2019年广州二模理科数学试题及答案WORD
(完整word版)2019广东省广州市二模数学理科word精校版

2019年广州市普通高中毕业班综合测试(二)数学(理科)试卷 第Ⅰ卷(选择题共60分)一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.在答题卷上相应题目的答题区域内作答.1.已知复数)2()3(i i m z +-+=在复平面内对应的点在第三象限,则实数m 的取值范围是( )A .)1,(-∞B .)32,(-∞C .)1,32(D .),1()32,(+∞-∞2.己知集合}0181|{<--=x x A ,则=A C R ( ) A .2|{<x x 或}6≥xB .2|{≤x x 或}6≥xC .2|{<x x 或}10≥xD .2|{≤x x 或}10≥x3.某公司生产C B A ,,三种不同型号的轿车,产量之比依次为4:3:2,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n 的样本,若样本中A 种型号的轿车比B 种型号的轿车少8辆,则=n ( )A .96B .72C .48D .364.执行如图所示的程序框图,则输出z 的值是( )A .21B .22C .23D .245.己知点A 与点)2,1(B 关于直线03=++y x 对称,则点A 的坐标为( )A .)4,3(B .)5,4(C .)3,4(--D .)4,5(--6.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为ξ,则数学期望=ξE ( )A .54 B .1 C .57 D .27.已知51cos sin =+αα,其中),2(ππα∈,则( ) A .724-B .34-C .247 D .724 8.过双曲线)0,0(12222>>=-b a b y a x 的左焦点F 作圆9222a y x =+的切线,切点为E ,延长FE 交双曲线右交于点P ,若FE PF 2=,则双曲线的离心率为( )A .317 B .617 C .510 D .210 9.若曲线2223+-=x x y 在点A 处的切线方程为64-=x y ,且点A 在直线01=-+ny mx (其中0,0>>n m )上,则nm 21+的最小值为( ) A .24B .223+C .246+D .2810.函数)||,0)(sin(2)(πϕωϕω<>+=x x f 的部分图像如图所示,先把函数)(x f y =图像上各点的横坐标缩短到原来的21倍,纵坐标不变,再把得到的图像向右平移4π个单位长度,得到函数)(x g y =的图像,则函数)(x g y =的图像的一条对称轴为( )A .43π=x B .4π=x C .4π-=x D .43π-=x 11.已知点P 在直线012=-+y x 上,点Q 在直线032=++y x 上,PQ 的中点为),(00y x M ,且7100≤-≤x y ,则x y 的取值范围为( ) A .]512,2[B .]0,52[-C .]41,165[-D .]52,2[-12.若点)0,(t A 与曲线x e y =上点P 的距离的最小值为32,则实数t 的值为( )A .32ln 4-B .22ln 4-C .33ln 3+D .23ln 3+第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.在答题卷上的相应题目的答题区域内作答. 13.若21,x e 是夹角为︒60的两个单位向量,向量212e e a +=,则=||a.14.若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是.15.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”如果把以上这段文字写成公式就是])2([41222222b c a c a S -+-=,其中c b a ,,是ABC ∆的内角C B A ,,的对边.若B A C cos sin 2sin =,且22,1,c b 成等差数列,则ABC ∆面积S 的最大值为.16.有一个底面半径为R ,轴截面为正三角形的圆锥纸盒,在该纸盒内放一个棱长均为a 的四面体,并且四面体在纸盒内可以任意转动,则a 的最大值为____.三、解答题:共70分.解答题应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分.17.己知}{n a 是递增的等比数列,432=+a a ,341=a a . (1)求数列}{n a 的通项公式;(2)令n n na b =,求数列}{n b 的前n 项和n S .18.科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:根据上表的数据得到如下的散点图.(1)根据上表中的样本数据及其散点图: (i )求x ;(ii )计算样本相关系数(精确到0.01),并刻画它们的相关程度.(2)若y 关于x 的线性回归方程为x b yˆ56.1ˆ+=,求b ˆ的值(精确到0。
2019年广东省广州市天河区高考数学二模试卷(理科)

2019年广东省广州市天河区高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知全集U =R ,M ={x |x <﹣1},N ={x |x (x +2)<0},则图中阴影部分表示的集合是( )A .{x |﹣1≤x <0}B .{x |﹣1<x <0}C .{x |﹣2<x <﹣1}D .{x |x <﹣1} 2.(5分)若复数z =m (m ﹣1)+(m ﹣1)i 是纯虚数,其中m 是实数,则=( )A .iB .﹣iC .2iD .﹣2i3.(5分)设等比数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .144B .81C .45D .634.(5分)设函数f (x )=cos (x +),则下列结论错误的是( ) A .f (x )的一个周期为2πB .y =f (x )的图象关于直线x =对称 C .f (x +)的一个零点为πD .f (x )在(,π)上单调递减 5.(5分)下列说法中,正确的是( )A .命题“若am 2<bm 2,则a <b ”的逆命题是真命题B .命题“∃x 0>0,x 02﹣x 0>0”的否定是:“∀x >0,x 2﹣x ≤0”C .命题p ∨q 为真命题,则命题p 和命题q 均为真命题D .已知x ∈R ,则“x >1”是“x >2”的充分不必要条件6.(5分)若函数f (x )、g (x )分别是定义在R 上的偶函数、奇函数,且满足2f (x )﹣g(x )=e x ,则( )A .f (﹣2)<f (﹣3)<g (﹣1)B .g (﹣1)<f (﹣3)<f (﹣2)C .f (﹣2)<g (﹣1)<f (﹣3)D .g (﹣1)<f (﹣2)<f (﹣3) 7.(5分)在△ABC 中,||=||,||=||=3,则=( )A.3 B.﹣3 C. D.﹣8.(5分)安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则不同的安排方式共有( )A.360种 B.300种 C.150种 D.125种9.(5分)如图是一几何体的平面展开图,其中四边形ABCD为矩形,E,F分别为P A,PD 的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P AD.其中正确的结论个数为( )A.4个 B.3个 C.2个 D.1个10.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=3B,则的取值范围是( )A.(0,3) B.(1,3) C.(0,1] D.(1,2] 11.(5分)已知双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为e,过点F1的直线l与双曲线C的左、右两支分别交于A,B两点,若=0,且∠F1AF2=150°,则e2=( )A.7﹣2 B.7﹣ C.7 D.7 12.(5分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2,则f(x)的单调递增区间为( )A.(﹣∞,0) B.(﹣∞,1) C.(1,+∞) D.(0,+∞) 二、填空题(本大题共4小题,每小题5分,满分20分.)13.(5分)某城市为了了解游客人数的变化规律,提高旅游服务质量,收集并整理了2016年1月至2018年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确是 (填序号).①月接待游客量逐月增加;②年接待游客量逐年增加;③各年的月接待游客量髙峰期大致在7,8月份;④各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳. 14.(5分)已知抛物线C:y2=2px(p>0)的焦点为F,准线l与x轴的交点为A,M是抛物线C上的点,且MF⊥x轴.若以AF为直径的圆截直线AM所得的弦长为2,则p = .15.(5分)已知三棱锥D﹣ABC的体积为2,△ABC是等腰直角三角形,其斜边AC=2,且三棱锥D﹣ABC的外接球的球心O恰好是AD的中点,则球O的体积为 . 16.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,点O为△ABC外接圆的圆心,若a=,且c+2cos C=2b,=m+n,则m+n的最大值为 . 三、解答题,共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题,共60分.17.(12分)已知Sn 为数列{an}的前n项和,且a1<2,an>0,6Sn=an2+3an+2,n∈N*.(1)求数列{a n}的通项公式;(2)若对∀n∈N*,b n=(﹣1)n a n2,求数列{b n}的前2n项的和T2n.18.(12分)如图,已知等边△ABC中,E,F分别为AB,AC边的中点,M为EF的中点,N为BC边上一点,且CN=BC,将△AEF沿EF折到△A′EF的位置,使平面A′EF ⊥平面EFCB.(1)求证:平面A′MN⊥平面A′BF;(2)求二面角E﹣A′F﹣B的余弦值.19.(12分)已知抛物线y2=4x的焦点F与椭圆C:=1(a>b>0)的一个焦点重合,且点F关于直线y=x的对称点在椭圆上.(1)求椭圆C的标准方程;(2)过点Q(0,)且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M点的坐标,若不存在,说明理由.20.(12分)随着网络信息化的高速发展,越来越多的大中小企业选择做网络推广,为了适应时代的发展,某企业引进一种通讯系统,该系统根据部件组成不同,分为系统A和系统B,其中系统A由5个部件组成,系统B由3个部件组成,每个部件独立工作且能正如果构成系统的部件中至少有一半以上能正常运行,则则常运行的概率均为p(0<p<1),如果构成系统的部件中至少有一半以上能正常运行,称系统是“有效”的.(1)若系统A与系统B一样有效(总体有效概率相等),试求p的值;(2)若p=对于不能正常运行的部件,称为坏部件,在某一次检测中,企业对所有坏部件都要进行维修,系统A中每个坏部件的维修费用均为100元,系统B中第n个坏部件的维修费用y(单位:元)满足关系y=50n+150(n=1,2,3),记企业支付该通讯系统维修费用为X,求EX.21.(12分)已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e.(1)求a,b的值及函数f(x)的极值;(2)若m∈Z.且f(x)﹣m(x﹣1)>0对任意的x>1恒成立,求m的最大值. (二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos()=t(t∈R).(1)求曲线C1的普通方程及曲线C2的直角坐标方程;(2)若π≤α≤2π,当曲线C1与曲线C2有两个公共点时,求t的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|2x|+|2x+3|+m(m∈R).(1)当m=﹣2时,求不等式f(x)≤3的解集;(2)若∀x∈(﹣∞,0),都有f(x)≥x+恒成立,求m的取值范围.2019年广东省广州市天河区高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知全集U=R,M={x|x<﹣1},N={x|x(x+2)<0},则图中阴影部分表示的集合是( )A.{x|﹣1≤x<0} B.{x|﹣1<x<0} C.{x|﹣2<x<﹣1} D.{x|x<﹣1}【考点】1J:Venn图表达集合的关系及运算.【专题】37:集合思想;44:数形结合法;5J:集合.【分析】由图可得图中阴影部分为N∩(∁U M),求解一元二次不等式,再由交集与补集【解答】解:图中阴影部分为N∩(∁U M),的混合运算求解.∵M={x|x<﹣1},∴∁U M={x|x≥﹣1},又N={x|x(x+2)<0}={x|﹣2<x<0},∴N∩(∁U M)={x|﹣1≤x<0},故选:A.【点评】本题考查利用图示法表示集合的关系及其运算,考查一元二次不等式的解法,是基础题.2.(5分)若复数z=m(m﹣1)+(m﹣1)i是纯虚数,其中m是实数,则=( ) A.i B.﹣i C.2i D.﹣2i【考点】A5:复数的运算.【专题】11:计算题.【分析】由纯虚数的定义可得m=0,故=﹣,化简可得.【解答】解:复数z=m(m﹣1)+(m﹣1)i是纯虚数,故m(m﹣1)=0且(m﹣1)≠0,解得m=0,故z=﹣i,故=﹣=﹣=i.故选:A.【点评】本题考查复数的分类和复数的乘除运算,属基础题.3.(5分)设等比数列{an }的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=( )A.144 B.81 C.45 D.63【考点】89:等比数列的前n项和.【专题】11:计算题;35:转化思想;54:等差数列与等比数列.【分析】由等比数列的性质可得S3,S6﹣S3,S9﹣S6,…成等比数列,由已知数据易得答案.【解答】解:由等比数列的性质可得S3,S6﹣S3,S9﹣S6,…成等比数列,并设其公比为q,又由题意可得S3=9,S6﹣S3=36﹣9=27,∴q==3,∴a7+a8+a9=S9﹣S6=27×3=81.故选:B.【点评】本题考查等比数列的求和公式和性质,属基础题.4.(5分)设函数f(x)=cos(x+),则下列结论错误的是( )A.f(x)的一个周期为2πB.y=f(x)的图象关于直线x=对称C.f(x+)的一个零点为πD.f(x)在(,π)上单调递减【考点】H7:余弦函数的图象.【专题】11:计算题;35:转化思想;49:综合法;57:三角函数的图象与性质.【分析】利用余弦函数的周期性、对称性、单调性和诱导公式直接求解.【解答】解:由函数f(x)=cos(x+),知:在A中,由余弦函数的周期性得f(x)的一个周期为2π,故A正确;在B中,函数f(x)=cos(x+)的对称轴满足条件x+=kπ,即x=k,k∈Z,∴y =f (x )的图象关于直线x =对称,故B 正确; 在C 中,f (x +)=cos (x +)=﹣sin x ,﹣sin π=0,∴f (x +)的一个零点为π,故C 正确;在D 中,函数f (x )=cos (x +)在(,π)上单调先减后增,故D 错误. 故选:D .【点评】本题考查命题真假的判断,考查余弦函数的周期性、对称性、单调性和诱导公式等基础知识,考查运算求解能力,是基础题.5.(5分)下列说法中,正确的是( )A .命题“若am 2<bm 2,则a <b ”的逆命题是真命题B .命题“∃x 0>0,x 02﹣x 0>0”的否定是:“∀x >0,x 2﹣x ≤0”C .命题p ∨q 为真命题,则命题p 和命题q 均为真命题D .已知x ∈R ,则“x >1”是“x >2”的充分不必要条件【考点】2K :命题的真假判断与应用.【分析】A 先写出逆命题再利用不等式性质判断;B 中“∃x ∈R ,x 2﹣x >0”为特称命题,否定时为全称命题;C 命题“p ∨q ”为真命题指命题“p ”或命题“q ”为真命题,只要有一个为真即可;D 应为必要不充分条件.【解答】A “若am 2<bm 2,则a <b ”的逆命题是“若a <b ,则am 2<bm 2”,m =0时不正确;B 中“∃x ∈R ,x 2﹣x >0”为特称命题,否定时为全称命题,结论正确;C 命题“p ∨q ”为真命题指命题“p ”或命题“q ”为真命题,只要有一个为真即可,错误;D 应为必要不充分条件.故选:B .【点评】本题考查命题真假的判断,问题涉及不等式性质、复合命题真假判断、全称命题及特称命题、命题的否定、充要条件等,考查面较广.6.(5分)若函数f (x )、g (x )分别是定义在R 上的偶函数、奇函数,且满足2f (x )﹣g(x )=e x x,则( )A.f(﹣2)<f(﹣3)<g(﹣1) B.g(﹣1)<f(﹣3)<f(﹣2) C.f(﹣2)<g(﹣1)<f(﹣3) D.g(﹣1)<f(﹣2)<f(﹣3)【考点】3K:函数奇偶性的性质与判断.【专题】34:方程思想;49:综合法;51:函数的性质及应用.【分析】函数f(x)、g(x)分别是定义在R上的偶函数、奇函数,且满足2f(x)﹣g (x)=e x,可得2f(﹣x)﹣g(﹣x)=e﹣x,即2f(x)+g(x)=e﹣x,与2f(x)﹣g(x)=e x x,联立解得:f(x),g(x),利用其单调性即可得出.【解答】解:函数f(x)、g(x)分别是定义在R上的偶函数、奇函数,且满足2f(x)﹣g(x)=e x,则2f(﹣x)﹣g(﹣x)=e﹣x,即2f(x)+g(x)=e﹣x,与2f(x)﹣g(x)=e x,联立解得:f(x)=,g(x)=.则函数f(x)在[0,+∞)上单调递增,在(﹣∞,0)上单调递减.函数g(x)在R上单调递减.∴g(﹣1)<g(0)=0<=f(0)<f(﹣2)<f(﹣3),即g(﹣1)<f(﹣2)<f(﹣3),故选:D.【点评】本题考查了函数的奇偶性与单调性、方程的解法,考查了推理能力与计算能力,属于中档题.7.(5分)在△ABC中,||=||,||=||=3,则=( ) A.3 B.﹣3 C. D.﹣【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;35:转化思想;49:综合法;5A:平面向量及应用.【分析】由题意,画出图形,利用向量的平行四边形法则得到对角线长度的关系,求出OC,得到△ABC 的形状即可求得.【解答】解:由平面向量的平行四边形法则得到,在△ABC中,||=||,||=||=3,如图,设|OC|=x,则|OA|=x,所以|AO|2+|OC|2=|AC|2即3x2+x2=9,解得x=,所以|BC|=3,所以△ABC为等边三角形,所以=3×3×=;故选:C.【点评】本题考查向量加法的平行四边形法则,向量数量积的计算公式;关键是正确判断三角形的形状.8.(5分)安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则不同的安排方式共有( )A.360种 B.300种 C.150种 D.125种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;35:转化思想;49:综合法;5O:排列组合.【分析】分2步分析:先将5名大学生分成3组,分2种情况分类讨论,再将分好的三组全排列,对应三个城市,由分步计数原理计算可得答案;【解答】解:分2步分析:先将5名学生分成3组,由两种分组方法,若分成3、1、1的三组,有C53=10种分组方法,若分成1、2、2的三组,有=15种分组方法,则一共有10+15=25种分组方法;再将分好的三组全排列,对应三个社区,有A33=6种情况,则有25×6=150种不同的安排方式;故选:C.【点评】本题考查排列、组合的应用,注意本题计算安排方式时用到分组涉及平均分组与不平均分组,要用对公式.9.(5分)如图是一几何体的平面展开图,其中四边形ABCD为矩形,E,F分别为P A,PD 的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P AD.其中正确的结论个数为( )A.4个 B.3个 C.2个 D.1个【考点】L3:棱锥的结构特征;LN:异面直线的判定;LS:直线与平面平行;L Y:平面与平面垂直.【分析】几何体的展开图,复原出几何体,利用异面直线的定义判断①,②的正误;【专题】15:综合题.利用直线与平面平行的判定定理判断③的正误;利用直线与平面垂直的判定定理判断④的正误;【解答】解:画出几何体的图形,如图,由题意可知,①直线BE与直线CF异面,不正确,因为E,F是P A与PD的中点,可知EF∥AD,②直线BE与直线AF异面;满足异面直线的定义,正确.所以EF∥BC,直线BE与直线CF是共面直线;③直线EF∥平面PBC;由E,F是P A与PD的中点,可知EF∥AD,所以EF∥BC,∵EF⊄平面PBC,BC⊂平面PBC,所以判断是正确的.④因为△P AB与底面ABCD的关系不是垂直关系,BC与平面P AB的关系不能确定,所以平面BCE⊥平面P AD,不正确.故选:C.【点评】本题是基础题,考查空间图形中直线与直线、平面的位置关系,考查异面直线的判断,基本知识与定理的灵活运用.10.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=3B,则的取值范围是( )A.(0,3) B.(1,3) C.(0,1] D.(1,2]【考点】HP:正弦定理.【专题】11:计算题;35:转化思想;49:综合法;58:解三角形.【分析】原式利用正弦定理化简,将3B变形为2B+B,利用两角和与差的正弦函数公式化简,约分后利用二倍角的余弦函数公式变形化为一个角的余弦函数,求出B的范围得到2B的范围,利用余弦函数值域确定出范围即可.【解答】解:∵A=3B,∴由正弦定理得:====cos2B+2cos2B=2cos2B+1,∵B+A<180°,即4B<180°,∴0<B<45°,即0<2B<90°,∴0<cos2B<1,即1<2cos2B+1<3,则 的取值范围为(1,3).故选:B.【点评】此题考查了正弦定理,余弦函数的性质,以及二倍角的正弦、余弦函数公式,熟练掌握定理及公式是解本题的关键,属于中档题.11.(5分)已知双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为e,过点F1的直线l与双曲线C的左、右两支分别交于A,B两点,若=0,且∠F1AF2=150°,则e2=( )A.7﹣2 B.7﹣ C.7 D.7【考点】KC:双曲线的性质.【专题】31:数形结合;44:数形结合法;5D:圆锥曲线的定义、性质与方程.【分析】设|BF2|=x,根据直角三角形的性质和双曲线的性质,用x表示出|AF1|,|AF2|,根据|AF2|﹣|AF1|=2a计算x,再根据勾股定理列方程得出a,c的关系,从而求出e2的值. 【解答】解:∵=0,∴AB⊥BF2,∵∠F1AF2=150°,∴∠BAF2=30°,设|BF2|=x,则|BF1|=x+2a,|AF2|=2x,|AB|=x,∴|AF1|=|BF1|﹣|AB|=x+2a﹣x,又|AF2|﹣|AF1|=2a,∴2x﹣(x+2a﹣x)=2a,解得x=2(﹣1)a.∴|BF1|=2a,|BF2|=2(﹣1)a,在Rt△BF1F2中,由勾股定理可得:12a2+[(2﹣2)a]2=4c2,即(7﹣2)a2=c2,∴e2==7﹣2.故选:A.【点评】本题考查了双曲线的性质,直线与双曲线的位置关系,属于中档题.12.(5分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2,则f(x)的单调递增区间为( )A.(﹣∞,0) B.(﹣∞,1) C.(1,+∞) D.(0,+∞)【考点】6B:利用导数研究函数的单调性.【专题】11:计算题;35:转化思想;49:综合法;53:导数的综合应用.【分析】对f(x)求导,然后赋值求出f(0),f′(1),从而得到f′(x),解不等式f′(x)>0即可.【解答】解:f(x)=f′(1)e x﹣1﹣f(0)x+x2,两边求导得,f′(x)=f′(1)e x﹣1﹣f(0)+x,令x=1,得f′(1)=f′(1)e0﹣f(0)+1,解得f(0)=1,所以f(0)=f′(1)e0﹣1﹣f(0)•0+0=1,得f′(1)=e.所以f′(x)=e x x﹣1+x,因为y=e x递增,y=x﹣1递增,所以f′(x))=e x﹣1+x递增,又f′(0)=0,所以由f′(x)>0,解得x>0,即f(x)的单调递增区间是(0,+∞).故选:D.【点评】本题考查利用导数研究函数的单调性,考查学生灵活运用所学知识解决问题的能力,注意赋值法求值的应用.二、填空题(本大题共4小题,每小题5分,满分20分.)13.(5分)某城市为了了解游客人数的变化规律,提高旅游服务质量,收集并整理了2016年1月至2018年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确是 ②③④ (填序号).①月接待游客量逐月增加;②年接待游客量逐年增加;③各年的月接待游客量髙峰期大致在7,8月份;④各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳.【考点】B9:频率分布折线图、密度曲线. 【专题】11:计算题;31:数形结合;44:数形结合法;5I :概率与统计.【分析】利用折线图的性质直接求解.【解答】解:由折线图得:在①中,月接待游客量逐月波动,故①错误; 在②中,年接待游客量逐年增加,故②正确;在③中,各年的月接待游客量髙峰期大致在7,8月份,故③正确;在④中,各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳,故④正确. 故答案为:②③④.【点评】本题考查命题真假的判断,考查折线图的性质等基础知识,考查运算求解能力,是基础题.14.(5分)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线l 与x 轴的交点为A ,M 是抛物线C 上的点,且MF ⊥x 轴.若以AF 为直径的圆截直线AM 所得的弦长为2,则p = 2 .【考点】K8:抛物线的性质.【专题】38:对应思想;49:综合法;5D :圆锥曲线的定义、性质与方程.【分析】求出直线AM 的方程,根据垂径定理列方程得出p 的值.【解答】解:把x =代入y 2=2px 可得y =±p ,不妨设M 在第一象限,则M(,p),又A(﹣,0),∴直线AM的方程为y=x+,即x﹣y+=0,∴原点O到直线AM的距离d==,∵以AF为直径的圆截直线AM所得的弦长为2,∴=+1,解得p=2.故答案为:.【点评】本题考查了抛物线的性质,直线与圆的位置关系,属于中档题.15.(5分)已知三棱锥D﹣ABC的体积为2,△ABC是等腰直角三角形,其斜边AC=2,且三棱锥D﹣ABC的外接球的球心O恰好是AD的中点,则球O的体积为 .【考点】LG:球的体积和表面积.【专题】11:计算题;21:阅读型;35:转化思想;49:综合法;5U:球.【分析】取AC的中点E,利用球心O与△ABC的外心的连线与平面ABC垂直,得到OE⊥平面ABC,再由中位线得出OE∥CD,于是得出CD⊥平面ABC,根据已知条件计算出△ABC的面积,并利用锥体体积公式计算出CD,再利用勾股定理得出AD,即可得出球O的半径为,最后利用球体体积公式可得出答案.【解答】解:如下图所示,取AC的中点E,连接OE,由于O为AD的中点,E为AC的中点,则OE∥CD, ∵AC为等腰直角三角形ABC的斜边,所以,点E为△ABC外接圆圆心,且O为三棱锥D﹣ABC外接球的球心,所以OE⊥平面ABC,所以,CD⊥平面ABC, ∵△ABC是等腰直角三角形,且斜边AC=2,所以,AB=BC=,则△ABC的面积为,由锥体体积公式可得,∴CD=6,所以,,则球O的半径为,因此,球O的体积为.故答案为:.【点评】本题考查球体的体积的计算,解决本题的关键在于理解球心与相应面的外接圆圆心的连线与相应的底面垂直这一性质,考查计算能力与推理能力,属于中等题. 16.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,点O为△ABC外接圆的圆心,若a=,且c+2cos C=2b,=m+n,则m+n的最大值为 . 【考点】9O:平面向量数量积的性质及其运算.【专题】35:转化思想;41:向量法;5A:平面向量及应用.【分析】由题意可得c+2a cos C=2b,运用正弦定理和余弦定理,可得A,以及b,c的关系,考虑=m+n,两边点乘,,运用数量积定义可得m,n的方程,解得m,n,再由基本不等式可得所求最大值.【解答】解:△ABC中,a=,且c+2cos C=2b,∴c+2a cos C=2b,∴sin C+2sin A cos C=2sin B,∴sin C+2sin A cos C=2(sin A cos C+cos A sin C),∴sin C=2cos A sin C,C∈(0,π),∴sin C≠0,∴cos A=,A∈(0,π),∴A=,由余弦定理可得a2=b2+c2﹣2bc cos A,即为3=b2+c2﹣bc,由2R===2,即R=1,可得外接圆的半径为1,=m+n,可得•=m2+n•,化为c2=mc2+nbc,同理可得为b2=mbc+nb2,解得m=,n=,即有m+n=﹣(+)≥﹣•2=,当且仅当b=c=时,取得最大值,故答案为:.【点评】本题考查平面向量基本定理的运用,以及向量数量积的定义,考查三角形的余弦定理和正弦定理,化简整理的运算能力,属于难题.三、解答题,共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题,共60分.17.(12分)已知S n为数列{a n}的前n项和,且a1<2,a n>0,6S n=a n2+3a n+2,n∈N*. (1)求数列{a n}的通项公式;(2)若对∀n∈N*,b n=(﹣1)n a n2,求数列{b n}的前2n项的和T2n.【考点】8E:数列的求和;8H:数列递推式.【专题】32:分类讨论;34:方程思想;54:等差数列与等比数列.【分析】(1)6S n=+3a n+2,n∈N*.n≥2时,6a n=6S n﹣6S n﹣1,化为(a n+a n﹣1)(a n ﹣a n﹣1﹣3)=0,由a n>0,可得a n﹣a n﹣1=3,n=1时,6a1=+3a1+2,且a1<2,解得a1.利用等差数列的通项公式可得a n.(2)b n=(﹣1)n=(﹣1)n(3n﹣2)2.b2n﹣1+b2n=﹣(6n﹣5)2+(6n﹣2)2=3(12n﹣7)=36n﹣21.利用分组求和即可得出.【解答】解:(1)6S n=+3a n+2,n∈N*.n≥2时,6a n=6S n﹣6S n﹣1=+3a n+2﹣(+2),化为:(a n+a n﹣1)(a n﹣a n﹣3)=0,﹣1∵a n>0,∴a n﹣a n﹣1=3,n=1时,6a1=+3a1+2,且a1<2,解得a1=1.∴数列{a n}是等差数列,首项为1,公差为3.∴a n=1+3(n﹣1)=3n﹣2.(2)b n=(﹣1)n=(﹣1)n(3n﹣2)2.∴b2n﹣1+b2n=﹣(6n﹣5)2+(6n﹣2)2=3(12n﹣7)=36n﹣21.∴数列{b n}的前2n项的和T2n=36(1+2+……+n)﹣21n=﹣21n=18n2﹣3n.【点评】本题考查了数列递推关系、等差数列的定义通项公式与求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.18.(12分)如图,已知等边△ABC中,E,F分别为AB,AC边的中点,M为EF的中点,N为BC边上一点,且CN=BC,将△AEF沿EF折到△A′EF的位置,使平面A′EF ⊥平面EFCB.(1)求证:平面A′MN⊥平面A′BF;(2)求二面角E﹣A′F﹣B的余弦值.【考点】L Y:平面与平面垂直;MJ:二面角的平面角及求法.【专题】35:转化思想;41:向量法;5H:空间向量及应用.【分析】(1)如图所示,取BC的中点G,连接MG,则MG⊥EF,利用面面与线面垂直不因此可以建立空间直角坐标系.不的性质与判定定理可得:MG⊥A′M,又A′M⊥EF,因此可以建立空间直角坐标系.妨设BC=4.只要证明平面法向量的夹角为直角即可证明平面A′MN⊥平面A′BF. (2)利用两个平面的法向量的夹角即可得二面角E﹣A′F﹣B的平面角的余弦值. 【解答】(1)证明:如图所示,取BC的中点G,连接MG,则MG⊥EF,∵平面A′EF⊥平面EFCB,平面A′EF∩平面EFCB=EF,∴MG⊥平面A′EF,∴MG⊥A′M,又A′M⊥EF,因此可以建立空间直角坐标系.不妨设BC=4.M(0,0,0),A′(0,0,),N(﹣1,,0),B(2,,0),F(﹣1,0,0). ,,,. 设平面A′MN的法向量为=(x,y,z),由,可取=(,1,0).同理可得平面A′BF的法向量=(,﹣3,﹣1).∴=3﹣3+0=0,∴,∴平面A′MN⊥平面A′BF;(2)解:由(Ⅰ)可得平面A′BF的法向量=(,﹣3,﹣1).取平面EA′F的法向量=(0,1,0).cos<>==由图可知:二面角E﹣A′F﹣B的平面角为锐角,∴二面角E﹣A′F﹣B的平面角的余弦值为【点评】本题考查了利用平面法向量的夹角求出二面角的方法、向量夹角公式、数量积运算性质、空间位置关系,考查了推理能力与计算能力,属于中档题.19.(12分)已知抛物线y2=4x的焦点F与椭圆C:=1(a>b>0)的一个焦点重合,且点F关于直线y=x的对称点在椭圆上.(1)求椭圆C的标准方程;(2)过点Q(0,)且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M点的坐标,若不存在,说明理由.【考点】K3:椭圆的标准方程;K8:抛物线的性质;KH:直线与圆锥曲线的综合. 【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程. 【分析】(1)由抛物线方程求出抛物线y2=4x的焦点(1,0),求出点F关于直线y=x 的对称点,结合已知条件求出椭圆的长轴长,则a可求,再由a,b,c的关系转化求解椭圆的标准方程;(2)假设存在定点M,使以AB为直径的圆恒过这个点,求出AB垂直于两坐标轴时以AB为直径的圆的方程,联立方程组解得定点坐标,然后利用向量数量积证明一般结论. 【解答】解:(1)由抛物线的焦点可得:抛物线y2=4x的焦点F(1,0),点F关于直线y=x的对称点为(0,1),故b=1,c=1,因此,∴椭圆方程为:.(2)假设存在定点M,使以AB为直径的圆恒过这个点.=1 ①当AB⊥x轴时,以AB为直径的圆的方程为:x2+y2当AB⊥y轴时,以AB为直径的圆的方程为:②联立①②得,,∴定点M(0,1).证明:设直线l:,代入,有.设A(x1,y1),B(x2,y2),,.则=,=(x2,y2﹣1);=(1+k2)x1x2﹣+ =k=0,在y轴上存在定点M,使以AB为直径的圆恒过这个定点.【点评】本题主要考查椭圆方程的求法,考查了直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系求解是处理这类问题的最为常用的方法,训练了向量垂直与数量积间的关系,是高考试卷中的压轴题.20.(12分)随着网络信息化的高速发展,越来越多的大中小企业选择做网络推广,为了适应时代的发展,某企业引进一种通讯系统,该系统根据部件组成不同,分为系统A和系统B,其中系统A由5个部件组成,系统B由3个部件组成,每个部件独立工作且能正则如果构成系统的部件中至少有一半以上能正常运行,则常运行的概率均为p(0<p<1),如果构成系统的部件中至少有一半以上能正常运行,称系统是“有效”的.(1)若系统A与系统B一样有效(总体有效概率相等),试求p的值;(2)若p=对于不能正常运行的部件,称为坏部件,在某一次检测中,企业对所有坏部件都要进行维修,系统A中每个坏部件的维修费用均为100元,系统B中第n个坏部件的维修费用y(单位:元)满足关系y=50n+150(n=1,2,3),记企业支付该通讯系统维修费用为X,求EX.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】35:转化思想;48:分析法;5I:概率与统计.【分析】(1)由题意可得=,解方程即可得到所求值;(2)分别考虑系统A,B可能维修的费用,运用组合数公式和数学期望公式,计算可得所求值.【解答】解:(1)∵系统A与系统B一样有效(总体有效概率相等),∴=,整理得:2p3﹣5p2+4p﹣1=p(p2﹣5p+4)+p3﹣1=(p﹣1)2(2p﹣1)=0,解得p=1(舍)或p=,故p的值为.(2)系统A中每个坏部件的维修费用均为100元,系统B中第n个坏部件的维修费用y(单位:元)满足关系y=50n+150(n=1,2,3), 记企业支付该通讯系统维修费用为X,考虑系统A的维修费用可能为0,100、200、300、400、500元;系统B的维修费用可能为0;200,250,300;450,500,550;750元;可得EX=•()8(0+200+250+300+450+500+550+750)+•(100+300+350+400+550+600+650+850)+•(200+400+450+500+650+700+750+950)+•(300+500+550+600+750+800+850+1050)+•(400+600+650+700+850+900+950+1150)+•(500+700+750+800+950+1000+1050+1250)=+++++=625(元)【点评】本题考查随机变量的概率和期望的求法,考查独立事件同时发生的概率求法,考查运算求解能力,是中档题.21.(12分)已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e.(1)求a,b的值及函数f(x)的极值;(2)若m∈Z.且f(x)﹣m(x﹣1)>0对任意的x>1恒成立,求m的最大值. 【考点】3R:函数恒成立问题;6E:利用导数研究函数的最值.【专题】33:函数思想;4M:构造法;53:导数的综合应用.【分析】(1)求出原函数的导函数,利用函数f(x)在点(e,f(e))处的切线方程为y =3x﹣e列关于a,b的方程组,求解可得a,b的值,再求出导函数的零点,得到原函数的单调区间,进一步求得极值;(2)把f(x)﹣m(x﹣1)>0变形,可得m<对任意x>1都成立,等价于m<,利用导数求得,即可得到m的最大值. 【解答】解:(1)f(x)=axlnx﹣bx,f′(x)=alnx+a﹣b,∵函数f(x)在点(e,f(e))处的切线方程为y=3x﹣e,∴,解得a=1,b=﹣1.∴f(x)=xlnx+x,则f′(x)=lnx+2,由f′(x)=lnx+2=0,得.∴当x∈(0,)时,f′(x)<0,当x∈(,+∞)时,f′(x)>0.∴f(x)在(0,)上为减函数,在(,+∞)上为增函数,则当x=时,函数f(x)取得极小值为f()=;(2)当x>1时,由f(x)﹣m(x﹣1)>0,得m<.令g(x)==,则g′(x)=,设h(x)=x﹣2﹣lnx,则h′(x)=1﹣>0,h(x)在(1,+∞)上为增函数,∵h(3)=1﹣ln3<0,h(4)=2﹣ln4>0,∴∃x0∈(3,4),且h(x0)=0,当x∈(1,x0)时,h(x)<0,g′(x)<0,g(x)在(1,x0)上单调递减;当x∈(x0,+∞)时,h(x)>0,g′(x)>0,g(x)在(x0,+∞)上单调递增. ∴g(x)min=g(x0)=,∵h(x0)=x0﹣2﹣lnx0=0,∴x0﹣1=1+lnx0,g(x0)=x0,∴m<x0∈(3,4),∴m的最大值为3.【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,解题时合理构造函数是解题的关键,属难题.(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos()=t(t∈R).(1)求曲线C1的普通方程及曲线C2的直角坐标方程;(2)若π≤α≤2π,当曲线C1与曲线C2有两个公共点时,求t的取值范围.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】34:方程思想;44:数形结合法;4R:转化法;5S:坐标系和参数方程. 【分析】(1)把已知参数方程移向平方即可得到普通方程,展开两角差的余弦,结合x =ρcosθ,y=ρsinθ求得曲线C2的直角坐标方程;(2)画出两曲线的图形,数形结合即可求得t的取值范围.【解答】解:(1)由,得,=1;两式平方相加得:(x﹣1)2+(y﹣1)2由ρcos()=t,得,∴,即x+y=t;(2)由π≤α≤2π,得曲线C1:(x﹣1)2+(y﹣1)2=1(y≤0).作出曲线C1与曲线C2的图象如图:。
2019年广州市二模理科数学试题及答案

A. -3B. -1C. 1D. 3广东省广州市2019届高三4月综合测试(二)理科数学试题本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1. 答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹的钢笔或签 字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写 在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
2. 选择题每小题选出答案后:用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑; 如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使 用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式 V= -Sh 油,其中S 是锥体的底面积,h 是锥体的高.3一、选择题:本大题共 8小题,每小题5分,满分40分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1. 对于任意向量a 、b 、c,下列命题中正确的是A. |a.b| = |a| |b|B. |a+b|= | a|+ | b 1C. (a.b)c =a (b-c)2D. a.a =|a|2. 直线y=kx +1与圆 x 2+y 2-2y=0的位置关系是A.相交B.相切C 相离 D.取决于k 的值3.若1-i (i 是虚数单位)是关于 x 的方程x 2+2px +q=0(p 、q € R)的一个解,贝U p+q =A.1B. 2C. 4D. 84.已知函数y=f (x ) 的图象如图l 所示,则其导函数 y=f (x )的图象可能是5.若函数y = cos®x +匀(缶W N*)的一个对称中心是(三■ ,0),则④的最小值为66 -6. 一个圆锥的正(主)视图及其尺寸如图2所示.若一个平 行于圆锥底面的平面将此圆锥截成体积之比为 l:7的上、下两部分,则截面 的面积为A.【兀B.冗4C 写 B 4兀47.某辆汽车购买时的费用是 15万元,每年使用的保险费、路桥费、汽油费等约为 1.5万 元.年维修保养费用第一年3000元,以后逐年递增3000元,则这辆汽车报废的最佳年限(即使用多少年的年平均费用最少)是A. 8 年B. IO 年C. 12 年D. 15 年9.记实数XI , x 2,…,x n 中的最大数为max{x 1,x 2,…,x n },最小数为 min{x I ,x 2,…,x n }则 max{min{x+1 , x 2 - x + 1, -x +6}}=A. 3B. 1C. 3D.-4 2二、填空题:本大题共 7小题,考生作答 6小题,每小题5分,满分30分.(-)必做题(9-13题)9.某商场销售甲、乙、丙三种不同型号的钢笔,甲、乙、丙三种型号钢笔数量之比依次A.B.C.D.为2:3:4.现用分层抽样的方法抽出一个容量为n的样本,其中甲型钢笔有12支,则此样本容量n =310.已知a 为锐角,且cos(a * —)=—,则sina=.4 511.用0 , 1 , 2 , 3,4 , 5这六个数字,可以组成个没有重复数字且能被5整除的五位数(结果用数值表示).12.已知函数f(x) =x 2 - 2 x,点集M = (( X, Y)| f(x) +f(y) < 2) , N = {( X, Y)|f(x)-f(y) m0),贝U Ml N所构成平面区域的面积为13.数列{a n)的项是由l或2构成,且首项为1,在第k个l和第k+ 1个l之间有2k-1个2,即数列{a n)为:1,2 , 1,2 , 2, 2, 1, 2, 2, 2, 2, 2, 1, …,记数列{a}的前n 项和为S ,贝U S20=; S 2019 =.(二)选做题(14-15题,考生只能从中选做一题)14.(几何证明选讲选做题)1 _______ 、一在ABC中,D是边AC的中点,点E在线段BD上,且满足BE^- BD,延长AE交BC于点F,则既的值为.FC15.(坐标系与参数方程选做题)在极坐标系中,已知点A(1,-),点P是曲线P sin 2° =4cos 0上任意一点,设点2P到直线Pcos 0 + 1 = 0 的距离为d,贝U I PA | + d的最小值为.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)某单位有A、8 C三个工作点,需要建立一个公共无线网络发射点0 ,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为AB=80m, BC = 70m, CA=50m. 假定A、8 C、O四点在同一平面内.⑴求ZBAC的大小;(2)求点O到直线BC的距离17.(本小题满分12分)等边三角形ABC的边长为3,点D> E分别是边AB、AC上的点,且满足AD CEDB EA =;(如已知正方形ABCD的边长为2 , E、F、G H分别是边AB、BG CD DA的中点.(1)在正方形ABCErt部随机取一点P,求满足|PH|< ^/2的概率;(2)从A、B、C、D、E、F、G H这八个点中,随机选取两个点,记这两个点之间的距离为匚,求随机变量f的分布列与数学期望E E.18.(本小题满分14分)图3).将^ ADE替DE折起到△ ADE的位置,使二面角A-DE-B成直二面角,连结AB、A i C (如图4).(1) 求证:A i D ±平面BCED;⑵ 在线段BC上是否存在点P,使直线PA1与平面ABD所成的角为60 °?若何,求出PB狐:;若不存在,谨说明理由19.(本小题满分 W 分)巳知a>0,设命题p :函数f (x)=x 2-2ax+ 1-2a 在区间[0,1]上与x 轴有两个不同 的交点;命题q : g(x) =|x-a|-ax 在区间(0, +)上有最小值.若(「p)八q 是真命题,求实数 a 的取值范围.20.(本小题满分14分)经过点F (0 , 1)且与直线y = - 1相切的动圆的圆心轨迹为 M 点A 、D 在轨迹M 上,且 关于y 轴对称,过线段 AD (两端点除外)上的任意一点作直线 l ,使直线l 与轨迹M 在点D 处的切线平行,设直线l 与轨迹M 交于点B 、 C.(1) 求轨迹M 的方程; (2)证明:4BAD=/CAD;2 .. . ....................(3)若点D 到直线AB 的距离等于 一 | AD | ,且△ ABC 的面积为20,求直线BC 的方程.2图1C B图421.(本小题满分1 4分)设a n是函数f (x) = x3+n2x-1( n亡N *)的零点.⑴证明:0<a n<1 ;⑵证明:n< a1 + a2+... + a n< —n 1 22013年广州市普通高中毕业班综合测试(二)数学〔理科)试题参考答案及评分标准说明■一零考答案与评例司F指由了护地8(妥考查饰主要知识和能九并给出了-种或儿种髀法供禁考. 扯梁考生的解法与律者答案不版可根据试收N塾若杏的©ih"【I:菲力府眼评分株准豁以杓迎的分攻.L对新答通中的计H・气希生的邮岩在粟步悟以靖通时.M驰后继郡分的制誓未故变该题的内容和燃座,W相幡响的柱!tt决地后麒茶分的符Sb也成蛤分数不备超过津部分正耐解答应将分教巳如果后缝都■分此解答有较严重的赭误,就不可始分-。
2019年广东省广州市高考数学二模(理科)试题和参考答案

侧视图正视图试卷类型:A2019年广州市普通高中毕业班综合测试(二)数学(理科)2018.4本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足 i 2z =,其中i 为虚数单位,则z 的虚部为A .2-B .2C .2-iD .2i2.若函数()y f x =是函数3xy =的反函数,则12f ⎛⎫⎪⎝⎭的值为 A .2log 3- B .3log 2- C .19D3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x >C .存在0x ∈R ,使得3200x x ≤D .对任意x ∈R ,都有32x x ≤4. 将函数()2cos2(f x x x x =+∈R )的图象向左平移6π个单位长度后得到函数 ()y g x =,则函数()y g x =A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是A .16 B .13 C .12 D .386.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为A .16B .13C7.一个几何体的三视图如图1,则该几何体D CB A 的体积为A .6π4+B .12π4+C .6π12+D .12π12+ 8.将正偶数2,4,6,8,按表1的方式进行排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253表二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB ==,则AE AF ⋅的值为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦,当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t=-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则△AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,3BD =. (1) 求cos A 的值; (2)求sin C 的值.图217.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45,FE D CBA a 图3重量/克0.0320.02452515O 由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;(注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n =,则样本数据的平均值为112233n n X x p x p x p x p =++++. (3)从盒子中随机抽取3个小球,其中重量在(]5,15内的小球个数为ξ,求ξ的分布列和数学期望.18.(本小题满分14分) 如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2 1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值.图4 19.(本小题满分14分) 已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E . (1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个定点? 若是,求这两个定点的坐标;若不是,说明理由. 21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=. (1)求,a b 的值;(2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+. 2019年广州市普通高中毕业班综合测试(二) 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a 12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,3BD =, ∴222cos 2AB AD BD A AB AD +-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分 (2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A==. ……………6分∵D 是边AC 的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分 解得3BC =. ……………10分由正弦定理得,sin sin BC ABA C=, ……………11分 ∴1sin sin AB A C BC ⨯⋅===……………12分 17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分 (2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分 由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分M O H F E D CB A (3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫ ⎪⎝⎭. ……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分 ∴ξ的分布列为:……………11分∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分 (或者13355E ξ=⨯=)18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt△BFC 中,2224FB FC BC +==,又FB FC =,得FB = ∴EM =……………3分在△AME 中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EO BD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分在Rt △AOE中,tan AOAEO EO∠==……………13分 ∴直线AE 与平面BDE. ……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形. ∴EO ∥FH ,且1EO FH == 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD , ∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴,建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,nAE⋅=n AE n AE=. ……………11分∴cos 3θ==,sin tan cos θθθ==……………13分 ∴直线AE 与平面BDE . ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分 即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列.∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅,② ……………11分①-②得0121344444n n n T n --=++++-⋅14414nnn -=-⋅-()13413n n -⋅-=.……………13分∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=,∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅.由()12311n nx x x x x x x x+-++++=≠-, ……………11分两边对x 取导数得,012123n x x x nx -++++=()()12111n n nx n x x +-++-. ………12分 令4x =,得()()0122114243414431419n n nn n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦. ……………13分 ∴ ()131419n n T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分解法2:设点M 的坐标为(),x y ,依题意, 得1MF y =+,1y =+, ……………1分化简得24x y =.∴曲线E 的方程为24x y =. ……………2分(2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=,解得1,22x k ==±. ∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224AB x y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………4分令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………7分∴2ST=()()()2221212122221614k x x x x x x k k k +-+-==. ……………8分设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. ……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分 令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=, 即()()12420x x k --+=,解得2x =或142x k =-. ……………4分∴1142x k =-,22111114414y x k k ==-+. ∴点B 的坐标为()211142,441k k k --+. ……………5分同理,设直线AC 的方程为()212y k x -=-, 则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分 整理得,()224410x x y k+-++=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<,等价于2ln 2x k x x <-. ……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分 令()1ln h x x x =--,则()111x h x x x-'=-=.当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=.……………6分 从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增,故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分 ∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分解法2:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<恒成立. ……………4分令()ln 2x kg x x x=-+,则()222112222k x x k g x x x x -+'=--=-.方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<,故函数()g x 在()1,+∞上单调递减.由于()()110,2ln 21022kg k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x kx x-+>,与题设矛盾. …………5分(ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<. 故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分(ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x ==>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<.故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减, 从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x kg x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<, 得2221ln 022x x x -+<,从而()20g x <. 故当1x >时,()()20g x g x ≤<,符合题意. ……………8分专业资料word 完美格式 综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分 (3)证明:由(2)得,当1x >时,1ln 022x x x-+<,可化为21ln 2x x x -<, …10分 又ln 0x x >,从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n =分别代入上面不等式,并相加得,11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分111121n n =+--+ ……………13分223222n n n n --=+. ……………14分。
广东省广州市2019届高三第二次模拟考试数学(理)试卷

2019年广州市普通高中毕业班综合测试(二)理科数学2019.4一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=m(3+i)-(2+i)在复平面内对应的点在第三象限,则实数m的取值范围是A. B. C. D.2.己知集合A= ,则A.x|x<2或x≥6}B.x|x≤2或x≥6C.x|x<2或x≥10}D.x|x≤2或x≥10 3.某公司生产A,B,C三种不同型号的轿车,产量之比依次为2:3:4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n=A. 96B. 72C. 48D. 364.执行如图所示的程序框图,则输出z的值是A. 21B. 22C. 23D. 245.己知点A与点B(1,2)关于直线x+y+3=0对称,则点A的坐标为A.(3,4)B. (4,5)C. (-4,-3)D. (-5,-4)6.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为,则数学期望 =A. B.1 C. D.27.已知:,其中,则A. B. C. D.8.过双曲线的左焦点F作圆的切线,切点为E,延长FE交双曲线右交于点P,若,则双曲线的离心率为A. B. C. D.9.若曲线y= x3 -2x2 +2在点A处的切线方程为y=4x-6,且点A在直线mx+ ny -l=0(其中m>0,n>0)上,则的最小值为A.4B. 3+2C. 6+4D.810.函数的部分图像如图所示,先把函数y=f(x)图像上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的图像向右平移个单位长度,得到函数y=g(x)的图像,则函数y=g(x)的图像的一条对称轴为A.x=B. x= C. x= - D.x= -11.已知点P在直线x+2y-l=0上,点Q在直线x+2y+3=0上,PQ的中点为M(x o,y o),且1≤y o -x o≤7,则的取值范围为A. B. C. D.12.若点A(t,0)与曲线y=e x上点P的距离的最小值为,则实数t的值为A. 4-B. 4-C. 3+D. 3+二、填空题:本题共4小题,每小题5分,共20分.13.若e1,e2是夹角为60°的两个单位向量,向量a=2e1+e2,则|a|= .14.若(ax-l)5的展开式中x3的系数是80,则实数a的值是____.15.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积。
【市级联考】广东省广州市2019届高三第二次模拟考试数学(理)试题(解析版)

2019年广州市普通高中毕业班综合测试(二)理科数学一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A. B. D.【答案】B【解析】【分析】根据复数的几何意义建立不等式关系即可.若复数在复平面内对应的点在第三象限,所以的取值范围是故选B.【点睛】该题考查的是有关复数在复平面内对应的点的问题,属于简单题目.2.)A. 或【答案】D【解析】【分析】先解分式不等式求集合A,再由补集的定义直接求解即可.【详解】解:由,则R故选:D.【点睛】本题主要考查集合的基本运算,比较基础.3.的样本,若样本中8辆,则 )A. 96B. 72C. 48D. 36【答案】B 【解析】 【分析】根据分层比例列式求解.B.【点睛】本题考查分层抽样,考查基本分析求解能力,属基础题.4.)A. 21B. 22C. 23D. 24【答案】B 【解析】试题分析:运行第一次,,,;运行第二次,,,,,停止运行,所以输出的B .考点:程序框图.5. )A.B.D.【答案】D 【解析】 【分析】根据对称列式求解.D.【点睛】本题考查关于直线对称点问题,考查基本分析求解能力,属基础题.6.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女)A. B. 1 D. 2【答案】B【解析】【分析】先列随机变量,再分别求解对应概率,最后根据数学期望公式求结果.,所以,选B.【点睛】本题考查数学期望,考查基本分析求解能力,属基础题.7.)A. B. D.【答案】D【解析】【分析】再根据二倍角正切公式得结果.【详解】因,且,因为,从而 D.【点睛】本题考查同角三角函数关系以及二倍角正切公式,考查基本分析求解能力,属基础题.8.的左焦点,则双曲线的离心率为()A. B. D.【答案】A【解析】【分析】再根据切线得OE.,所以PF,PF,A.【点睛】本题考查双曲线定义以及离心率,考查基本分析求解能力,属中档题.9.,且点)A. B. D.【答案】C【解析】【分析】设A(s,t),求得函数y的导数可得切线的斜率,解方程可得切点A,代入直线方程,再由基本不等式可得所求最小值.【详解】解:设A(s,t),y=x3﹣2x2+2的导数为y′=3x2﹣4x,可得切线的斜率为3s2﹣4s,切线方程为y=4x﹣6,可得3s2﹣4s=4,t=4s﹣6,解得s=2,t=2或由点A在直线mx+ny﹣l=0(其中m>0,n>0),可得2m+2n=1成立,(s,2m+2n))=2(32(当且仅当n时,取得最小值6+4,故选:C.【点睛】本题考查导数的运用:求切线斜率,以及基本不等式的运用:求最值,考查运算能力,属于基础题.10.的图像的一条对称轴为()A. B. D.【答案】C【解析】【分析】.,选C.【点睛】本题考查由图象求函数解析式、三角函数图象变换以及正弦函数性质,考查基本分析求解能力,属中档题.11.已知点在直线上,的中点为)A.B.D.【答案】B 【解析】【分析】.M 在直线AB,,因此的取值范围为选B.【点睛】本题考查线性规划求范围,考查基本分析求解能力,属中档题.12.的)A. B. D.【答案】D【解析】【分析】先设切点B.【详解】A为圆心,B,则在B点处切线的斜率为,选D.【点睛】本题考查利用导数求函数最值,考查综合分析求解能力,属难题.二、填空题.13.是夹角为.【答案】【解析】【分析】,;.故答案为:【点睛】考查单位向量的概念,向量的数量积运算及计算公式,向量长度的求法.14.80________.【答案】2【解析】解:(ax-1)5的展开式中x3的系数C53(ax)3•(-1)2=10a3x3=80x3,则实数a的值是2,15.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得,,,的对边为.1,成等差数列,则________.【解析】【分析】再根据余弦定理化简得1成等差数列,所以的最大值为.【点睛】本题考查正余弦定理以及二次函数性质,考查基本分析求解能力,属中档题.16.________.【解析】【分析】.正四面体外接球恰为圆锥内切球,所以【点睛】本题考查圆锥内切球以及正四面体外接球,考查基本分析求解能力,属中档题.三、解答题.解答应写出文字说明、证明过程和演算步骤.17.,(1)求数列(2,求数列【答案】 (2)【解析】【分析】(1)解法1:运用等比数列的通项公式,解方程可得首项和公比,即可得到所求通项公式;解法2:运用等比数列的性质建立方程.(2,利用错位相减求和.【详解】解法1:(1的公比为,是递增的等比数列,所以数列解法2:(1,是递增的等比数列,(2)由(1①-所以【点睛】本题考查等比数列的通项公式的运用,考查数列的错位相减求和,以及化简整理的运算能力,属于基础题.18.科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表: (年龄(脂肪根据上表的数据得到如下的散点图.(1)根据上表中的样本数据及其散点图: (i(i )计算样本相关系数(精确到0.01),并刻画它们的相关程度. (20.01),并根据回归方程估计年龄为50岁时人体的脂肪含量.【答案】(1) (ⅰ)47 (ⅱ)见解析;%.【解析】【分析】(1)(i)根据上表中的样本数据,利用平均数的公式求得结果;(ii 以推断人体脂肪含量和年龄的相关程度很强.(2结果.【详解】(1)根据上表中的样本数据及其散点图:.因为,(2.的线性回归方程为.【点睛】该题考查的是有关回归分析的问题,涉及到的知识点有平均值的计算,根据相关系数r的大小判断相关性,回归直线的性质,属于简单题目.19.(1(2.【答案】(1)见解析;(2【解析】【分析】(1)先根据计算得线线线线垂直,再根据线面垂直判定定理以及面面垂直判定定理得结论,(2)建立空间直角坐标系,利用空间向量求二面角.【详解】(1为中,中,,,,所以平面(2由(1设平面的法向量为设二面角为,由于的余弦值为.【点睛】本题考查线面垂直判定定理、面面垂直判定定理以及利用空间向量求二面角,考查基本分析论证与求解能力,属中档题.20.(1(2并说明理由.【答案】(1;(2)相离.【解析】【分析】(1)根据直接法求轨迹方程,(2离与半径大小进行判断.【详解】(1,整理得所以动点的轨迹的方程(2的直线为轴时,显然不合题意.因为,.的中点坐标为.到直线的距离为.与以线段为直径的圆相离.【点睛】本题考查直接法求轨迹方程以及直线与圆位置关系,考查基本分析求解能力,属中档题.21.(1)讨论函数的单调性;(2【答案】(1)见解析;(2)见证明【解析】【分析】(1)函数f(x)的定义域为(0,+∞),f′(x x>0,利用分类讨论思想,结合导数性质能讨论函数f(x)的单调性.(2)先求k f(﹣2k)=ln(﹣2k.然后证明x1+x2≥)(1+t)2<﹣8lnt,即证8lnt+(1+t)2<0,(t>0).设h(t)=8lnt+(1+t)2,t>1.则h(t)=8t>1.由此能证明x1+x2>【详解】(1,函数.时,,,时,函数时,函数(2方法1:由(1要使函数有两个零点,首先,,则因为,所以在上单调递增,的取值范围是.方法2:,则,且:方法1:,即,即证.,所以即证,.所以.在上单调递减,.方法2:,即,需证.,所以即证所以在上单调递减,.方法3:因为,是函数,需证.只需证.,所以,所以.方法4:因为,是函数,即证明,则.所以在上单调递增,所以.,.方法5:,所以在上单调递减.在上恒成立.【点睛】本题考查函数单调性的讨论,考查不等式的性质,考查导数性质、函数的单调性、最值等基础知识,考查运算求解能力,考查化归与转化思想,是难题.22.(.在以坐标原点为极点,.(1(2.【答案】(1;(2【解析】【分析】(1的普通方程,根据2)利用直线参数方程几何意义求解.【详解】(1,.因为(2)解法1的直角坐标方程为,可设该方程的两个根为整理得,因为,所以综上所述,直线的倾斜角为解法2,两点,且的,整理得.综上所述,直线【点睛】本题考查参数方程化普通方程、极坐标方程化直角坐标方程以及直线参数方程应用,考查综合分析求解能力,属中档题.23.[选修4-5:不等式选讲](1)时,解不等式(2)若存在实数x a的取值范围.【答案】(1;(2【解析】【分析】(1)根据绝对值定义转化为两个不等式组,解可得,(2)根据绝对值定义转化为分段函数,根据函数最值可得结果.【详解】(1综上可知,不等式的解集为(2..所以实数的取值范围为.【点睛】本题考查含绝对值不等式,考查基本分析求解能力,属基本题.。
2019年广东省广州市高考数学二模试卷及参考答案(理科)

形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减
上,余四约之,为实,一为从隅,开平方得积.”如果把以上这段文字写成公式就是 S=
பைடு நூலகம்
,其中 a,b,c 是△ABC 的内角 A,B,C 的对边.若 sinC
=2sinAcosB,且 b2,1,c2 成等差数列,则△ABC 面积 S 的最大值为
x(年龄 26 27 39 41 49 53 56 58 60 61 /岁)
y(脂肪 14.5 17.8 21.2 25.9 26.3 29.6 31.4 33.5 35.2 34.6 含量
/%)
根据上表的数据得到如下的散点图.
第 3 页(共 28 页)
(1)根据上表中的样本数据及其散点图: (i)求 ; (ii)计算样本相关系数(精确到 0.01),并刻画它们的相关程度.
C.(
)
D.(﹣∞, )∪(1,+∞)
2.(5 分)己知集合 A={x|1﹣ <0},则∁RA=( )
A.{x|x<2 或 x≥6} B.{x|x≤2 或 x≥6} C.{x|x<2 或 x≥10} D.{x|x≤2 或 x≥10}
3.(5 分)某公司生产 A,B,C 三种不同型号的轿车,产量之比依次为 2:3:4,为检验该
(2)若 y 关于 x 的线性回归方程为 方程估计年龄为 50 岁时人体的脂肪含量. 附:
,求 的值(精确到 0.01),并根据回归
参考数据: =27,
,
,
=7759.6,
,
参考公式:相关系数 r=
=
回归方程
中斜率和截距的最小二乘估计公式分别为 =
,
19.(12 分)如图,在四棱锥 P﹣ABCD 中,底面 ABCD 为菱形,∠BAD=60°,∠APD=
2019年广东省广州市高考数学二模(理科)试题及参考答案

侧视图正视图试卷类型:A2019年广州市普通高中毕业班综合测试(二)数学(理科)2018.4本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足 i 2z =,其中i 为虚数单位,则z 的虚部为A .2-B .2C .2-iD .2i 2.若函数()y f x =是函数3x y =的反函数,则12f ⎛⎫⎪⎝⎭的值为 A .2log 3- B .3log 2- C .19D3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x > C .存在0x ∈R ,使得3200x x ≤ D .对任意x ∈R ,都有32x x ≤ 4. 将函数()2cos 2(f x x x x =+∈R )的图象向左平移6π个单位长度后得到函数 ()y g x =,则函数()y g x =A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是A .16B .13C .12D .386.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为 A .16 B .13C.6 D.37.一个几何体的三视图如图1,则该几何体的体积为D CB AA .6π4+B .12π4+C .6π12+D .12π12+ 8.将正偶数2,4,6,8,按表1的方式进行排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253表二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB ==,则AE AF ⋅的值为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦, 当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 . (二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t=-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则△AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,3BD =. (1) 求cos A 的值; (2)求sin C 的值.图217.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样 本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45,由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;FE D CBA a 图3重量/克0.0320.02452515O (注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n =,则样本数据的平均值为112233n n X x p x p x p x p =++++. (3)从盒子中随机抽取3个小球,其中重量在(]5,15内的小球个数为ξ,求ξ的分布列和数学期望.18.(本小题满分14分) 如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2 1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值.图4 19.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E . (1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个定点? 若是,求这两个定点的坐标;若不是,说明理由. 21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=. (1)求,a b 的值;(2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+. 2019年广州市普通高中毕业班综合测试(二) 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a 12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,BD =∴222cos 2AB AD BD A AB AD+-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分 (2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A==. ……………6分∵D 是边AC的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分 解得BC =……………10分由正弦定理得,sin sin BC ABA C=, ……………11分 ∴1sin sin 33AB A C BC ⋅===……………12分 17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分 (2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分 由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分(3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫⎪⎝⎭.……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,M O H F E D C B A ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分 ∴ξ的分布列为:……………11分∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分 (或者13355E ξ=⨯=)18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt△BFC 中,2224FB FC BC +==,又FB FC =,得FB = ∴EM =……………3分在△AME 中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分 ∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EO BD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分在Rt △AOE中,tan AOAEO EO∠==……………13分 ∴直线AE 与平面BDE……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形. ∴EO ∥FH ,且1EO FH == 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD , ∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -.∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,n AE⋅=n AE n AE3=. ……………11分∴cos θ==,sin tan cos θθθ==……………13分 ∴直线AE 与平面BDE ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分 即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列.∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=,∴221224n an n n b n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅,② ……………11分 ①-②得0121344444n nn T n --=++++-⋅14414n nn -=-⋅-()13413n n -⋅-=. ……………13分∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=,∴221224n an n n b n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅.由()12311n nx x x x x x x x+-++++=≠-, ……………11分两边对x 取导数得,012123n x x x nx -++++=()()12111n n nx n x x +-++-. ………12分 令4x =,得()()0122114243414431419n n n n n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦. ……………13分 ∴ ()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分解法2:设点M 的坐标为(),x y ,依题意, 得1MF y =+,1y =+, ……………1分化简得24x y =.∴曲线E 的方程为24x y =. ……………2分 (2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=, 解得1,22x k ==±.∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224AB x y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………4分令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………7分∴2ST =()()()2221212122221614k x x x x x x k k k +-+-==. ……………8分 设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. ……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=,即()()12420x x k --+=,解得2x =或142x k =-. ……………4分∴1142x k =-,22111114414y x k k ==-+.∴点B 的坐标为()211142,441k k k --+. ……………5分同理,设直线AC 的方程为()212y k x -=-,则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分 整理得,()224410x x y k+-++=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x k x x -+<,等价于2ln 2x k x x <-. ……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分 令()1ln h x x x =--,则()111x h x x x-'=-=.当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=.……………6分 从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增,故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分解法2:由(1)得()ln 2x f x x =-. 当1x >时,()0k f x x +<恒成立,即ln 02x kx x -+<恒成立. ……………4分 令()ln 2x k g x x x =-+,则()222112222k x x kg x x x x -+'=--=-.方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<,故函数()g x 在()1,+∞上单调递减.由于()()110,2ln 21022kg k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x kx x-+>,与题设矛盾. …………5分(ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<. 故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分 (ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x =<=>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<.故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减, 从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x kg x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<, 得2221ln 022x x x -+<,从而()20g x <.故当1x >时,()()20g x g x ≤<,符合题意. ……………8分 综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分(3)证明:由(2)得,当1x >时,1ln 022x x x -+<,可化为21ln 2x x x -<, …10分又ln 0x x >,从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n =分别代入上面不等式,并相加得, 11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分 111121n n =+--+ ……………13分11 / 11 223222n n n n--=+. ……………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学精品复习资料2019.5试卷类型:A20xx 年广州市普通高中毕业班综合测试(二)数学(理科)20xx.4 本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足 i 2z =,其中i 为虚数单位,则z 的虚部为A .2-B .2C .2-iD .2i 2.若函数()y f x =是函数3xy =的反函数,则12f ⎛⎫⎪⎝⎭的值为A .2log 3-B .3log 2-C .19D 3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x > C .存在0x ∈R ,使得3200x x ≤ D .对任意x ∈R ,都有32x x ≤4. 将函数()2cos2(f x x x x =+∈R )的图象向左平移6π个单位长度后得到函数图1俯视图侧视图正视图 ()y g x =,则函数()y g x =A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是 A .16 B .13 C .12 D .386.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为A .16 B .13C.6 D.37.一个几何体的三视图如图1,则该几何体的体积为A .6π4+B .12π4+C .6π12+D .12π12+ 8.将正偶数2,4,6,8,按表1的方式进行排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253 表1 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB ==,则AE AF ⋅的值 为 .D CB A a0.0320.02452515O 12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦, 当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t =-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且 12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则 △AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,BD =. (1) 求cos A 的值; (2)求sin C 的值. 图2 17.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样 本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45, 由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;(注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n =,则样本数据的平均值为112233n n X x p x p x p x p =++++. (3)从盒子中随机抽取3个小球,其中重量在(]5,15内的小球个数为ξ,求ξ的分布列和数学期望.FE D CBA18.(本小题满分14分) 如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD ,1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值. 图4 19.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E .(1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个 定点? 若是,求这两个定点的坐标;若不是,说明理由. 21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=. (1)求,a b 的值;(2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+. 20xx 年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,3BD =, ∴222cos 2AB AD BD A AB AD +-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分(2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A ==. ……………6分∵D 是边AC 的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分解得3BC =. ……………10分 由正弦定理得,sin sin BC ABA C=, ……………11分∴1sin sin 33AB AC BC⋅===. ……………12分17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分 (2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分(3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫⎪⎝⎭. ……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分 ∴ξ的分布列为:……………11分∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分M OH FED C B A (或者13355E ξ=⨯=) 18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………3分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =,∴EF ∥OH ,且EF OH =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EOBD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分 在Rt △AOE中,tan AOAEO EO∠== ……………13分 ∴直线AE 与平面BDE. ……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH ==. ……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,n AE⋅=n AE nAE3=. ……………11分∴cos 3θ==,sin tan cos θθθ== ……………13分 ∴直线AE 与平面BDE. ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分 即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列.∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分 当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅,② ……………11分①-②得0121344444n nn T n --=++++-⋅14414n nn -=-⋅-()13413n n -⋅-=.……………13分∴()131419n n T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅.由()12311n nx x x x x x x x+-++++=≠-, ……………11分两边对x 取导数得,012123n x x x nx-++++=()()12111n n nx n x x +-++-. ………12分令4x =,得()()0122114243414431419n n n n n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦. ……………13分 ∴ ()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分 解法2:设点M 的坐标为(),x y ,依题意,得1MF y =+,1y =+, ……………1分化简得24x y =.∴曲线E 的方程为24x y =. ……………2分(2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=, 解得1,2422k x k ±==±. ∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224ABx y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………4分 令1y =-,得1822x x =-+, ∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………7分∴2ST=()()()2221212122221614k x x x x x x kkk+-+-==. ……………8分设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=-⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. ……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分 令0x =,得()214y +=,解得1y =或3y =-. ……………12分 ∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=, 即()()12420x x k --+=,解得2x =或142x k =-. ……………4分 ∴1142x k =-,22111114414y x k k ==-+. ∴点B 的坐标为()211142,441k k k --+. ……………5分 同理,设直线AC 的方程为()212y k x -=-, 则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分 得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分 整理得,()224410x x y k+-++=. ……………11分 令0x =,得()214y +=,解得1y =或3y =-. ……………12分 ∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2xf x x =-. 当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<,等价于2ln 2x k x x <-. ……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分 令()1ln h x x x =--,则()111x h x x x-'=-=. 当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=. ……………6分 从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增, 故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分 ∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分解法2:由(1)得()ln 2x f x x =-. 当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<恒成立. ……………4分 令()ln 2x kg x x x=-+,则()222112222k x x k g x x x x -+'=--=-. 方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<, 故函数()g x 在()1,+∞上单调递减.由于()()110,2ln 21022kg k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x kx x-+>,与题设矛盾. …………5分(ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<. 故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分 (ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x ==>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<. 故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减, 从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x kg x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<, 得2221ln 022x x x -+<,从而()20g x <. 故当1x >时,()()20g x g x ≤<,符合题意. ……………8分 综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分(3)证明:由(2)得,当1x >时,1ln 022x x x-+<,可化为21ln 2x x x -<, …10分又ln 0x x >, 从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n =分别代入上面不等式,并相加得,11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分 111121n n =+--+ ……………13分 223222n n n n--=+. ……………14分。