天水市逸夫中学数学试卷
甘肃省天水市逸夫实验中学2022-2023学年九年级下学期中考模拟(一)数学试题

甘肃省天水市逸夫实验中学2022-2023学年九年级下学期中考模拟(一)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....α-︒BA.90内接于7.如图,ABCA.①②B.①③10.如图①,在矩形ABCD→→向点发,沿AB BC CDx的函数关系图象如图②所示,则16.若点()11,A y -、()23,B y 在二次函数“>”或“<”或“=”).17.如图,扇形纸片AOB 的半径为3C 处,图中阴影部分的面积为18.在平面直角坐标系中,点A (﹣的象限.若反比例函数y =k x (k ≠0)的图象经过其中两点,则三、解答题19.计算:11132sin 603-⎛⎫+--+ ⎪︒⎝⎭3a -5任选两个景区去旅游,求选A ,D 两个景区的概率(要求画树状图或列表求概率).24.第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生.为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n 名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x 表示):A :7075x ≤<,B :7580x ≤<,C :8085x ≤<,D :8590x ≤<,E :9095x ≤<,F :95100x ≤≤,并绘制七年级测试成绩频数直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D 组的全部数据如下:86,85,87,86,85,89,88请根据以上信息,完成下列问题:(1)n =______,a =______;(2)八年级测试成绩的中位数是______﹔(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.25.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h ,乙骑行的路程()km s 与骑行的时间()h t 之间的关系如图所示.(1)求证:A ACF ∠=∠;(2)若8AC =,4cos 5ACF ∠=,求BF 及DE 27.综合与实践问题情境:在Rt △ABC 中,∠BAC =90°,AB 将三角板的直角顶点D 放在Rt △ABC 斜边BC 角板的两边DE ,DF 分别与边AB ,AC 交于点(1)直接写出点B 和点D 的坐标;(2)如图1,连接OD ,P 为x 轴上的动点,当1tan 2PDO ∠=时,求点P 的坐标;(3)如图2,M 是点B 关于抛物线对称轴的对称点,Q 是抛物线上的动点,它的横坐标为(05)m m <<,连接MQ ,BQ ,MQ 与直线OB 交于点E .设BEQ 和BEM △的面积分别为1S 和2S ,求12S S 的最大值.。
甘肃省天水市2024届中考数学最后冲刺模拟试卷含解析

甘肃省天水市2024届中考数学最后冲刺模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为()A.B.C.D.±2.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80人数232341则这15名运动员成绩的中位数、众数分别是()A.4.65,4.70B.4.65,4.75C.4.70,4.70,D.4.70,4.753.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.44.一元二次方程x2﹣3x+1=0的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上答案都不对5.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数()的概率最大.A.3 B.4 C.5 D.6 6.下列图形中,主视图为①的是()A.B.C.D.7.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.28.不等式组1040xx+>⎧⎨-≥⎩的解集是()A.﹣1≤x≤4B.x<﹣1或x≥4C.﹣1<x<4 D.﹣1<x≤49.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm 23 23.5 24 24.5 25销售量/双 1 3 3 6 2则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,2410.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A.2人B.16人C.20人D.40人二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.12.11201842-⎛⎫+- ⎪⎝⎭=_____.13.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=kx(x>0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为499,则k= .14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A.B.C.D.15.函数y1x+x的取值范围为____________.16.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A 地的正北方向,则B、C两地的距离是_____千米.三、解答题(共8题,共72分)17.(8分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.18.(8分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=22,CD=1,求FE的长.19.(8分)“千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔B:兵马俑C:陕西历史博物馆D:秦岭野生动物园E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.20.(8分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.21.(8分)解方程:1322xx x+= --.22.(10分)已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.(1)如图1,当AB=AC,且sin∠BEF=35时,求BFCF的值;(2)如图2,当tan∠ABC=12时,过D作DH⊥AE于H,求EH EA⋅的值;(3)如图3,连AD交BC于G,当2FG BF CG=⋅时,求矩形BCDE的面积23.(12分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式组:43(2)123x xx x+≤+⎧⎪-⎨<⎪⎩.24.已知:如图,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.(1)求证:B是EC的中点;(2)分别延长CD、EA相交于点F,若AC2=DC•EC,求证:AD:AF=AC:FC.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组,求出方程组的解即可.【题目详解】解:设一次函数的解析式为:y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组,由①得:,把③代入②得:,解得:.故选:D.【题目点拨】本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.2、D【解题分析】根据中位数、众数的定义即可解决问题.【题目详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.【题目点拨】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.3、B【解题分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.【题目详解】根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=12|k|=1,则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.故选B.【题目点拨】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.4、B【解题分析】首先确定a=1,b=-3,c=1,然后求出△=b2-4ac的值,进而作出判断.【题目详解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0两个不相等的实数根;故选B.【题目点拨】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.5、C【解题分析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8} 和为2的只有1+1; 和为3的有1+2;2+1; 和为1的有1+3;2+2;3+1; 和为5的有1+1;2+3;3+2;1+1; 和为6的有2+1;1+2; 和为7的有3+1;1+3; 和为8的有1+1. 故p (5)最大,故选C . 6、B 【解题分析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案. 详解:A 、主视图是等腰梯形,故此选项错误; B 、主视图是长方形,故此选项正确; C 、主视图是等腰梯形,故此选项错误; D 、主视图是三角形,故此选项错误; 故选B .点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置. 7、D 【解题分析】 解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【题目详解】23m x-≤﹣1, m ﹣1x≤﹣6, ﹣1x≤﹣m ﹣6, x≥12m+3, ∵关于x 的一元一次不等式23m x-≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集8、D【解题分析】试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.9、A【解题分析】【分析】根据众数和中位数的定义进行求解即可得.【题目详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【题目点拨】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键. 10、C【解题分析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.【题目详解】400×2201216102=+++人.故选C.【题目点拨】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.二、填空题(本大题共6个小题,每小题3分,共18分)11、5或1.【解题分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【题目详解】∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=5.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如图5所示:当∠B′ED=90°时,C与点E重合.∵AB′=5,AC=6,∴B′E=5.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.综上所述,BD的长为5或1.12、1【解题分析】分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.详解:原式=1+2﹣2=1.故答案为:1.点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.13、1.【解题分析】先根据反比例函数比例系数k 的几何意义得到112233OB C OB C OB C 11S S S |k |k 22∆====,再根据相似三角形的面积比等于相似比的平方,得到用含k 的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为4918,列出方程,解方程即可求出k 的值.【题目详解】解:根据题意可知,112233OB C OB C OB C 11S S S |k |k 22∆==== 11223112233,//////OA A A A A A B A B A B y ==轴,设图中阴影部分的面积从左向右依次为123,,S S S ,则112s k =, 11223OA A A A A ==,222333:1:4,:1:9OB C OB C S S S S ∴== 2311,818S k S k ∴== 11149281818k k k ∴++= 解得:k=2.故答案为1.考点:反比例函数综合题.14、C【解题分析】分出情况当P 点在BC 上运动,与P 点在CD 上运动,得到关系,选出图象即可【题目详解】由题意可知,P 从B 开始出发,沿B —C —D 向终点D 匀速运动,则当0<x≤2,s=12x 当2<x≤3,s=1 所以刚开始的时候为正比例函数s=12x 图像,后面为水平直线,故选C 【题目点拨】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态15、x≥-1【解题分析】试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.考点:函数自变量的取值范围.16、36【解题分析】作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.【题目详解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=BE AB,∴BE=AB•sin∠BAC=36332⨯=由题意得,∠C=45°,∴BC=BEsin C=233362=,故答案为6.【题目点拨】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.三、解答题(共8题,共72分)17、(1)答案见解析;(2)13.【解题分析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【题目详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P=412=13.18、(1)见解析;(2)EF=5 3 .【解题分析】(1)由旋转的性质可求∠FAE=∠DAE=45°,即可证△AEF≌△AED,可得EF=ED;(2)由旋转的性质可证∠FBE=90°,利用勾股定理和方程的思想可求EF的长.【题目详解】(1)∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC=45°,∵将△ADC绕点A顺时针旋转90°,得到△AFB,∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,∴∠BAF+∠BAE=45°=∠FAE,∴∠FAE=∠DAE,AD=AF,AE=AE,∴△AEF≌△AED(SAS),∴DE=EF(2)∵AB=AC=2,∠BAC=90°,∴BC=4,∵CD=1,∴BF=1,BD=3,即BE+DE=3,∵∠ABF=∠ABC=45°,∴∠EBF=90°,∴BF 2+BE 2=EF 2,∴1+(3﹣EF )2=EF 2,∴EF =53【题目点拨】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键.19、(1)40;(2)想去D 景点的人数是8,圆心角度数是72°;(3)280. 【解题分析】(1)用最想去A 景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D 景点的人数,再补全条形统计图,然后用360°乘以最想去D 景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去B 景点的人数所占的百分比即可.【题目详解】(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D 景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为840×360°=72°; (3)800×1440=280, 所以估计“醉美旅游景点B“的学生人数为280人.【题目点拨】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.20、 (1)详见解析;(2)4.【解题分析】试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切线;(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.21、5 2【解题分析】分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.详解:去分母,得()132x x -=-.去括号,得136x x -=-.移项,得 361x x -=-.合并同类项,得 25x =.系数化为1,得52x =. 经检验,原方程的解为52x =. 点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.22、 (1)17;(2)80;(3)100. 【解题分析】 (1)过A 作AK ⊥BC 于K ,根据sin ∠BEF=35得出35FK AK =,设FK =3a ,AK =5a ,可求得BF =a ,故17BF CF =;(2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,得△EGA ∽△EHD ,利用相似三角形的性质即可求出;(3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,根据相似三角形的性质可求出BE =ED ,故可求出矩形的面积.【题目详解】解:(1)过A 作AK ⊥BC 于K ,∵sin ∠BEF =35,sin ∠FAK =35, ∴35FK AK =, 设FK =3a ,AK =5a ,∴AK =4a ,∵AB =AC ,∠BAC =90°,∴BK =CK =4a ,∴BF =a ,又∵CF =7a , ∴17BF CF = (2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,∵∠AGE =∠DHE =90°,∴△EGA ∽△EHD , ∴EH ED EG EA=, ∴·EH EA EG ED ⋅=,其中EG =BK ,∵BC =10,tan ∠ABC =12, cos ∠ABC =25, ∴BA =BC · cos ∠ABC =205, BK= BA·cos ∠ABC =202855⨯= ∴EG =8,另一方面:ED =BC =10,∴EH ·EA =80 (3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,∵BC ∥KT ,BF AF FG KE AE ED==, ∴BF KE FG DE =,同理:FG ED CG DT= ∵FG 2= BF ·CG ∴BF FG FG CG=, ∴ED 2= KE ·DT ∴KE ED DE DT= , 又∵△KEB ∽△CDT ,∴KE CD BE DT =, ∴KE ·DT =BE 2, ∴BE 2=ED 2 ∴ BE =ED∴1010100BCDE S =⨯=矩形【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.23、(1)x 1=6,x 2=﹣1;(2)﹣1≤x <1.【解题分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式组的解集即可.【题目详解】(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,x1=6,x2=﹣1;(2)()432x1x23x x⎧+≤+⎪⎨-<⎪⎩①②∵解不等式①得:x≥﹣1,解不等式②得:x<1,∴不等式组的解集为﹣1≤x<1.【题目点拨】本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.24、(1)详见解析;(2)详见解析.【解题分析】(1)根据平行线的性质结合角平分线的性质可得出∠BCA=∠BAC,进而可得出BA=BC,根据等角的余角相等结合等角对等边,即可得出AB=BE,进而可得出BE=BA=BC,此题得证;(2)根据AC2=DC•EC结合∠ACD=∠ECA可得出△ACD∽△ECA,根据相似三角形的性质可得出∠ADC=∠EAC=90°,进而可得出∠FDA=∠FAC=90°,结合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性质可证出AD:AF=AC:FC.【题目详解】(1)∵DC∥AB,∴∠DCA=∠BAC.∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.∵∠BAC+∠BAE=90°,∠ACB+∠E =90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中点;(2)∵AC2=DC•EC,∴AC DC EC AC=.∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.【题目点拨】本题考查了相似三角形的判定与性质、角平分线的性质以及等腰三角形的性质,解题的关键是:(1)利用等角对等边找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.。
2018-2019学年第二学期期中九年级数学试卷(含答案)

ABCD第4题图第6题图天水市藉口中学2018—2019学年度九年级期中考试卷数学试题A 卷(满分100分)一、选择题(共10小题,每小题4分,共40分) 1()A .BC D .2 2.函数9-=x y 中自变量x 的取值范围是( )A .x > 0B .x ≥0C .x >9D .x ≥93.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:方差若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择 ( )A .甲B .乙C .丙D .丁4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为 ( )A .60°B .50°C .45°D .30°5.已知1-=x 是一元二次方程012=++mx x 的一个根,那么m 的值是( )A .0B .1C .2D .-26.如图,AB 、CD 是⊙O 的两条弦,连接AD 、BC .若60AD ∠=︒B ,则CD ∠B 的度数为( ) A .40︒ B .50︒ C .60︒ D .70︒7.如图,每个大正方形均由边长为1的小正方形组成,则下列图中的三角形与△ABC 相似的是 ( )81a =-,则a 的取值范围是( )A .a >1B .a <1C .a ≥1D .a ≤19.如图,在Rt △ABC 中,∠C=900,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cos α的值为 ( )A .53 B .54 C .34 D .3410.已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:① a+b+c<0;② a-b+c<0;③b+2a<0;④ abc>0 . 其中所有正确结论的序号是 ( )A .③④BC .②③ D第9题图 第13题图 第18题图二、填空题(共8小题,每小题4分,共32分)11.在网络上搜索“奔跑吧,兄弟”,能搜索到与之相关的结果为35 800 000个,将35 800 000用科学记数法表示为______ . 12.分解因式:x 2-9=______.13.如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是14.已知方程 221211x x x x +-=+,设21x y x +=,则用换元法得到的方程为 ; 15.方程1352(5)(2)x x ax x x x +++=----有增根x=2,则a=16.如图,圆锥的底面半径为1,母线长为3,则这个圆锥的侧面积是 .(结果保留π) 17.若a 2-3a +1=0,则221a a+= 18.如图,二次函数342+-=x x y 的图象交x 轴于A .B 两点,交y 轴于点C ,则△ABC 的面积等于。
2022年甘肃省天水市中考数学试卷(解析版)

2022年甘肃省天水市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)﹣2的相反数是()A.﹣2B.2C.±2D.2.(3分)若∠A=40°,则∠A的余角的大小是()A.50°B.60°C.140°D.160°3.(3分)不等式3x﹣2>4的解集是()A.x>﹣2B.x<﹣2C.x>2D.x<24.(3分)用配方法解方程x2﹣2x=2时,配方后正确的是()A.(x+1)2=3B.(x+1)2=6C.(x﹣1)2=3D.(x﹣1)2=6 5.(3分)若△ABC∽△DEF,BC=6,EF=4,则=()A.B.C.D.6.(3分)2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神舟十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是()A.完成航天医学领域实验项数最多B.完成空间应用领域实验有5项C.完成人因工程技术实验项数比空间应用领域实验项数多D.完成人因工程技术实验项数占空间科学实验总项数的24.3%7.(3分)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()A.2mm B.2mm C.2mm D.4mm8.(3分)《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为()A.(+)x=1B.(﹣)x=1C.(9﹣7)x=1D.(9+7)x=1 9.(3分)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路()的长度为()A.20πm B.30πm C.40πm D.50πm10.(3分)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC →CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y 与x的函数图象如图2所示,则AB的长为()A.B.2C.3D.4二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)计算:3a3•a2=.12.(3分)因式分解:m3﹣4m=.13.(3分)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).14.(3分)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB=2cm,AC=4cm,则BD的长为cm.15.(3分)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.16.(3分)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是.17.(3分)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t =s.18.(3分)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为cm.三、解答题:本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:×﹣.20.(4分)化简:÷﹣.21.(6分)中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.如图2,∠ABC为直角,以点B为圆心,以任意长为半径画弧,交射线BA,BC分别于点D,E;以点D为圆心,以BD长为半径画弧与交于点F;再以点E为圆心,仍以BD长为半径画弧与交于点G;作射线BF,BG.(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG,∠GBF,∠FBE的大小关系.22.(6分)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF∥EG,CG⊥AF,FG=DE).数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.根据上述方案及数据,请你完成求解过程.23.(6分)第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京﹣张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A.云顶滑雪公园、B.国家跳台滑雪中心、C.国家越野滑雪中心、D.国家冬季两项中心.小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同.(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率.四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(7分)受疫情影响,某初中学校进行在线教学的同时,要求学生积极参与“增强免疫力、丰富学习生活”为主题的居家体育锻炼活动,并实施锻炼时间目标管理.为确定一个合理的学生居家锻炼时间的完成目标,学校随机抽取了30名学生周累计居家锻炼时间(单位:h)的数据作为一个样本,并对这些数据进行了收集、整理和分析,过程如下:【数据收集】7 8 6 5 9 10 4 6 7 5 11 12 8 7 64 6 3 6 8 9 10 10 13 6 7 8 35 10【数据整理】将收集的30个数据按A,B,C,D,E五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图(说明:A.3≤t<5,B.5≤t<7,C.7≤t<9,D.9≤t<11,E.11≤t≤13,其中t表示锻炼时间);【数据分析】统计量平均数众数中位数锻炼时间(h)7.3m7请根据以上信息解答下列问题:(1)填空:m=;(2)补全频数分布直方图;(3)如果学校将管理目标确定为每周不少于7h,该校有600名学生,那么估计有多少名学生能完成目标?你认为这个目标合理吗?说明理由.25.(7分)如图,B,C是反比例函数y=(k≠0)在第一象限图象上的点,过点B的直线y=x﹣1与x轴交于点A,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD,CD =3.(1)求此反比例函数的表达式;(2)求△BCE的面积.26.(8分)如图,△ABC内接于⊙O,AB,CD是⊙O的直径,E是DB延长线上一点,且∠DEC=∠ABC.(1)求证:CE是⊙O的切线;(2)若DE=4,AC=2BC,求线段CE的长.27.(8分)已知正方形ABCD,E为对角线AC上一点.【建立模型】(1)如图1,连接BE,DE.求证:BE=DE;【模型应用】(2)如图2,F是DE延长线上一点,FB⊥BE,EF交AB于点G.①判断△FBG的形状并说明理由;②若G为AB的中点,且AB=4,求AF的长.【模型迁移】(3)如图3,F是DE延长线上一点,FB⊥BE,EF交AB于点G,BE=BF.求证:GE =(﹣1)DE.28.(10分)如图1,在平面直角坐标系中,抛物线y=(x+3)(x﹣a)与x轴交于A,B (4,0)两点,点C在y轴上,且OC=OB,D,E分别是线段AC,AB上的动点(点D,E不与点A,B,C重合).(1)求此抛物线的表达式;(2)连接DE并延长交抛物线于点P,当DE⊥x轴,且AE=1时,求DP的长;(3)连接BD.①如图2,将△BCD沿x轴翻折得到△BFG,当点G在抛物线上时,求点G的坐标;②如图3,连接CE,当CD=AE时,求BD+CE的最小值.2022年甘肃省天水市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)﹣2的相反数是()A.﹣2B.2C.±2D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得﹣2的相反数是:﹣(﹣2)=2.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.(3分)若∠A=40°,则∠A的余角的大小是()A.50°B.60°C.140°D.160°【分析】根据互余两角之和为90°计算即可.【解答】解:∵∠A=40°,∴∠A的余角为:90°﹣40°=50°,故选:A.【点评】本题考查的是余角的定义,如果两个角的和等于90°,就说这两个角互为余角.3.(3分)不等式3x﹣2>4的解集是()A.x>﹣2B.x<﹣2C.x>2D.x<2【分析】按照解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1即可得出答案.【解答】解:3x﹣2>4,移项得:3x>4+2,合并同类项得:3x>6,系数化为1得:x>2.故选:C.【点评】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1是解题的关键.4.(3分)用配方法解方程x2﹣2x=2时,配方后正确的是()A.(x+1)2=3B.(x+1)2=6C.(x﹣1)2=3D.(x﹣1)2=6【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.【解答】解:x2﹣2x=2,x2﹣2x+1=2+1,即(x﹣1)2=3.故选:C.【点评】本题考查了解一元二次方程﹣配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.5.(3分)若△ABC∽△DEF,BC=6,EF=4,则=()A.B.C.D.【分析】根据△ABC∽△DEF,可以得到,然后根据BC=6,EF=4,即可得到的值.【解答】解:∵△ABC∽△DEF,∴,∵BC=6,EF=4,∴=,故选:D.【点评】本题考查相似三角形的性质,解答本题的关键是明确题意,利用相似三角形的性质解答.6.(3分)2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神舟十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是()A.完成航天医学领域实验项数最多B.完成空间应用领域实验有5项C.完成人因工程技术实验项数比空间应用领域实验项数多D.完成人因工程技术实验项数占空间科学实验总项数的24.3%【分析】应用扇形统计图用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.进行判定即可得出答案.【解答】解:A.由扇形统计图可得,完成航天医学领域实验项数最多,所以A选项说法正确,故A选项不符合题意;B.由扇形统计图可得,完成空间应用领域实验占完成总实验数的5.4%,37×5.4%≈2项,所以B选项说法错误,故B选项符合题意;C.完成人因工程技术实验占完成总实验数的24.3%,完成空间应用领域实验占完成总实验数的5.4%,所以完成人因工程技术实验项数比空间应用领域实验项数多说法正确,故C选项不符合题意;D.完成人因工程技术实验项数占空间科学实验总项数的24.3%,所以D选项说法正确,故D选项不符合题意.故选:B.【点评】本题主要考查了扇形统计图,熟练掌握扇形统计图的应用是解决本题的关键.7.(3分)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()A.2mm B.2mm C.2mm D.4mm【分析】根据正六边形的性质和题目中的数据,可以求得正六边形ABCDEF的边长.【解答】解:连接AD,CF,AD、CF交于点O,如右图所示,∵六边形ABCDEF是正六边形,AD的长约为8mm,∴∠AOF=60°,OA=OD=OF,OA和OD约为4mm,∴AF约为4mm,故选:D.【点评】本题考查多边形的对角线,解答本题的关键是明确正六边形的特点.8.(3分)《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为()A.(+)x=1B.(﹣)x=1C.(9﹣7)x=1D.(9+7)x=1【分析】设总路程为1,野鸭每天飞,大雁每天飞,当相遇的时候,根据野鸭的路程+大雁的路程=总路程即可得出答案.【解答】解:设经过x天相遇,根据题意得:x+x=1,∴(+)x=1,故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,本题的本质是相遇问题,根据等量关系:野鸭的路程+大雁的路程=总路程列出方程是解题的关键.9.(3分)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路()的长度为()A.20πm B.30πm C.40πm D.50πm【分析】根据题目中的数据和弧长公式,可以计算出这段弯路()的长度.【解答】解:∵半径OA=90m,圆心角∠AOB=80°,∴这段弯路()的长度为:=40π(m),故选:C.【点评】本题考查圆心角、弧、弦的关系,解答本题的关键是明确弧长计算公式l=.10.(3分)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC →CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y 与x的函数图象如图2所示,则AB的长为()A.B.2C.3D.4【分析】根据图1和图2判定三角形ABD为等边三角形,它的面积为3解答即可.【解答】解:在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3,∴△ABD的面积=a2=3,解得:a1=2,a2=﹣2(舍去),故选:B.【点评】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)计算:3a3•a2=3a5.【分析】根据同底数幂的乘法法则化简即可【解答】解:原式=3a3+2=3a5.故答案为:3a5.【点评】本题考查了同底数幂的乘法,掌握a m•a n=a m+n是解题的关键.12.(3分)因式分解:m3﹣4m=m(m+2)(m﹣2).【分析】原式提取m,再利用平方差公式分解即可.【解答】解:原式=m(m2﹣4)=m(m+2)(m﹣2),故答案为:m(m+2)(m﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3分)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=2(答案不唯一)(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).【点评】本题考查了一次函数的性质,掌握一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小是解题的关键.14.(3分)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB=2cm,AC=4cm,则BD的长为8cm.【分析】由菱形的性质可得AC⊥BD,BO=DO,由勾股定理可求BO,即可求解.【解答】解:∵四边形ABCD是菱形,AC=4cm,∴AC⊥BD,BO=DO,AO=CO=2cm,∵AB=2cm,∵BO==4cm,∴DO=BO=4cm,∴BD=8cm,故答案为:8.【点评】本题考查了菱形的性质,勾股定理,掌握菱形的性质是解题的关键.15.(3分)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=70°.【分析】根据圆内接四边形的对角互补即可得到结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=110°,∴∠ADC=180°﹣∠ABC=180°﹣110°=70°,故答案为:70.【点评】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的对角互补是解题的关键.16.(3分)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是∠A=90°(答案不唯一).【分析】先证四边形ABCD是平行四边形,再由矩形的判定即可得出结论.【解答】解:需添加的一个条件是∠A=90°,理由如下:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,又∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°(答案不唯一).【点评】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.17.(3分)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t =2s.【分析】把一般式化为顶点式,即可得到答案.【解答】解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,故答案为:2.【点评】本题考查二次函数的应用,解题的关键是掌握将二次函数一般式化为顶点式.18.(3分)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为cm.【分析】根据矩形的性质可得AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,从而可得∠ABD=∠BDC,然后利用直角三角形斜边上的中线可得EG=BG,从而可得∠BEG=∠ABD,进而可得∠BEG=∠BDC,再证明△EBF∽△DCB,利用相似三角形的性质可求出BF的长,最后在Rt△BEF中,利用勾股定理求出EF的长,即可解答.【解答】解:∵四边形ABCD是矩形,∴AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,∴∠ABD=∠BDC,∵AE=2cm,∴BE=AB﹣AE=6﹣2=4(cm),∵G是EF的中点,∴EG=BG=EF,∴∠BEG=∠ABD,∴∠BEG=∠BDC,∴△EBF∽△DCB,∴=,∴=,∴BF=6,∴EF===2(cm),∴BG=EF=(cm),故答案为:.【点评】本题考查了相似三角形的判定与性质,勾股定理,矩形的性质,直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线,以及相似三角形的判定与性质是解题的关键.三、解答题:本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:×﹣.【分析】根据二次根式的乘法法则和二次根式的化简计算,再合并同类二次根式即可.【解答】解:原式=﹣2=﹣.【点评】本题考查了二次根式的混合运算,掌握•=(a≥0,b≥0)是解题的关键.20.(4分)化简:÷﹣.【分析】将除法转化为乘法,因式分解,约分,根据分式的加减法法则化简即可得出答案.【解答】解:原式=•﹣=﹣==1.【点评】本题考查了分式的混合运算,考查学生运算能力,掌握运算的结果要化成最简分式或整式是解题的关键.21.(6分)中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.如图2,∠ABC为直角,以点B为圆心,以任意长为半径画弧,交射线BA,BC分别于点D,E;以点D为圆心,以BD长为半径画弧与交于点F;再以点E为圆心,仍以BD长为半径画弧与交于点G;作射线BF,BG.(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG,∠GBF,∠FBE的大小关系.【分析】(1)按题干直接画图即可.(2)连接DF,EG,可得△BDF和△BEG均为等边三角形,则∠DBF=∠EBG=60°,进而可得∠DBG=∠GBF=∠FBE=30°.【解答】解:(1)如图,射线BG,BF即为所求.(2)∠DBG=∠GBF=∠FBE.理由:连接DF,EG,则BD=BF=DF,BE=BG=EG,即△BDF和△BEG均为等边三角形,∴∠DBF=∠EBG=60°,∵∠ABC=90°,∴∠DBG=∠GBF=∠FBE=30°.【点评】本题考查尺规作图,根据题意正确作出图形是解题的关键.22.(6分)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF∥EG,CG⊥AF,FG=DE).数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.根据上述方案及数据,请你完成求解过程.【分析】设BF=xm,根据题意可得:DE=FG=1.5m,然后在Rt△CBF中,利用锐角三角函数的定义求出CF的长,再在Rt△ACF中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:设BF=xm,由题意得:DE=FG=1.5m,在Rt△CBF中,∠CBF=35°,∴CF=BF•tan35°≈0.7x(m),∵AB=8.8m,∴AF=AB+BF=(8.8+x)m,在Rt△ACF中,∠CAF=26.6°,∴tan26.6°==≈0.5,∴x=22,经检验:x=22是原方程的根,∴CG=CF+FG=0.7x+1.5=16.9(m),∴灞陵桥拱梁顶部C到水面的距离CG约为16.9m.【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.23.(6分)第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京﹣张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A.云顶滑雪公园、B.国家跳台滑雪中心、C.国家越野滑雪中心、D.国家冬季两项中心.小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同.(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,再由概率公式求解即可.【解答】解:(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是;(2)画树状图如下:共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,∴小明和小颖被分配到同一场馆做志愿者的概率为=.【点评】此题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(7分)受疫情影响,某初中学校进行在线教学的同时,要求学生积极参与“增强免疫力、丰富学习生活”为主题的居家体育锻炼活动,并实施锻炼时间目标管理.为确定一个合理的学生居家锻炼时间的完成目标,学校随机抽取了30名学生周累计居家锻炼时间(单位:h)的数据作为一个样本,并对这些数据进行了收集、整理和分析,过程如下:【数据收集】7 8 6 5 9 10 4 6 7 5 11 12 8 7 64 6 3 6 8 9 10 10 13 6 7 8 35 10【数据整理】将收集的30个数据按A,B,C,D,E五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图(说明:A.3≤t<5,B.5≤t<7,C.7≤t<9,D.9≤t<11,E.11≤t≤13,其中t表示锻炼时间);【数据分析】请根据以上信息解答下列问题:(1)填空:m=6;(2)补全频数分布直方图;(3)如果学校将管理目标确定为每周不少于7h,该校有600名学生,那么估计有多少名学生能完成目标?你认为这个目标合理吗?说明理由.【分析】(1)由众数的定义可得出答案.(2)结合收集的数据,求出C组的人数,即可补全频数分布直方图.(3)用总人数乘以样本中每周不少于7h的人数占比,即可得出答案;过半的学生都能完成目标,即目标合理.【解答】解:(1)由数据可知,6出现的次数最多,∴m=6.故答案为:6.(2)补全频数分布直方图如下:(3)600×=340(名).答:估计有340名学生能完成目标.目标合理.理由:过半的学生都能完成目标.【点评】本题考查频数分布直方图、用样本估计总体,从收集的数据中获取必要的信息是解决问题的关键.25.(7分)如图,B,C是反比例函数y=(k≠0)在第一象限图象上的点,过点B的直线y=x﹣1与x轴交于点A,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD,CD =3.(1)求此反比例函数的表达式;(2)求△BCE的面积.【分析】(1)根据直线y=x﹣1求出点A坐标,进而确定OA,AD的值,再确定点C的坐标,代入反比例函数的关系式即可;(2)求出点E坐标,进而求出EC,再求出一次函数与反比例函数在第一象限的交点B 的坐标,由三角形的面积的计算方法进行计算即可.【解答】解:(1)当y=0时,即x﹣1=0,∴x=1,即直线y=x﹣1与x轴交于点A的坐标为(1,0),∴OA=1=AD,又∵CD=3,∴点C的坐标为(2,3),而点C(2,3)在反比例函数y=的图象上,∴k=2×3=6,∴反比例函数的图象为y=;(2)方程组的正数解为,。
2020年甘肃省天水市中考数学试卷(1)

2020年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.(4分)(2020•天水)下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4|D.−√52.(4分)(2020•天水)天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×106 3.(4分)(2020•天水)某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化4.(4分)(2020•天水)某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42B.42,43C.42,42D.42,415.(4分)(2020•天水)如图所示,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为()A.50°B.55°C.60°D.65°6.(4分)(2020•天水)下列图形中,是中心对称图形但不是轴对称图形的是() A.B.C.D.7.(4分)(2020•天水)若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=cx在同一平面直角坐标系中的图象大致是()A.B.C.D.8.(4分)(2020•天水)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m9.(4分)(2020•天水)若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为() A.﹣7<a<﹣4B.﹣7≤a≤﹣4C.﹣7≤a<﹣4D.﹣7<a≤﹣4 10.(4分)(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.(4分)(2020•天水)分解因式:m3n﹣mn=.12.(4分)(2020•天水)一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为.13.(4分)(2020•天水)已知函数y=√x+2x−3,则自变量x的取值范围是.14.(4分)(2020•天水)已知a+2b=103,3a+4b=163,则a+b的值为.15.(4分)(2020•天水)如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.16.(4分)(2020•天水)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.17.(4分)(2020•天水)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.18.(4分)(2020•天水)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF 交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程)19.(8分)(2020•天水)(1)计算:4sin60°﹣|√3−2|+20200−√12+(14)﹣1. (2)先化简,再求值:1a−1−a−1a 2+2a+1÷a−1a+1,其中a =√3.20.(10分)(2020•天水)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个社区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为 人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为 度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树形图的方法求出选择回访的市民为“一男一女”的概率.21.(10分)(2020•天水)如图所示,一次函数y =mx +n (m ≠0)的图象与反比例函数y =k x (k ≠0)的图象交于第二、四象限的点A (﹣2,a )和点B (b ,﹣1),过A 点作x 轴的垂线,垂足为点C ,△AOC 的面积为4.(1)分别求出a 和b 的值;(2)结合图象直接写出mx +n >k x 中x 的取值范围;(3)在y轴上取点P,使PB﹣P A取得最大值时,求出点P的坐标.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(7分)(2020•天水)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A 处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:√2≈1.414,√3≈1.732)23.(10分)(2020•天水)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB 上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2√3,AB=6,求阴影部分的面积(结果保留π).24.(10分)(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为 ;(2)如图(2),在四边形EFGH 中,EF =EG =EH ,在边FG ,GH 上分别取中点M ,N ,连接MN .若∠FGH =120°,EF =20,求线段MN 的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为 .(用含α的式子表示)25.(10分)(2020•天水)天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.26.(13分)(2020•天水)如图所示,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为A (﹣2,0),点C 的坐标为C (0,6),对称轴为直线x =1.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4),连接AC ,BC ,DC ,DB .(1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.2020年甘肃省天水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.(4分)(2020•天水)下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4|D.−√5【解答】解:A.﹣(﹣3)=3,是正数,不符合题意;B.(﹣2)2=4,是正数,不符合题意;C.|﹣4|=4,是正数,不符合题意;D.−√5是负数,符合题意;故选:D.2.(4分)(2020•天水)天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×106【解答】解:341000=3.41×105,故选:A.3.(4分)(2020•天水)某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化【解答】解:根据正方体表面展开图可知,“相间、Z端是对面”,因此“伏与化”相对,“弘与文”相对,“扬与羲”相对,故选:D.4.(4分)(2020•天水)某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42B.42,43C.42,42D.42,41【解答】解:将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为42+422=42,故选:C .5.(4分)(2020•天水)如图所示,P A 、PB 分别与⊙O 相切于A 、B 两点,点C 为⊙O 上一点,连接AC 、BC ,若∠P =70°,则∠ACB 的度数为( )A .50°B .55°C .60°D .65°【解答】解:连接OA 、OB ,如图,∵P A 、PB 分别与⊙O 相切于A 、B 两点,∴OA ⊥P A ,OB ⊥PB ,∴∠OAP =∠OBP =90°,∴∠AOB +∠P =180°,∵∠P =70°,∴∠AOB =110°,∴∠ACB =12∠AOB =55°.故选:B .6.(4分)(2020•天水)下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,不是中心对称图形,故本选项不合题意;B 、既是轴对称图形,又是中心对称图形,故本选项不合题意;C 、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.7.(4分)(2020•天水)若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=cx在同一平面直角坐标系中的图象大致是()A.B.C.D.【解答】解:∵由函数图象交y轴的正座标可知c>0,∴反比例函数y=cx的图象必在一、三象限,故C、D错误;∵据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧,b<0,∴函数y=ax+b的图象经过一三四象限,故A错误,B正确.故选:B.8.(4分)(2020•天水)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m【解答】解:∵EB⊥AC,DC⊥AC,∴△ABE ∽△ACD , ∴AB AC=BE CD,∵BE =1.5m ,AB =1.2m ,BC =12.8m , ∴AC =AB +BC =14m , ∴1.214=1.5DC,解得,DC =17.5,即建筑物CD 的高是17.5m , 故选:A .9.(4分)(2020•天水)若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为( ) A .﹣7<a <﹣4B .﹣7≤a ≤﹣4C .﹣7≤a <﹣4D .﹣7<a ≤﹣4【解答】解:∵3x +a ≤2, ∴3x ≤2﹣a , 则x ≤2−a3, ∵不等式只有2个正整数解, ∴不等式的正整数解为1、2, 则2≤2−a3<3, 解得:﹣7<a ≤﹣4, 故选:D .10.(4分)(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( ) A .2S 2﹣SB .2S 2+SC .2S 2﹣2SD .2S 2﹣2S ﹣2【解答】解:∵2100=S , ∴2100+2101+2102+…+2199+2200 =S +2S +22S +…+299S +2100S =S (1+2+22+…+299+2100) =S (1+2100﹣2+2100)=2S2﹣S.故选:A.二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.(4分)(2020•天水)分解因式:m3n﹣mn=mn(m﹣1)(m+1).【解答】解:m3n﹣mn=mn(m2﹣1)=mn(m﹣1)(m+1),故答案为:mn(m﹣1)(m+1).12.(4分)(2020•天水)一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为13.【解答】解:∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,2+2<5,2+5>6,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.故答案为:13.13.(4分)(2020•天水)已知函数y=√x+2x−3,则自变量x的取值范围是x≥﹣2且x≠3.【解答】解:根据题意得:x+2≥0且x﹣3≠0,解得:x≥﹣2且x≠3.故答案为:x≥﹣2且x≠3.14.(4分)(2020•天水)已知a+2b=103,3a+4b=163,则a+b的值为1.【解答】解:a+2b=103①,3a+4b=163②,②﹣①得2a+2b=2,解得a+b=1.故答案为:1.15.(4分)(2020•天水)如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是√22.【解答】解:如图,连接AB .∵OA =AB =√10,OB =2√5, ∴OB 2=OA 2+AB 2, ∴∠OAB =90°,∴△AOB 是等腰直角三角形, ∴∠AOB =45°, ∴sin ∠AOB =√22,故答案为√22. 16.(4分)(2020•天水)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是83.【解答】解:设圆锥的底面半径为r , 由题意得,120π×8180=2πr ,解得,r =83, 故答案为:83.17.(4分)(2020•天水)如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为 (﹣1,5) .【解答】解:如图,过点E 作x 轴的垂线EH ,垂足为H .过点G 作x 轴的垂线GM ,垂足为M ,连接GE 、FO 交于点O ′. ∵四边形OEFG 是正方形,∴OG =EO ,∠GOM =∠OEH ,∠OGM =∠EOH , 在△OGM 与△EOH 中, {∠OGM =∠EOHOG =EO ∠GOM =∠OEH ∴△OGM ≌△EOH (ASA ) ∴GM =OH =2,OM =EH =3, ∴G (﹣3,2). ∴O ′(12,2).∵点F 与点O 关于点O ′对称, ∴点F 的坐标为 (﹣1,5). 故答案是:(﹣1,5).18.(4分)(2020•天水)如图,在边长为6的正方形ABCD 内作∠EAF =45°,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将△ADF 绕点A 顺时针旋转90°得到△ABG .若DF =3,则BE 的长为 2 .【解答】解: 法一:由题意可得, △ADF ≌△ABG ,∴DF =BG ,∠DAF =∠BAG , ∵∠DAB =90°,∠EAF =45°, ∴∠DAF +∠EAB =45°, ∴∠BAG +∠EAB =45°, ∴∠EAF =∠EAG , 在△EAG 和△EAF 中, {AG =AF∠EAG =∠EAF AE =AE, ∴△EAG ≌△EAF (SAS ), ∴GE =FE ,设BE =x ,则GE =BG +BE =3+x ,CE =6﹣x , ∴EF =3+x , ∵CD =6,DF =3, ∴CF =3, ∵∠C =90°, ∴(6﹣x )2+32=(3+x )2, 解得,x =2, 即BE =2,法二:设BE =x ,连接GF ,如下图所示,∵四边形ABCD 为正方形, ∴∠ABE =∠GCF =90°,∵△ADF 绕点A 顺时针旋转90°得到△ABG , ∴∠CAF =90°,GA =F A , ∴△GAF 为等腰直角三角形, ∵∠EAF =45°, ∴AE 垂直平分GF , ∴∠AEB +∠CGF =90°,∵在Rt △AEB 中,∠AEB +∠BAE =90°, ∴∠BAE =∠CGF , ∴△BAE ~△CGF , ∴BE CF=AB GC,∵CF =CD ﹣DF =6﹣3=3,GC =BC +BG =BC +DF =6+3=9, ∴x3=69,∴x =2, 即BE =2, 故答案为:2.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程) 19.(8分)(2020•天水)(1)计算:4sin60°﹣|√3−2|+20200−√12+(14)﹣1.(2)先化简,再求值:1a−1−a−1a 2+2a+1÷a−1a+1,其中a =√3.【解答】解:(1)原式=4×√32−(2−√3)+1﹣2√3+4 =2√3−2+√3+1﹣2√3+4 =3+√3;(2)原式=1a−1−a−1(a+1)2•a+1a−1=1a−1−1a+1=a+1 (a+1)(a−1)−a−1 (a+1)(a−1)=2(a+1)(a−1)=2a2−1,当a=√3时,原式=(√3)2−1=23−1=22=1.20.(10分)(2020•天水)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个社区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为50人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为144度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树形图的方法求出选择回访的市民为“一男一女”的概率.【解答】解:(1))∵非常满意的有18人,占36%,∴此次调查中接受调查的人数:18÷36%=50(人);故答案为:50;(2)此次调查中结果为满意的人数为:50﹣4﹣8﹣18=20(人);(3)扇形统计图中“满意”部分的圆心角为:360°×2050=144°;故答案为:144°;(4)画树形图得:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:812=23.21.(10分)(2020•天水)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=kx(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>kx中x的取值范围;(3)在y轴上取点P,使PB﹣P A取得最大值时,求出点P的坐标.【解答】解:(1)∵△AOC 的面积为4, ∴12|k |=4,解得,k =﹣8,或k =8(不符合题意舍去), ∴反比例函数的关系式为y =−8x, 把点A (﹣2,a )和点B (b ,﹣1)代入y =−8x 得, a =4,b =8; 答:a =4,b =8;(2)根据一次函数与反比例函数的图象可知,不等式mx +n >kx 的解集为x <﹣2或0<x <8; (3)∵点A (﹣2,4)关于y 轴的对称点A ′(2,4),又B (8,﹣1),则直线A ′B 与y 轴的交点即为所求的点P , 设直线A ′B 的关系式为y =cx +d , 则有{2c +d =48c +d =−1,解得,{c =−56d =173,∴直线A ′B 的关系式为y =−56x +173, ∴直线y =−56x +173与y 轴的交点坐标为(0,173), 即点P 的坐标为(0,173).四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(7分)(2020•天水)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A 处测得灯塔P 在北偏东60°方向上,继续航行30分钟后到达B 处,此时测得灯塔P 在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:√2≈1.414,√3≈1.732)【解答】解:(1)由题意得,∠P AB=90°﹣60°=30°,∠APB=90°+45°=135°,∴∠APB=180°﹣∠P AB﹣∠APB=180°﹣30°﹣135°=15°;(2)作PH⊥AB于H,如图:则△PBH是等腰直角三角形,∴BH=PH,设BH=PH=x海里,由题意得:AB=40×3060=20(海里),在Rt△APH中,tan∠P AB=tan30°=PHAH=√33,即x20+x =√33,解得:x=10√3+10≈27.32>25,且符合题意,∴海监船继续向正东方向航行安全.23.(10分)(2020•天水)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB 上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2√3,AB=6,求阴影部分的面积(结果保留π).【解答】(1)证明:连接OD,如图:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∴∠ODB=∠C=90°,即BC⊥OD,又∵OD为⊙O的半径,∴直线BC是⊙O的切线;(2)解:设OA=OD=r,则OB=6﹣r,在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,∴r2+(2√3)2=(6﹣r)2,解得:r=2,∴OB=4,∴OD=√OB2−BD2=√42−(2√3)2=2,∴OD=12OB,∴∠B=30°,∴∠DOB=180°﹣∠B﹣∠ODB=60°,∴阴影部分的面积S=S△ODB﹣S扇形DOF=12×2 √3×2−60π×22360=2√3−2π3.24.(10分)(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为√3:1.理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为√3;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为2sinα:1.(用含α的式子表示)【解答】解:性质探究:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=120°,CD⊥AB,∴∠A=∠B=30°,AD=BD,∴AB=2AD=2AC•cos30°=√3AC,∴AB:AC=√3:1.故答案为√3:1.理解运用:(1)设CA=CB=m,则AB=√3m,由题意2m+√3m=4+2√3,∴m=2,∴AC=CB=2,AB=2√3,∴AD=DB=√3,CD=AC•sin30°=1,∴S△ABC=12•AB•CD=√3.故答案为√3.(2)如图2中,连接FH.∵∠FGH=120°,EF=EG=EH,∴∠EFG=∠EGF,∠EHG=∠EGH,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=√3EF=20√3,∵FM=MG.GN=GH,∴MN=12FH=10√3.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC•sinα∴AB:AC=2sinα:1.故答案为2sin α:1.25.(10分)(2020•天水)天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元. (1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.【解答】解:(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是(x ﹣20)元, 由题意得:2000x=1200x−20,解得:x =50,经检验,x =50是原方程的解,且符合题意, 50﹣20=30,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)设购买A 种商品a 件,则购买B 商品(40﹣a )件, 由题意得:{50a +30(40−a)≤1560a ≥12(40−a), 解得403≤a ≤18,∵a 为正整数,∴a =14、15、16、17、18, ∴商店共有5种进货方案;(3)设销售A 、B 两种商品共获利y 元,由题意得:y =(80﹣50﹣m )a +(45﹣30)(40﹣a )=(15﹣m )a +600, ①当10<m <15时,15﹣m >0,y 随a 的增大而增大, ∴当a =18时,获利最大,即买18件A 商品,22件B 商品,②当m =15时,15﹣m =0,y 与a 的值无关,即(2)问中所有进货方案获利相同, ③当15<m <20时,15﹣m <0,y 随a 的增大而减小, ∴当a =14时,获利最大,即买14件A 商品,26件B 商品.26.(13分)(2020•天水)如图所示,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为A (﹣2,0),点C 的坐标为C (0,6),对称轴为直线x =1.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4),连接AC ,BC ,DC ,DB . (1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值;(3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解答】解:(1)由题意得:{−b2a=14a −2b +c =0c =6,解得:{ a =−34b =32c =6,∴抛物线的函数表达式为:y =−34x 2+32x +6;(2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,如图1所示:∵点A 的坐标为(﹣2,0),点C 的坐标为(0,6), ∴OA =2,OC =6,∴S △AOC =12OA •OC =12×2×6=6,∴S △BCD =34S △AOC =34×6=92, 当y =0时,−34x 2+32x +6=0, 解得:x 1=﹣2,x 2=4, ∴点B 的坐标为(4,0),设直线BC 的函数表达式为:y =kx +n , 则{0=4k +n6=n , 解得:{k =−32n =6,∴直线BC 的函数表达式为:y =−32x +6, ∵点D 的横坐标为m (1<m <4), ∴点D 的坐标为:(m ,−34m 2+32m +6), 点G 的坐标为:(m ,−32m +6),∴DG =−34m 2+32m +6﹣(−32m +6)=−34m 2+3m ,CF =m ,BE =4﹣m , ∴S △BCD =S △CDG +S △BDG =12DG •CF +12DG •BE =12DG ×(CF +BE )=12×(−34m 2+3m )×(m +4﹣m )=−32m 2+6m , ∴−32m 2+6m =92,解得:m 1=1(不合题意舍去),m 2=3, ∴m 的值为3;(3)由(2)得:m =3,−34m 2+32m +6=−34×32+32×3+6=154, ∴点D 的坐标为:(3,154),分三种情况讨论:①当DB 为对角线时,如图2所示: ∵四边形BNDM 是平行四边形, ∴DN ∥BM , ∴DN ∥x 轴,∴点D 与点N 关于直线x =1对称,∴N (﹣1,154),∴DN =3﹣(﹣1)=4, ∴BM =4, ∵B (4,0), ∴M (8,0);②当DM 为对角线时,如图3所示: 由①得:N (﹣1,154),DN =4,∵四边形BNDM 是平行四边形, ∴DN =BM =4, ∵B (4,0), ∴M (0,0);③当DN 为对角线时,∵四边形BNDM 是平行四边形, ∴DM =BN ,DM ∥BN , ∴∠DMB =∠MBN ,∴点D 与点N 的纵坐标相等, ∵点D (3,154),∴点N 的纵坐标为:−154, 将y =−154代入y =−34x 2+32x +6中, 得:−34x 2+32x +6=−154, 解得:x 1=1+√14,x 2=1−√14, 当x =1+√14时,如图4所示: 则N (1+√14,−154),分别过点D 、N 作x 轴的垂线,垂足分别为E 、Q , 在Rt △DEM 和Rt △NQB 中,{DM =BNDE =NQ ,∴Rt △DEM ≌Rt △NQB (HL ), ∴BQ =EM ,∵BQ=1+√14−4=√14−3,∴EM=√14−3,∵E(3,0),∴M(√14,0);当x=1−√14时,如图5所示:则N(1−√14,−15 4),同理得点M(−√14,0);综上所述,点M的坐标为(8,0)或(0,0)或(√14,0)或(−√14,0).。
2024届衡阳市逸夫中学九年级数学第一学期期末学业质量监测试题含解析

2024届衡阳市逸夫中学九年级数学第一学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)1.使分式有意义的x 的取值范是( ) A .x ≠3 B .x =3 C .x ≠0 D .x =02.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°3.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .6 4.若抛物线22(21)y x m x m =+-+与坐标轴有一个交点,则m 的取值范围是( )A .14m >B .14m <C .14m ≥D .14m = 5.电影《流浪地球》一上映就获得追捧,第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,设第一天到第三天票房收入平均每天增长的百分率为x ,则可列方程( )A .8(1+x )=11.52B .8(1+2x )=11.52C .8(1+x )2=11.52D .8(1﹣x )2=11.526.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .32或42B .3或4C .22或42D .2或47.如图,P 为线段AB 上一动点(点P 不与点A 、B 重合),在线段AB 的同侧分别作等边APC ∆和等边PBD ∆,连结AD 、BC ,交点为Q .若6AB =,求动点Q 运动路径的长为( )A .233πB .433πC .23πD .33π8.已知△ABC ∽△A 1B 1C 1,若△ABC 与△A 1B 1C 1的相似比为3:2,则△ABC 与△A 1B 1C 1的周长之比是( ) A .2:3 B .9:4 C .3:2 D .4:99.二次函数y =ax 2+bx+c (a≠1)的图象如图所示,其对称轴为直线x =﹣1,与x 轴的交点为(x 1,1)、(x 2,1),其中1<x 2<1,有下列结论:①b 2﹣4ac >1;②4a ﹣2b+c >﹣1;③﹣3<x 1<﹣2;④当m 为任意实数时,a ﹣b≤am 2+bm ;⑤3a+c =1.其中,正确的结论有( )A .①③④B .①②④C .③④⑤D .①③⑤10.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O 的位置关系是( ) A .点P 在O 上 B .点P 在O 外 C .点P 在O 内 D .无法确定二、填空题(每小题3分,共24分)11.如果两个相似三角形的相似比为1:4,那么它们的面积比为_____.12.cos30°=__________13.已知等边△ABC 的边长为4,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是_____.14.已知∠A =60°,则tan A =_____.15.在Rt △ABC 中,∠C =90°,如果AC =9,cosA =13,那么AB =________. 16.已知一元二次方程2x 2﹣5x+1=0的两根为m ,n ,则m 2+n 2=_____.17.如图,在△ABC 中,AB =AC =1,点D 、E 在直线BC 上运动,设BD =x ,CE =y .如果∠BAC =30°,∠DAE =105°,则y 与x 之间的函数关系式为________________.18.如图,ABC ∆是正三角形,D 、E 分别是BC 、AC 上的点,当ADE ∠=_______时,ABD ∆~DCE ∆.三、解答题(共66分)19.(10分)如图,在O 中,过半径OD 中点C 作AB⊥OD 交O 于A ,B 两点,且23AB =.(1)求OD 的长;(2)计算阴影部分的面积.20.(6分)如图,ABCD 中,顶点A 的坐标是()02,,//AD x 轴,BC 交y 轴于点E ,顶点C 的纵坐标是4-,ABCD的面积是24.反比例函数=k y x的图象经过点B 和D ,求反比例函数的表达式.21.(6分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)请将条形统计图补充完整;(2)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(3)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表法或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.22.(8分)小明和同学们在数学实践活动课中测量学校旗杆的高度.如图,已知他们小组站在教学楼的四楼,用测角仪看旗杆顶部的仰角为35︒,看旗杆底部的俯角是为65︒,教学楼与旗杆的水平距离是5m ,旗杆有多高(结果保留整数)?(已知sin350.57︒≈,cos350.82︒≈,tan350.70︒≈,sin650.91︒≈,cos550.42︒≈tan65 2.14︒≈)23.(8分)如图,ABC ∆为等腰三角形,AB AC =,O 是底边BC 的中点,O 与腰AB 相切于点D .(1)求证:AC 与O 相切;(2)已知5AB =,6BC =,求O 的半径. 24.(8分)(特例感知)(1)如图①,∠ABC 是⊙O 的圆周角,BC 为直径,BD 平分∠ABC 交⊙O 于点 D ,CD=3, BD=4,则点 D 到直线 AB 的距离为 .(类比迁移)(2)如图②,∠ABC 是⊙O 的圆周角,BC 为⊙O 的弦,BD 平分∠ABC 交⊙O 于点 D ,过 点 D 作 DE ⊥BC ,垂足为 E ,探索线段 AB 、BE 、BC 之间的数量关系,并说明理由.(问题解决)(3)如图③,四边形 ABCD 为⊙O 的内接四边形,∠ABC=90°,BD 平分∠ABC ,BD=2 AB=6,则△ABC 的内心与外心之间的距离为 .25.(10分)如图,在由12个小正方形构造成的网格图(每个小正方形的边长均为1)中,点A ,B ,C .(1)画出△ABC 绕点B 顺时针旋转90°后得到的△A 1B 1C 1;(2)若点D ,E 也是网格中的格点,画出△BDE ,使得△BDE 与△ABC 相似(不包括全等),并求相似比.26.(10分)如图,ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.参考答案一、选择题(每小题3分,共30分)1、A【解题分析】直接利用分式有意义的条件进而得出答案.【题目详解】分式有意义,则1-x≠0,解得:x≠1.故选A.【题目点拨】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.2、B【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB=110°,再根据切线的性质以及四边形的内角和定理即可求解.【题目详解】解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°−90°−90°−110°=70°.故选B.【题目点拨】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB的度数.3、B【解题分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【题目详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.【题目点拨】本题主要考查了多边形的外角和定理.是需要识记的内容.4、A【分析】根据抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,可知抛物线只与y轴有一个交点,抛物线与x轴没有交点,据此可解.【题目详解】解:∵抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,抛物线开口向上,m 2≥0,∴抛物线与x 轴没有交点,与y 轴有1个交点,∴(2m-1)2-4m 2<0 解得14m > 故选:A .【题目点拨】本题考查了二次函数与一元二次方程的关系,解决本题的关键是掌握判别式和抛物线与x 轴交点的关系.5、C【分析】设平均每天票房的增长率为x ,根据第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,即可得出关于x 的一元二次方程.【题目详解】解:设平均每天票房的增长率为x ,根据题意得:28(1)11.52x +=.故选:C .【题目点拨】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6、A【分析】利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可.【题目详解】解:如图所示,∵△ABC 、△ABD 都是直角三角形,∴A,B,C,D 四点共圆,∵AC=BC ,∴BAC ABC 45∠∠==︒,∴ADC ABC 45∠∠==︒,作AE CD ⊥于点E,∴△AED 是等腰直角三角形,设AE=DE=x,则AD 2x =, ∵CD=7,CE=7-x,∵AB 52=,∴AC=BC=5,在Rt△AEC 中,222AC AE EC =+,∴()22257x x =+-解得,x=3或x=4,∴AD 232x ==或42.故答案为:A.【题目点拨】本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解.7、B【分析】根据题意分析得出点Q 运动的轨迹是以AB 为弦的一段圆弧,当点P 运动到AB 的中点处时PQ 取得最大值,过点P 作OP ⊥AB ,取AQ 的中点E 作OE ⊥AQ 交PQ 于点O ,连接OA ,设半径长为R ,则根据勾股定列出方程求出R 的值,再根据弧长计算公式l=180n r π求出l 值即可. 【题目详解】解:依题意可知,点Q 运动的轨迹是以AB 为弦的一段圆弧,当点P 运动到AB 的中点处时PQ 取得最大值,如图所示,连接PQ ,取AQ 的中点E 作OE ⊥AQ 交直线PQ 于点O ,连接OA ,OB.∵P 是AB 的中点,∴PA=PB=12AB=12⨯6=3. ∵APC ∆和PBD ∆是等边三角形,∴AP=PC,PB=PD,∠APC=∠BPD=60°,∴AP=PD ,∠APD=120°. ∴∠PAD=∠ADP=30°,同理可证:∠PBQ=∠BCP=30°,∴∠PAD=∠PBQ.∵AP=PB,∴PQ ⊥AB.∴tan ∠PAQ=PQ PA∴在Rt △AOP 中,222OP OA PA +=即2223(OA OA +=解得:OA=∵sin ∠AOP=PAOA ∴∠AOP=60°. ∴∠AOB=120°.∴l=180n r π=120180π⨯⨯=3 . 故答案选B.【题目点拨】本题考查了弧长计算公式,等边三角形的性质,垂直平分线的性质,等腰三角形的性质,勾股定理,三角函数等知识,综合性较强,明确点Q 的运动轨迹是一段弧是解题的关键.8、C【分析】直接利用相似三角形的性质求解.【题目详解】解:∵△ABC 与△A 1B 1C 1的相似比为3:1,∴△ABC 与△A 1B 1C 1的周长之比3:1.故选:C .【题目点拨】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方.9、A【分析】根据函数图象和二次函数的性质,可以判断各个小题中的结论是否成立,本题得以解决.【题目详解】∵二次函数y =ax 2+bx +c (a ≠1)的图象与x 轴有两个交点,∴b 2﹣4ac >1,故①正确;∵该函数图象的对称轴是x =﹣1,当x =1时的函数值小于﹣1,∴x =﹣2时的函数值和x =1时的函数值相等,都小于﹣1,∴4a ﹣2b +c <﹣1,故②错误;∵该函数图象的对称轴是x =﹣1,与x 轴的交点为(x 1,1)、(x 2,1),其中1<x 2<1,∴﹣3<x ,1<﹣2,故③正确;∵当x =﹣1时,该函数取得最小值,∴当m 为任意实数时,a ﹣b ≤am 2+bm ,故④正确; ∵2b a-=-1, ∴b =2a .∵x =1时,y =a +b +c >1,∴3a +c >1,故⑤错误.故选:A .【题目点拨】本题考查了二次函数图象上点的坐标特征、二次函数图象与系数的关系、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.10、B【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断.【题目详解】解:∵()8,6P -,∴10= ,∵O 的直径为10,∴r=5,∵OP>5,∴点P在O外.故选:B.【题目点拨】本题考查点和直线的位置关系,当d>r时点在圆外,当d=r时,点在圆上,当d<r时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.二、填空题(每小题3分,共24分)11、1:1【解题分析】根据相似三角形的性质:相似三角形的面积比等于相似比的平方即可解得.【题目详解】∵两个相似三角形的相似比为1:4,∴它们的面积比为1:1.故答案是:1:1.【题目点拨】考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.12、2【分析】直接利用特殊角的三角函数值进而得出答案..【题目详解】cos30°=2【题目点拨】本题主要考查了特殊角的三角函数值,准确记忆特殊角的三角函数值是解题的关键.13【分析】根据旋转的性质,即可得到∠BCQ=120°,当DQ⊥CQ时,DQ的长最小,再根据勾股定理,即可得到DQ 的最小值.【题目详解】解:如图,由旋转可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵点D是AC边的中点,∴CD=2,当DQ⊥CQ时,DQ的长最小,此时,∠CDQ=30°,∴CQ=12CD=1,∴DQ22213-=,∴DQ33【题目点拨】本题主要考查线段最小值问题,关键是利用旋转、等边三角形的性质及勾股定理求解.143【分析】直接利用特殊角的三角函数值得出答案.【题目详解】tan A=tan60°33【题目点拨】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.15、27【解题分析】试题解析:1cos.3ACAAB==9.AC=解得:27.AB=故答案为27.16、214【分析】先由根与系数的关系得:两根和与两根积,再将m 2+n 2进行变形,化成和或积的形式,代入即可.【题目详解】由根与系数的关系得:m+n=52,mn=12, ∴m 2+n 2=(m+n )2-2mn=(52)2-2×12=214, 故答案为214. 【题目点拨】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如1211+x x 、x 12+x 22等等,本题是常考题型,利用完全平方公式进行转化. 17、1y x= 【解题分析】∵∠BAC=30°, AB=AC , ∴∠ACB=∠ABC=18030752-=, ∴∠ACE=∠ABD=180°-75°=105°,∵∠DAE=105°,∠BAC=30°,∴∠DAB+∠CAE=105°-30°=75°,又∵∠DAB+∠ADB=∠ABC=75°, ∴∠ADB=∠CAE.∴△ADB ∽△EAC , ∴CE AC AB DB =,即11y x=, ∴1y x=. 故答案为1y x =. 18、60°【分析】由△ABC 是正三角形可得∠B=60°,又由△ABD ∽△DCE ,根据相似三角形的对应角相等,即可得∠EDC=∠BAD ,然后利用三角形外角的性质,即可求得∠ADE 的度数【题目详解】∵△ABC 是正三角形,∴∠B=60°,∵△ABD ∽△DCE ,∴∠EDC=∠BAD ,∵∠ADC 是△ABD 的外角,∴∠ADE+∠EDC=∠B+∠BAD ,∴∠ADE=∠B=60°,【题目点拨】此题考查了相似三角形的判定与性质、等边三角形的性质以及三角形外角的性质.此题难度适中.三、解答题(共66分)19、(1)2OD =;(2)23π-【分析】(1)根据垂径定理求出,在Rt △OCB 中,由勾股定理列方程求解;(2)根据扇形面积公式和三角形面积公式即可求得阴影部分的面积.【题目详解】解:如图,连接OB ,∵AB ⊥OD ,∴AC=BC=1123322AB ,∵C 为OD 中点,∴OC=1122OD OB , 设OD=x ,在Rt △OCB 中,由勾股定理得,OC 2+BC 2=OB 2,∴(12x )22=x 2, 解得x=2∴OD=2. (2)S △OCB =11313222OC BC ∵OC=1,OB=2,∴∠BOC=60°,∴S 扇BOD =26022=3603ππ⨯ ,∴阴影部分的面积为:2332π-【题目点拨】本题考查利用垂径定理求半径长及扇形面积公式,垂径定理是解决圆中线段长的常用重要定理.20、8y x=. 【解题分析】根据题意得出AE=6,结合平行四边形的面积得出AD=BC=4,继而知点D 坐标,从而得出反比例函数解析式;【题目详解】解:顶点A 的坐标是()02,,顶点C 的纵坐标是4-, 6AE ∴=,又ABCD 的面积是24,4AD BC ∴==,则()42D ,428k ∴=⨯=,∴反比例函数解析式为8y x=. 【题目点拨】 本题主要考查待定系数法求反比例函数解析式,解题的关键是掌握平行四边形的面积公式及待定系数法求反比例函数的能力.21、(1)见解析;(2)“划龙舟”所在扇形的圆心角的度数为:90°;(3)两个项目的概率是16. 【分析】(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数,利用条形统计图以及样本数量得出喜欢广场舞的人数,补齐条形统计图即可;(2)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;(3)利用树状图法列举出所有的可能进而得出概率.【题目详解】(1)这次参与调查的村民人数为:24÷20%=120(人),喜欢广场舞的人数为:120-24-15-30-9=42(人),如图所示:(2)扇形统计图中“划龙舟”所在扇形的圆心角的度数为: 30120×360°=90°; ……………… (3)如图所示:一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率是212=16. 【题目点拨】本题考查了条形统计图和扇形统计图,树状图法与列表法求概率,仔细识图,从中找到必要的解题信息是关键.22、旗杆的高约是14m .【分析】过点B 作BC AD ⊥于点C ,由题意知,5BC =,35ABC ∠=︒,65CBD ∠=︒,根据锐角三角函数即可分别求出AC 和CD ,从而求出结论.【题目详解】解:过点B 作BC AD ⊥于点C ,由题意知,5BC =,35ABC ∠=︒,65CBD ∠=︒∵tan 65CD BC︒=, ∴5tan6510.7CD =⨯︒=m ,∵tan35AC BC︒=, ∴5tan35 3.5AC =⨯︒=m ,∴10.7 3.514.214AD =+=≈m ,答:旗杆的高约是14m .【题目点拨】此题考查的是解直角三角形的应用,掌握利用锐角三角函数解直角三角形是解决此题的关键.23、(1)详见解析;(2)⊙O 的半径为125. 【分析】(1)欲证AC 与圆O 相切,只要证明圆心O 到AC 的距离等于圆的半径即可,即连接OD,过点O 作OE ⊥AC 于E 点,证明OE=OD.(2)根据已知可求OA 的长,再由等积关系求出OD 的长. 【题目详解】证明:(1)连结OD ,过点O 作OE AC ⊥于E 点,∵AB 切O 于D ,∴⊥OD AB ,∴90ODB OEC ∠=∠=︒,又∵O 是BC 的中点,∴OB OC =, ∵AB AC =,∴B C ∠=∠,∴OBE OCE ∆≅∆,∴OE OD ,即OE 是O 的半径, ∴AC 与O 相切.(2)连接AO ,则AO BC ⊥,又O 为BC 的中点,∴3OB =,∴在Rt AOB ∆中,2222534OA AB OB =--=, ∴由等积关系得:1122OB OA AB OD =, ∴341255OD ⨯==,即O 的半径为125. 【题目点拨】本题考查的是圆的切线的性质和判定,欲证切线,作垂直OE ⊥AC 于E,证半径OE=OD ;还考查了利用面积相等来求OD .24、(1)125(2)AB+BC=2BE(3)5【分析】(1)由AB是直径可得∠BDC=90°,根据勾股定理可得BC=5过点D分别作DE⊥BC于点E,DF⊥BA于点F由BD平分∠ABC可得DE=DF=125,DF即为所求,(2)过点D分别作DE⊥BC于点E,DF⊥BA于点F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE进而可证△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易证BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如图易得四边形BEDF为正方形,BD是对角线,可得正方形边长为7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC内切圆,M为圆心,N为切点,由切线长定理可得,所以ON=5-4=1由面积法易得内切圆半径为2 【题目详解】解:(1)由AB是直径可得∠BDC=90°,根据勾股定理可得BC=5过点D分别作DE⊥BC于点E,DF⊥BA于点F由BD平分∠ABC可得DE=DF=125,DF即为所求(2)过点D分别作DE⊥BC于点E,DF⊥BA于点F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE进而可证△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易证BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如图易得四边形BEDF为正方形,BD是对角线,可得正方形边长为7 由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC 内切圆,M 为圆心,N 为切点,由切线长定理可得,所以ON=5-4=1由面积法易得内切圆半径为2 ∴610842AN +-==,5OM == 故答案:(1)125(2)AB+BC=2BE (3)5 【题目点拨】本题主要考查角平分线、三角形全等及三角形内心与外心的综合,难度较大,需灵活运用各知识求解.25、(1)如图1所示:△A 1B 1C 1,即为所求;见解析;(1)如图1所示:△BDE ,即为所求,见解析;相似比为:2:1.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(1)直接利用相似图形的性质得出符合题意的答案.【题目详解】(1)如图1所示:△A 1B 1C 1,即为所求;(1)如图1所示:△BDE ,即为所求,相似比为2:1.【题目点拨】 本题主要考查了相似变换以及旋转变换,正确得出对应点位置是解题关键.26、 (1)证明见解析;(2)78°.【分析】(1)因为CAF BAE ∠=∠,所以有BAC EAF ∠=∠,又因为AE AB AC AF ==,,所以有()BAC EAF SAS △≌△,得到EF BC =;(2)利用等腰三角形ABE 内角和定理,求得∠BAE=50°,即∠FAG=50°,又因为第一问证的三角形全等,得到28F C ∠=∠=︒,从而算出∠FGC【题目详解】(1)CAF BAE ∠=∠BAC EAF ∴∠=∠AE AB AC AF ==,()BAC EAF SAS ∴△≌△EF BC ∴=(2)65AB AE ABC =∠=︒,18065250BAE ∴∠=︒-︒⨯=︒50FAG ∴∠=︒BAC EAF △≌△28F C ∴∠=∠=︒502878FGC ∴∠=︒+︒=︒【题目点拨】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键。
2019年甘肃省天水市中考数学试卷

墙 PM 在天桥底部正前方 8 米处(PB 的长),为了方便行人推车过天桥,有关部门决定 降低坡度,使新坡面的坡度为 1: .(参考数据: 1.414, 1.732) (1)若新坡面坡角为α,求坡角α度数; (2)有关部门规定,文化墙距天桥底部小于 3 米时应拆除,天桥改造后,该文化墙 PM 是否需要拆除?请说明理由.
小针,则针尖落在黑色区域内的概率为( )
A.
B.
C.
D.
【解答】解:设正方形 ABCD 的边长为 2a,
针尖落在黑色区域内的概率
.
故选:C. 8.(4 分)如图,等边△OAB 的边长为 2,则点 B 的坐标为( )
A.(1,1)
B.(1, )
C.( ,1)
D.( , )
【解答】解:过点 B 作 BH⊥AO 于 H 点,∵△OAB 是等边三角形,
2019 年甘肃省天水市中考数学试卷
参考答案与试题解析
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分,每小题给出的四个选项中,只有 一个选项是正确的,请把正确的选项选出来)
1.(4 分)已知|a|=1,b 是 2 的相反数,则 a+b 的值为( )
A.﹣3
B.﹣1
C.﹣1 或﹣3
D.1 或﹣3
C.﹣4
D.﹣3
7.(4 分)如图,正方形 ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚 小针,则针尖落在黑色区域内的概率为( )
A.
B.
C.
8.(4 分)如图,等边△OAB 的边长为 2,则点 B 的坐标为(
2024届甘肃省天水市重点名校中考数学模试卷含解析

2024学年甘肃省天水市重点名校中考数学模试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF ⊥AC 分别交DC 于F ,交AB 于点E ,点G 是AE 中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG ;(2)OG= 12BC ;(3)△OGE 是等边三角形;(4)16AOE ABCD S S ∆=矩形.A .1B .2C .3D .42.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=03.下列说法错误的是( )A .2-的相反数是2B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是04.一元二次方程x 2﹣3x+1=0的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .以上答案都不对5.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是( )A.甲B.乙C.甲乙同样稳定D.无法确定6.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为()A.10000x﹣10=14700(140)0x+B.10000x+10=14700(140)0x+C.10000(140)0x-﹣10=14700xD.10000(140)0x-+10=14700x7.如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分∠BED,则BE的长为()A.35B.938C.7D.4﹣78.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是()A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.39.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()A.26×105B.2.6×102C.2.6×106D.260×10410.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°二、填空题(共7小题,每小题3分,满分21分)11.如图,⊙C 经过原点且与两坐标轴分别交于点A 与点B,点 B 3,0),M 是圆上一点,∠BMO=120°.⊙C 圆心C 的坐标是_____.12.计算:(π﹣3)0+(﹣13)﹣1=_____. 13.如图,有一块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .14.某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.15.化简:21211x x +=+-_____________. 16.如图,矩形ABCD 中,AB=4,BC=8,P ,Q 分别是直线BC ,AB 上的两个动点,AE=2,△AEQ 沿EQ 翻折形成△FEQ ,连接PF ,PD ,则PF+PD 的最小值是____.17.如图,在平面直角坐标系xOy 中,直线l :33x 轴交于点B 1,以OB 1为边长作等边三角形A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B 3,以A 2B 3为边长作等边三角形A 3A 2B 3,…,按此规律进行下去,则点A 3的横坐标为______;点A 2018的横坐标为______.三、解答题(共7小题,满分69分)18.(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,ABC ∆在平面直角坐标系中的位置如图所示.(1)直接写出ABC ∆关于原点O 的中心对称图形111A B C ∆各顶点坐标:1A ________1B ________1C ________; (2)将ABC ∆绕B 点逆时针旋转90︒,画出旋转后图形22A BC ∆.求ABC ∆在旋转过程中所扫过的图形的面积和点C 经过的路径长.19.(5分)抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴正半轴交于点C . (1)如图1,若A (-1,0),B (3,0),① 求抛物线2y x bx c =-++的解析式;② P 为抛物线上一点,连接AC ,PC ,若∠PCO=3∠ACO ,求点P 的横坐标;(2)如图2,D 为x 轴下方抛物线上一点,连DA ,DB ,若∠BDA+2∠BAD=90°,求点D 的纵坐标.20.(8分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值.21.(10分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M 落在如图所示的正方形网格内(包括边界)的概率.22.(10分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.(1)求证:△ADE~△ABC;(2)当AC=8,BC=6时,求DE的长.23.(12分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.24.(14分)先化简,再求值,221211111x x x x x x ⎛⎫-+-+÷ ⎪+-+⎝⎭,其中x=1.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】∵EF ⊥AC ,点G 是AE 中点,∴OG=AG=GE=12AE , ∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE 是等边三角形,故(3)正确;设AE=2a ,则OE=OG=a ,由勾股定理得,, ∵O 为AC 中点,∴,∴BC=12,在Rt △ABC 中,由勾股定理得,, ∵四边形ABCD 是矩形,∴CD=AB=3a ,∴DC=3OG ,故(1)正确;∵OG=a ,12BC=2a , ∴OG≠12BC ,故(2)错误;∵S △AOE =12,S ABCD 2,∴S △AOE =16S ABCD ,故(4)正确; 综上所述,结论正确是(1)(3)(4)共3个,故选C .【题目点拨】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.2、C【解题分析】观察可得,抛物线与x 轴有两个交点,可得240b ac - ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42b x a =-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.3、D【解题分析】试题分析:﹣2的相反数是2,A 正确;3的倒数是13,B 正确; (﹣3)﹣(﹣5)=﹣3+5=2,C 正确;﹣11,0,4这三个数中最小的数是﹣11,D 错误,故选D .考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.4、B【解题分析】首先确定a=1,b=-3,c=1,然后求出△=b 2-4ac 的值,进而作出判断.【题目详解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0两个不相等的实数根;故选B.【题目点拨】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.5、A【解题分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【题目详解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙两名同学成绩更稳定的是甲;故选A.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、B【解题分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【题目详解】解:设第一批购进x件衬衫,则所列方程为:10000x +10=()147001400x+.故选B.【题目点拨】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7、D【解题分析】首先根据矩形的性质,可知AB=CD=3,AD=BC=4,∠D=90°,AD ∥BC ,然后根据AE 平分∠BED 求得ED=AD ;利用勾股定理求得EC 的长,进而求得BE 的长.【题目详解】∵四边形ABCD 是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD ∥BC ,∴∠DAE=∠BEA ,∵AE 是∠DEB 的平分线,∴∠BEA=∠AED ,∴∠DAE=∠AED ,∴DE=AD=4,再Rt △DEC 中,,∴.故答案选D.【题目点拨】本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.8、D【解题分析】解:A .平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意; B .按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C .数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D .这组数据的方差是S 2=15[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D .点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.9、C【解题分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【题目详解】260万=2600000=62.610⨯.故选C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为na10⨯的形式,其中1a10≤<,n为整数,表示时关键要正确确定a的值以及n的值.10、B【解题分析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,二、填空题(共7小题,每小题3分,满分21分)11、(32,12)【解题分析】连接AB,OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO以及∠BCO的度数,在Rt△COD中,解直角三角形即可解决问题;【题目详解】连接AB,OC,∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C作CD⊥OB于D,则OD=12OB,∠DCB=∠DCO=60°,∵B(30),∴在Rt△COD中.CD=OD•tan30°=12,∴C(12),故答案为C(12).【题目点拨】本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键.12、-1【解题分析】先计算0指数幂和负指数幂,再相减.【题目详解】(π﹣3)0+(﹣13)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【题目点拨】考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a-1=1 a .13、1【解题分析】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它们都加上四边形ABCF 的面积,可得到四边形AECF 的面积=正方形的面积=1. 14、5750 【解题分析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答 【题目详解】∵甲产品每袋售价72元,则利润率为20%. 设甲产品的成本价格为b 元, ∴72-bb=20%, ∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元, ∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋, 根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩ , ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有 W =60m +40n +xn ,∴W =60m +40n +20n ﹣250=60(m +n )﹣250, ∵m +n ≤100, ∴W ≤6250;∴生产甲乙产品的实际成本最多为5750元, 故答案为5750; 【题目点拨】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格 15、11x - 【解题分析】根据分式的运算法则即可求解. 【题目详解】原式=1211 (1)(1)(1)(1)(1)(1)1x xx x x x x x x -++==+-+-+--.故答案为:11 x-.【题目点拨】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.16、1【解题分析】如图作点D关于BC的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=E D′﹣EF.【题目详解】如图作点D关于BC的对称点D′,连接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′=2268+=10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值为1,故答案为1.【题目点拨】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.17、722018212- 【解题分析】利用一次函数图象上点的坐标特征可求出点B 1的坐标,根据等边三角形的性质可求出点A 1的坐标,同理可得出点B 2、A 2、A 3的坐标,根据点A n 坐标的变化即可得出结论. 【题目详解】当y=0,解得:x=1,∴点B 1的坐标为(1,0), ∵A 1OB 1为等边三角形,∴点A 1的坐标为(12.当y=2时.有3x-3=2,解得:x=52,∴点B 2的坐标为(52, ∵A 2A 1B 2为等边三角形,∴点A 2的坐标为(32).同理,可求出点A 3的坐标为(72),点A 2018的坐标为(2018212-. 故答案为72;2018212-.【题目点拨】本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点A n 横坐标的变化是解题的关键.三、解答题(共7小题,满分69分)18、(1)1(3,3)A -,1(4,1)B -,1(0,2)C -;(2)作图见解析,面积71724π=+,l =. 【解题分析】(1)由ABC ∆在平面直角坐标系中的位置可得A 、B 、C 的坐标,根据关于原点对称的点的坐标特点即可得1A 、1B 、1C 的坐标;(2)由旋转的性质可画出旋转后图形22A BC ∆,利用面积的和差计算出22∆A BC S ,然后根据扇形的面积公式求出2扇形CBC S ,利用ABC ∆旋转过程中扫过的面积222S A BC CBC S S ∆+=扇形进行计算即可.再利用弧长公式求出点C 所经过的路径长. 【题目详解】解:(1)由ABC ∆在平面直角坐标系中的位置可得:(3,3)-A ,(4,1)B -,(0,2)C ,∵111A B C ∆与ABC ∆关于原点对称, ∴1(3,3)A -,1(4,1)B -,1(0,2)C - (2)如图所示,22A BC ∆即为所求,∵(4,1)B -,(0,2)C ,∴22(40)(12)17=--+-=BC∴2扇形CBC S 2290(17)1734604πππ⋅⨯===BC , ∵22∆A BC S 1117421213142222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴ABC ∆在旋转过程中所扫过的面积:222扇形∆+=A BC CBC S S S 71724π=+ 点C 所经过的路径:9017171802π==l .【题目点拨】本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键. 19、(1)①y=-x 2+2x+3②3513(2)-1 【解题分析】分析:(1)①把A 、B 的坐标代入解析式,解方程组即可得到结论;②延长CP 交x 轴于点E ,在x 轴上取点D 使CD =CA ,作EN ⊥CD 交CD 的延长线于N .由CD =CA ,OC ⊥AD ,得到∠DCO =∠ACO .由∠PCO =3∠ACO ,得到∠ACD =∠ECD ,从而有tan ∠ACD =tan ∠ECD ,AI EN CI CN =,即可得出AI 、CI 的长,进而得到34AI EN CI CN ==.设EN =3x ,则CN =4x ,由tan ∠CDO =tan ∠EDN ,得到31EN OC DN OD ==,故设DN =x ,则CD =CN -DN =3x =10,解方程即可得出E 的坐标,进而求出CE 的直线解析式,联立解方程组即可得到结论;(2)作DI ⊥x 轴,垂足为I .可以证明△EBD ∽△DBC ,由相似三角形对应边成比例得到BI ID ID AI=, 即D B D D D Ax x y y x x --=--,整理得()22D D A B D A B y x x x x x x =-++.令y =0,得:20x bx c -++=. 故A B A B x x b x x c +==-,,从而得到22D D D y x bx c =--.由2D D D y x bx c =-++,得到2D D y y =-,解方程即可得到结论.详解:(1)①把A (-1,0),B (3,0)代入2y x bx c =-++得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴223y x x =-++②延长CP 交x 轴于点E ,在x 轴上取点D 使CD =CA ,作EN ⊥CD 交CD 的延长线于N . ∵CD =CA ,OC ⊥AD ,∴ ∠DCO =∠ACO .∵∠PCO =3∠ACO ,∴∠ACD =∠ECD ,∴tan ∠ACD =tan ∠ECD ,∴AI ENCI CN=,AI =10AD OC CD ⨯=∴CI 2210CA AI -=,∴34AI EN CI CN ==. 设EN =3x ,则CN =4x . ∵tan ∠CDO =tan ∠EDN , ∴31EN OC DN OD ==,∴DN =x ,∴CD =CN -DN =3x 10∴103x =,∴DE =103 ,E (133,0).CE 的直线解析式为:9313y x =-+, 2133923y x y x x ⎧=-+⎪⎨⎪=-++⎩ 2923313x x x -++=-+,解得:1235013x x ==,. 点P 的横坐标3513 .(2)作DI ⊥x 轴,垂足为I .∵∠BDA +2∠BAD =90°,∴∠DBI +∠BAD =90°. ∵∠BDI +∠DBI =90°,∴∠BAD =∠BDI . ∵∠BID =∠DIA ,∴△EBD ∽△DBC ,∴BI IDID AI=, ∴D B DD D Ax x y y x x --=--, ∴()22D D A B D A B y x x x x x x =-++.令y =0,得:20x bx c -++=.∴A B A B x x b x x c +==-,,∴()222D D A B D A B D D y x x x x x x x bx c =-++=--.∵2D D D y x bx c =-++, ∴2D D y y =-,解得:y D =0或-1. ∵D 为x 轴下方一点, ∴1D y =-, ∴D 的纵坐标-1 .点睛:本题是二次函数的综合题.考查了二次函数解析式、性质,相似三角形的判定与性质,根与系数的关系.综合性比较强,难度较大.20、(1)k=b2+4b;(2).【解题分析】试题分析:(1)分别求出点B的坐标,即可解答.(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=+4,∵点B在直线y=+4上,∴B(b,b+4),∵点B在双曲线y=上,∴B(b,),令b+4=得(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点A、B在双曲线y=上,∴3b•b=,解得b=1,∴k=3×1××1=.考点:反比例函数综合题.21、(1);(2)列表见解析,.【解题分析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华小丽-1 0 2-1 (-1,-1)(-1,0)(-1,2)0 (0,-1)(0,0)(0,2)2 (2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,∴P(点M落在如图所示的正方形网格内)==.考点:1列表或树状图求概率;2平面直角坐标系.22、(1)见解析;(2)154 DE .【解题分析】(1)根据两角对应相等,两三角形相似即可判定;(2)利用相似三角形的性质即可解决问题.【题目详解】(1)∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB.(2)在Rt△ABC中,∵AC=8,BC=6,∴AB2268=+=1.∵DE垂直平分AB,∴AE=EB=2.∵△AED∽△ACB,∴DE AEBC AC=,∴568DE=,∴DE154=.【题目点拨】本题考查了相似三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.23、(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解题分析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根24、1.【解题分析】先根据分式的运算法则进行化简,再代入求值.【题目详解】解:原式=()×=×=;将x=1代入原式==1.【题目点拨】分式的化简求值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
015年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)1.(4分)(2015•天水)若a与1互为相反数,则|a+1|等于()A.﹣1 B. 0 C. 1 D. 22.(4分)(2015•天水)如图是某几何体的三视图,该几何体是()A.圆柱 B.圆锥 C.正三棱柱 D.正三棱锥3.(4分)(2015•天水)某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A. 6.7×10﹣5 B. 6.7×10﹣6 C. 0.67×10﹣5 D. 6.7×10﹣64.(4分)(2015•天水)在天水市汉字听写大赛中,10名学生得分情况如表人数 3 4 2 1分数 80 85 90 95那么这10名学生所得分数的中位数和众数分别是()A. 85和82.5 B. 85.5和85 C. 85和85 D. 85.5和805.(4分)(2015•天水)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是() A.﹣3 B.﹣1 C. 2 D. 36.(4分)(2015•天水)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A. B. C.或 D.或7.(4分)(2015•天水)如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A. 65° B. 55° C. 50° D. 25°8.(4分)(2015•天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A. 2 B. 3 C. 4 D. 59.(4分)(2015•天水)如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(C点与A 点不重合),CF⊥CD交AB于点F,DE⊥CD交AB于点E,G为半圆弧上的中点.当点C在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.10.(4分)(2015•天水)定义运算:a⊗b=a(1﹣b).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④ B.①③ C.②③④ D.①②④二、填空题(本大题共8小题,每小题4分,共32分。
只要求填写最简结果)11.(4分)(2015•天水)相切两圆的半径分别是5和3,则该两圆的圆心距是.12.(4分)(2015•天水)不等式组的所有整数解是.13.(4分)(2015•天水)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED 的正切值为.14.(4分)(2015•天水)一元二次方程x2+3﹣2x=0的解是.15.(4分)(2015•天水)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.16.(4分)(2015•天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.17.(4分)(2015•天水)下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有个.18.(4分)(2015•天水)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为.三、解答题(本大题共3小题,共28分。
解答时写出必要的文字说明及演算过程。
)19.(9分)(2015•天水)计算:(1)(π﹣3)0+﹣2cos45°﹣(2)若x+=3,求的值.20.(9分)(2015•天水)2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)21.(10分)(2015•天水)如图,在平面直角坐标系内,O为原点,点A的坐标为(﹣3,0),经过A、O两点作半径为的⊙C,交y轴的负半轴于点B.(1)求B点的坐标;(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理证明过程。
)22.(8分)(2015•天水)钓鱼岛是我国固有领土.某校七年级(15)班举行“爱国教育”为主题班会时,就有关钓鱼岛新闻的获取途径,对本班50名学生进行调查(要求每位同学,只选自己最认可的一项),并绘制如图所示的扇形统计图.(1)该班学生选择“报刊”的有人.在扇形统计图中,“其它”所在扇形区域的圆心角是度.(直接填结果)(2)如果该校七年级有1500名学生,利用样本估计选择“网站”的七年级学生约有人.(直接填结果)(3)如果七年级(15)班班委会就这5种获取途径中任选两种对全校学生进行调查,求恰好选用“网站”和“课堂”的概率.(用树状图或列表法分析解答)23.(8分)(2015•天水)天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?24.(10分)(2015•天水)如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m、n的值并写出该反比例函数的解析式.(2)点E在线段CD上,S△ABE=10,求点E的坐标.25.(12分)(2015•天水)如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC,与DE交于点P.求证:(1)AC•PD=AP•BC;(2)PE=PD.26.(12分)(2015•天水)在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.2015年甘肃省天水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)1.(4分)(2015•天水)若a与1互为相反数,则|a+1|等于()A.﹣1 B. 0 C. 1 D. 2考点:绝对值;相反数.分析:根据绝对值和相反数的定义求解即可.解答:解:因为互为相反数的两数和为0,所以a+1=0;因为0的绝对值是0,则|a+1|=|0|=0.故选B.点评:本题考查了绝对值与相反数,绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.(4分)(2015•天水)如图是某几何体的三视图,该几何体是()A.圆柱 B.圆锥 C.正三棱柱 D.正三棱锥考点:由三视图判断几何体.分析:根据三视图易得此几何体为圆锥.解答:解:根据几何体的三视图即可知道几何体是圆锥.故选B.点评:此题主要考查了由三视图判断几何体的应用,关键是能理解三视图的意义,培养了学生的观察图形的能力.3.(4分)(2015•天水)某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为() A. 6.7×10﹣5 B. 6.7×10﹣6 C. 0.67×10﹣5 D. 6.7×10﹣6考点:科学记数法—表示较小的数.分析:直接根据科学计数法的表示方法即可得出结论.解答:解:∵0.000067中第一位非零数字前有5个0,∴0.000067用科学记数法表示为6.7×10﹣5.故选A.点评:本题考查的是科学计数法,再用科学计数法表示小于0的数时,n的值等于第一位非零数字前所有0的个数(含小数点前的0).4.(4分)(2015•天水)在天水市汉字听写大赛中,10名学生得分情况如表人数 3 4 2 1分数 80 85 90 95那么这10名学生所得分数的中位数和众数分别是()A. 85和82.5 B. 85.5和85 C. 85和85 D. 85.5和80考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解答:解:在这一组数据中85是出现次数最多的,故众数是85;而将这组数据从小到大的顺序排列80,80,80,85,85,85,85,90,90,95,处于中间位置的那个数是85,85,那么由中位数的定义可知,这组数据的中位数是=85;故选:C.点评:本题为统计题,考查极差、众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.(4分)(2015•天水)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是() A.﹣3 B.﹣1 C. 2 D. 3考点:二次函数图象上点的坐标特征.专题:计算题.分析:根据二次函数图象上点的坐标特征,把(1,1)代入解析式可得到a+b的值,然后计算a+b+1的值.解答:解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴a+b+1=3.故选D.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.6.(4分)(2015•天水)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A. B. C.或 D.或考点:几何体的展开图.专题:计算题.分析:分8为底面周长与6为底面周长两种情况,求出底面半径即可.解答:解:若6为圆柱的高,8为底面周长,此时底面半径为=;若8为圆柱的高,6为底面周长,此时底面半径为=,故选C.点评:此题考查了几何体的展开图,利用了分类讨论的思想,分类讨论时注意不重不漏,考虑问题要全面.7.(4分)(2015•天水)如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A. 65° B. 55° C. 50° D. 25°考点:平行线的性质;翻折变换(折叠问题).分析:先根据平行线的性质求出∠DEF的度数,再由图形翻折变换的性质求出∠DED′的度数,根据补角的定义即可得出结论.解答:解:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,∴∠DED′=2∠DEF=130°,∴∠AED′=180°﹣130°=50°.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.8.(4分)(2015•天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A. 2 B. 3 C. 4 D. 5考点:等腰直角三角形;点到直线的距离.分析:首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长与比较得出答案.解答:解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=2,CD=,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=2•sin45°=2•=2>,所以在AB和AD边上有符合P到BD的距离为的点2个,故选A.点评:本题考查了解直角三角形和点到直线的距离,解题的关键是先求出各边上点到BD的最大距离比较得出答案.9.(4分)(2015•天水)如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(C点与A 点不重合),CF⊥CD交AB于点F,DE⊥CD交AB于点E,G为半圆弧上的中点.当点C在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.考点:动点问题的函数图象.分析:根据弦CD为定长可以知道无论点C怎么运动弦CD的弦心距为定值,据此可以得到函数的图象.解答:解:作OH⊥CD于点H,∴H为CD的中点,∵CF⊥CD交AB于F,DE⊥CD交AB于E,∴OH为直角梯形的中位线,∵弦CD为定长,∴CF+DE=y为定值,故选B.点评:本题考查了动点问题的函数图象,解题的关键是化动为静.10.(4分)(2015•天水)定义运算:a⊗b=a(1﹣b).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④ B.①③ C.②③④ D.①②④考点:整式的混合运算;有理数的混合运算.专题:新定义.分析:各项利用题中的新定义计算得到结果,即可做出判断.解答:解:根据题意得:2⊗(﹣2)=2×(1+2)=6,选项①正确;a⊗b=a(1﹣b)=a﹣ab,b⊗a=b(1﹣a)=b﹣ab,不一定相等,选项②错误;(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a+b﹣a2﹣b2≠2ab,选项③错误;若a⊗b=a(1﹣b)=0,则a=0或b=1,选项④正确,故选A点评:此题考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共8小题,每小题4分,共32分。