差等。
几何误差可以通过使用激光干涉仪、三坐标测量仪等设备进行检测。
2. 重复定位精度检测重复定位精度是指数控机床在多次运动后,回到同一位置的精度。
重复定位精度的检测可以通过在机床上固定一个测量工具,然后多次运动并记录每次运动后测量工具的位置,最后计算其偏差值来进行。
3. 理论精度与实际精度对比理论精度是指数控机床在设计和制造过程中所规定的精度要求,而实际精度是指机床在使用过程中的实际精度水平。
通过对理论精度与实际精度进行对比,可以评估机床的性能和加工质量。
4. 环境因素对精度的影响环境因素如温度、湿度等也会对数控机床的精度产生影响。
因此,在进行精度检测时,需要对环境因素进行控制,并进行相应的修正。
5. 精度检测的标准与要求精度检测需要根据不同的机床类型和加工要求制定相应的标准和要求。
这些标准和要求可以包括尺寸偏差、形状偏差、位置偏差等内容,以确保机床的加工质量和性能。
总结:数控机床的精度和重复定位精度对于产品的质量和生产效率至关重要。
通过几何误差检测、重复定位精度检测、理论精度与实际精度对比以及环境因素的控制,可以评估和提高数控机床的精度。
精度检测的标准和要求也是确保机床性能和加工质量的重要保证。
在实际生产中,我们应该重视数控机床的精度检测,以提高产品质量和生产效率。
数控车床检验标准

一.写出CAK6140数控车床检验标准1.机床外观的检查机床外观的检查一般可按通用机床的有关标准进行,但数控机床是高技术设备,其外观质量的要求更高。
外观检查内容有:机床有无破损;外部部件是否坚固;机床各部分联结是否可靠;数控柜中的MDI/CRT单元、位置显示单元、各印制电路板及伺服系统各部件是否有破损,伺服电动机(尤其是带脉冲编码器的伺服电机)外壳有无磕碰痕迹。
2.机床几何精度的检查数控机床的几何精度综合反映机床的关键零部件组装后的几何形状误差。
数控机床的几何精度检查和普通机床的几何精度检查基本类似,使用的检查工具和方法也很相似只是检查要求更高。
每项几何精度的具体检测办法和精度标准按有关检测条件和检测标准的规定进行。
同时要注意检测工具的精度等级必须比所测的几何精度要高一级。
现以一台普通立式加工中心为例,列出其几何精度检测的内容:1)工作台面的平面度。
2)各坐标方向移动的相互垂直度。
3)X坐标方向移动时工作台面的平行度。
4)Y坐标方向移动时工作服台面的平行度。
5)X坐标方向移动时工作台T形槽侧面的平行度。
6)主轴的轴向窜动。
7)主轴孔的径向圆跳动。
8)主轴沿Z坐标方向移动时主轴轴心线的平行度。
9)主轴回转轴心线对工作台面的垂直度。
10)主轴箱在Z坐标方向移动的直线度。
对于主轴相互联系的几何精度项目,必须综合调整,使之都符合允许的误差。
如立式加工中心的轴和轴方向移动的垂直误差较大,则可以调整立柱底部床身的支承垫铁,使立柱适当前倾或后仰,以减少这项误差。
但是这也会改变主轴回转轴心线对工作台面的垂直度误差,因此必须同时检测和调整,否则就会由于这一项几何精度的调整造成另一项几何精度不合格。
机床几何精度检测必须在地基及地脚螺栓的混凝土完全固化以后进行。
考虑到地基的稳定时间过程,一般要求在机床使用数月到半年以后再精调一次水平。
检测机床几何精度常用的检测工具有:精密水平仪、900角尺、精密方箱、平尺、平行光管、千分表或测微仪以及高精度主轴心棒等。
数控车床工作精度验证

工件图
允差
尺寸 ﹤100 ﹤150 ﹤250 ﹤350 ﹤500
﹤750
范围1 0.008 0.010 0.015 — — — 0.010 0.003
范围2 — — — 0.020 0.025 0.035 0.020 0.005
谢谢观看/欢迎下载
BY FAITH I MEAN A VISION OF GOOD ONE CHERISHES AND THE ENTHUSIASM THAT PUSHES ONE TO SEEK ITS FULFILLMENT REGARDLESS OF OBSTACLES. BY FAITH I BY FAITH
轮廓的偏差检验方式
• 在数字控制下用一把单刃车刀车削试件的 轮廓。
工件图
• 所示的尺寸只适应于范围2:最大为 500。
• 对于范围1:最大为250机床的尺寸可 以由制造厂按比例缩小。
允差
• 范围1:最大为250的情况:0.030 • 范围2:最大为500的情况:0.045
基准半径的轮廓变化、直径的尺寸、 圆度误差检验方式
机床工作精度验证意义
• 数控机床完成以上的检验和调试后,实际 上已经基本完成独立各项指标的相关检验, 但是也并没有完全充分的体现出机床整体 的、在实际加工条件下的综合性能,而且 用户往往也非常关心整体的综合的性能指 标。所以还要完成工作精度的检验,以下 分别介绍数控车床的相关工作精度检验。
• 对于数控车床,根据GB/T 16462----1996 《数控卧式车床 精度检验》国家标准进行
工件图
范围1:最大为250 范围2:最大为500 Dmin=0.3L
允差
• 范围1:最大为250的情况:
– 圆度:0.003 – 切削加工直径的一致性:300长度上为0.020
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控机床精度及性能检验数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。
另一方而,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。
因此,数控机床精度和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。
一、精度检验一台数控机床的检测验收工作,是一项工作量大而复杂,试验和检测技术要求高的工作。
它要用各种检测仪器和手段对机床的机、电、液、气各部分及整机进行综合性能及单项性能的检测,最后得出对该数控机床的综合评价。
这项工作为数控机床今后稳定可靠地运行打下一定的基础,可以将某些隐患消除在考机和验收阶段中,因此,这项工作必须认真、仔细,并将符合要求的技术数据整理归档,作为今后设备维护、故障诊断及维修中恢复技术指标的依据。
1、几何精度检验几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。
数控机床的几何精度的检验工具和检验方法类似于普通机床,但检测要求更高。
几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。
考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度:在几何精度检测时应注意测量方法及测量工具应用不当所引起的误差。
在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴故个等的转速运转十多分钟后进行。
常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。
检测工具的精度必须比所测的几何精度高一个等级。
(一)卧式加工中心几何精度检验1)x 、y 、z 坐标轴的相互垂直度。
2)工作台面的平行度。
3)x 、Z 轴移动时工作台面的平行度。
4)主轴回转轴线对工作台面的平行度。
5)主轴在Z 轴方向移动的直线度:6)x 轴移动时工作台边界与定位基准面的平行度。
7)主轴轴向及孔径跳动。
8)回转工作台精度。
具体的检测项目及方法见表2—1。
(二)卧式数控车床几何精度检验斜床身、带转盘刀架的卧式数控车床,其几何精度检验见表2—2。
2、定位精度的检验数控机床的定位精度是测量机床各坐标轴在数控系统控制下所能达到的位置精度。
根据实测的定位精度数值,可判断零件加工后能达到的精度。
1.直线运动定位精度这项检测一般在空载条件下进行,对所测的每个坐标轴在全行程内,视机床规格,分每20mm 、50mm 或100mm 间距正向和反向快速移动定位,在每个位置上测出实际移动距离和理论移动距离之差。
先进的检测仪器有双频激光干涉仪,用它快速进行五次以上的测量,由处理装置进行计算打印,绘出带±3σ的误差曲线。
在该曲线上得出正、反向定位时的平均位置偏差j X 、标准偏差j S ,则位置偏差max min (3)(3)j j j j A X S X S =+--。
2.直线运动重复定位精度重复定位精度是反映轴运动稳定性的一个基本指标。
机床运动精度的稳定性决定着加工零件质量的稳定性和误差的一致性。
直线运动重复定位精度的测量可选择行程的中间和两端任意三个点作为目标位置,从正向和反向进行五次定位,测量出实际位置与目标位置之差。
如各测量点标准偏差最大值为max j S ,则直线运动重复定位精度为max 6j R S =。
3.直线运动的原点复归精度数控机床每个坐标轴都要有精确的定位起点,此点即为坐标轴的原点或参考点。
为提高原点返回精度,各种数控机床对坐标轴原点复回采取了一系列措施,如降速、参考点偏移量补偿等。
同时,每次关机之后,重新开机的原点位置精度要求一致。
因此,坐标原点的位置精度必然比行程中其他定位点精度要高。
对每个直线运动轴、从七个不同位置进行原点复归,测量出其停止位置的数值,以测定性与理论值的最大差值为原点复归精度。
4.直线运动失动量坐标轴直线运动的失动量,又称直线运动反向差,是该轴进给传动链上的驱动元件反向死区,以及各机械传动副的反向间隙和弹性变形等误差的综合反映,测量方法与直线运动重复定位精度的测量方法相似。
如正向平均位置偏差为j X ↑,反向平均位置偏差为j X ↓,则反向偏差max()j j B X X =↑-↓。
这个误差越大,定位精度与重复定位精度就越低。
一般情况下,失动量是由于进给传动链刚性不足,滚珠丝杠顶紧力不够,导执副过紧或松动等原因造成的。
要根本解决这个问题,只有修理和调整有关元部件。
数控系统都有失动量补偿的功能(一般称反向间隙补偿),最大能补偿0.20—0.30mm 的失动量,但这种补偿要在全行程区域内失动量均匀的情况下,才能取得较好效果。
就一台数控机床的各个坐标轴而言,软件补偿值越大,表明该坐标轴上影响定位误差的随机因素越多、则该机床的综合定位精度不会太高。
5.回转工作台的定位精度以工作台某一角度为基准,然后向同一方向快速转动工作台,每隔30度锁紧定位,选用标准转台、角度多面体、圆光栅及平行光管等测量工具进行侧量,正向转动和反向转动各测量一周。
各定位位置的实际转角与理论值(指令值)之差的最大值即为分度误差。
如工作台为数控回转工作台,则应以每30度为一个目标位置,再对每个目标位置正、反转进行快速定位五次。
如平均位置偏差为j Q ,标准偏差为j S ,则数控回转工作台的定位精度误差为:max min (3)(3)j j j j A Q S Q S =+++。
6.回转工作台的重复分度精度测量方法是在回转工作台的一周内任选三个位置正、反转重复定位三次,实测值与理论值之差的最大值为重复分度精度。
对数控回转工作台,以每30度取一个测量点作为目标位置正、反转进行五次快速定位。
如各测量点标准偏差最大值max j S ,则重复定位精度为max 6j R S =。
7.数控回转工作台的失动量数控回转工作台的失动量,又称数控回转工作台的反向差,测量方法与回转工作台的定位精度测量方法一样。
如正向位置平均偏差为j Q ↑,反向位置平均偏差为j Q ↓,则反向偏差max ()j j B Q Q =↑-↓。
8.回转工作台的原点复归精度回转工作台原点复归的作用同直线运动原点复归的作用一样。
复归时,从七个任意位置分别进行一次原点复归,测定其停止位置的数值,以测定值与理论值的最大差值为原点复归精度。
3、切削精度检验数控机床切削精度检验,又称动态精度检验,是在切削加工条件下,对机床几何精度和定位精度的一项综合考核。
切削精度检验可分单项加工精度检验和加工一个标准的综合性试件精度检验两种。
(一)加工中心切削精度表2—3为加工中心切削精度检验内容。
1.镗孔精度试件上的孔先粗镗一次,然后按单边余量小于0.2mm 进行一次精镗,检测孔全长上各截面的圆度、圆柱度和表面粗糙度。
这项指示主要用来考核机床主轴的运动精度及低速走刀时的平稳性。
2.镗孔的同轴度利用转台180度分度,在对边各镗一个孔,检验两孔的同轴度,这项指标主要用来考核转台的分度精度及主轴对加工平面的垂直度。
3.镗孔的孔距精度和孔径分散度孔距精度反映了机床的定位精度及失动量在工件上的影响。
孔径分散度直接受到精镗刀头材质的影响,为此,精镗刀头必须保证在加工100个孔以后的磨损量小于0.01mm ,用这样的刀头加工,其切削数据才能真实反映出机床的加工精度。
4.直线铣削精度使x 轴和y 轴分别进给,用上铣刀侧刃精铣工件周边。
该精度主要考核机床x 向和y 向导轨运动几何精度。
5.斜线铣削精度用G01控制x 和Y 轴联动,用立铣刀侧刃情铣工件周边。
该项精度主要考核机床的X 、Y 轴直线差补的运动品质,当两轴的盲线插补功能或两轨伺服特性不一致时,便会使直线度、对边平行度等精度超差,有时即使几项精度不超差、但在加工面上出现根有规律的条纹,这种条纹存两直角边上呈现一边密,一边稀的状态,这是出于两轴联动时,其中某一轴进给速度不均匀造成的。
6.圆弧铣削精度用立铣刀侧刃精铣外圆表面,要求铣刀从外圆切向进刀,切向出刀,铣圆过程连续不中断。
测量圆试件时,常发现图2—1a 所示的两半圆错位的图形,这种情况一般都是由一坐标方向或两坐标方向的反向失动量引起的;出现斜椭圆,如图2—1b 所示,是由于两坐标的实际系统增益不一致造成的,尽管在控制系统上两坐标系统增益设置成完全一样,但由于机械部分结构、装配质量和负载情况等不同,也会造成实际系统增益的差异;出现圆周上锯齿形条纹,如图2—lc 所示,其原因与铣斜四方时出现条纹的原因类似。
7.过载重切削在切削负荷大于主轴功率120%一150%的情况下,机床应不变形,主轴运转正常。
要保证切削精度,就必须要求机床的定位精度和几何精度的实际误差要比允差小。
例如一台中小型加工中心的直线运动定位允差为±0.01/300mm、重复定位允差±0.007mm、失动量允差0.015mm,但镗孔的孔距精度要求为0.02/200mm。
不考虑加工误差,在该坐标定位时,若在满足定位允差的条件下,只算失动量允差加重复定位允差(0.015mm+0.014mm=0.029mm,即已大于孔距允差0.02mm。
所以,机床的几何精度和定位精度合格,切削精度不一定合格。
只有定位精度和重复定位精度的实际误差小于允差,才能保证切削精度的合格。
(二)数控卧式车床的车削精度对于数控卧式车床,单项加工精度有:外因车削、端面车削和螺纹切削。
1.外圆车削外圆车削试件如图2—2所示。
试件材料为45钢,切削速度100—150mm/min,背吃刀量0.1—0.15mm,进给量小于或等于0.1mm/r,刀片材料Yw3涂层刀具。
试件长度取床身上最大车削直径的1/2,或最大车削长度的1/3,最长为500mm,直径大于或等于长度的1/4。
精车后圆度小于0.007mm,直径的一致性在200mm测量长度上小于0.03mm(机床加工直径小于或等于800mm时)。
2.端面车削精车端面的试件如图2—3所示。
图2—3 端面车削试件试件材料为灰铸铁,切削速度100m/min,背吃刀量0.1一0.15mm,进给量小于或等于0.1mm/r,刀片材料为Yw3涂层刀具,试件外圆直径最小为最大加工直径的1/2。
精车后检验其平面度,300mm直径上为0.02mm,只允许凹。
3.螺纹切削精车螺纹试验的试件如图2—4所示。
图2--4 螺纹切削试件螺纹长度要大于或等于2倍工件直径,但不得小于75mm,一般取80mm。
螺纹直径接近Z轴丝杠的直径,螺距不超过Z轴丝杠螺距之半,可以使用顶尖。
精车60度螺纹后,在任意60mm测量长度上螺距累积误差的允差为0.02mm。
4.综合试件切削综合车削试件如图2—5所示。
材料为45钢,有轴类和机类零件,加工对象为阶台、圆锥、凸球、凹球、倒角及割槽等内容,检验项目有因度、直径尺寸精度及长度尺寸精度等。