计算方法实验四拉格朗日插值实验报告
《计算方法》实验四插值法

《计算方法》实验四插值法
一、实验目的:
掌握拉格朗日插以及多项式插值的震荡问题
二、实验任务:
考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时,是否也更加靠近被逼近的函数。
龙格(Runge)给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数
三、实验内容:
考虑区间[-1,1]的一个等距划分,分点为
则拉格朗日插值多项式为
其中的是n次拉格朗日插值基函数。
四、上机习题:
(1)选择不断增大的分点数目n=2,3….,画出原函数f(x)及插值多项式函数在[-1,1]上的图像,比较并分析实验结果。
(2)选择其他的函数,例如定义在区间[-5,5]上的函数
重复上述的实验看其结果如何。
(3)区间[a,b]上切比雪夫点的定义为
以为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果。
lagrange插值法上机实践报告

五、计算结果的分析
三次Lagrange插值多项式为:
;
2.125000000000000; 0.375000000000000; 3.625000000000000.
六、计算中出现的问题,解决方法及体会
从上面的试验结果中我们可以看出拉格朗日插值法在实际中的巨大作用,它能使因试验得到的复杂数据处理更简单化,对于一些没有明确函数关系的数据处理,通过插值法构造的近似函数能有效的反映原数据的特性,又在插值法中,拉格朗日插值是一种多节点选取的插值法,其构造结果更加渐进真实结果,则在实际中用的更多,所以在今后的操作中,如何得到更加近似于原试验数据的构造函数,即如何减小拉格朗日插值多项式误差计算问题是我们以后做研究时要重点关注和去解决的难点。
四、数值结果五、计算结果的分析 六、计算中出现的问题,解决方法及体会
一、实验目的、内容
实验目的:
1.了解lagrange插值法的基本原理和方法;
2.掌握拉格郎日插值多项式的用法,适用范围及精确度;
3.学习掌握MATLAB软件有关的命令。
内容:
已知数据点 ,求三次Lagrange插值多项式 , 并求
二、相关背景知识介绍
令
其中 为以 为节点的n次插值基函数,则 是一次数不超过n的多项式,且满足
, j=0,1,…,n
再由插值多项式的唯一性,得
上式表示的插值多项式称为拉格朗日(Lagrange)插值多项式。
三、代码(Matlab)
functiony = lagrange(x0,y0,x)
n = length(x0);
m = length(x);
(3)拉格朗日插值法的概述
拉格朗日插值用来求n个节点的(n-1)次插值多项式,它就是线性插值和抛物线插值的推广和延伸。我们设有n个节点,则拉格朗日插值的表达式表示为:
实验四用MATLAB实现拉格朗日插值、分段线性插值

实验四用MATLAB实现拉格朗日插值、分段线性插值一、实验目的:1)学会使用MATLAB软件;2)会使用MATLAB软件进行拉格朗日插值算法和分段线性差值算法;二、实验内容:1用MATLAB实现y = 1./(x.^2+1);(-1<=x<=1)的拉格朗日插值、分段线性2.选择以下函数,在n个节点上分别用分段线性和三次样条插值的方法,计算m个插值点的函数值,通过数值和图形的输出,将插值结果与精确值进行比较,适当增加n,再作比较,由此作初步分析:(1).y=sinx;( 0≤x≤2π)(2).y=(1-x^2)(-1≤x≤1)三、实验方法与步骤:问题一用拉格朗日插值法1)定义函数:y = 1./(x.^2+1);将其保存在f.m 文件中,程序如下:function y = f1(x)y = 1./(x.^2+1);2)定义拉格朗日插值函数:将其保存在lagrange.m 文件中,具体实现程序编程如下:function y = lagrange(x0,y0,x)m = length(x); /区间长度/n = length(x0);for i = 1:nl(i) = 1;endfor i = 1:mfor j = 1:nfor k = 1:nif j == kcontinue;endl(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j); endendendy = 0;for i = 1:ny = y0(i) * l(i) + y;end3)建立测试程序,保存在text.m文件中,实现画图:x=-1:0.001:1;y = 1./(x.^2+1);p=polyfit(x,y,n);py=vpa(poly2sym(p),10)plot_x=-5:0.001:5;f1=polyval(p,plot_x);figureplot(x,y,‘r',plot_x,f1)二分段线性插值:建立div_linear.m文件。
插值数值实验报告(3篇)

第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
拉格朗日插值实验报告

引言概述:
拉格朗日插值是一种常用的数值分析方法,旨在通过已知的离散数据点来近似拟合出一个多项式函数,从而实现对未知数据点的预测和估计。
该方法在信号处理、图像处理、金融模型和机器学习等领域具有广泛的应用。
本实验报告将详细介绍拉格朗日插值的原理、算法和实验结果。
正文内容:
1.拉格朗日插值的原理
1.1多项式插值的概念
1.2拉格朗日插值多项式的形式
1.3拉格朗日插值多项式的唯一性证明
2.拉格朗日插值的算法
2.1插值多项式的计算方法
2.2插值多项式的复杂度分析
2.3多点插值方法的优缺点
3.拉格朗日插值的实验设计
3.1实验目的和步骤
3.2数据采集和预处理
3.3插值多项式的建模
3.4实验环境和工具选择
3.5实验结果分析和评估
4.拉格朗日插值的应用案例
4.1信号处理领域中的插值应用
4.2图像处理中的插值算法
4.3金融模型中的拉格朗日插值
4.4机器学习中的插值方法
5.拉格朗日插值的改进和发展
5.1经典拉格朗日插值的局限性
5.2最小二乘拉格朗日插值的改进
5.3多项式插值的其他方法
5.4拉格朗日插值在新领域的应用前景
总结:
拉格朗日插值作为一种经典的数值分析方法,在实际应用中具有广泛的用途。
本文通过介绍拉格朗日插值的原理和算法,以及实验设计和应用案例,全面展示了该方法的特点和优势。
同时,本文还指出了经典拉格朗日插值的局限性,并介绍了一些改进和发展的方向。
可以预见,拉格朗日插值在信号处理、图像处理、金融模型和机器学习等领域将继续发挥重要作用。
计算方法上机实验报告——拉格朗日插值问题

计算方法上机实验报告——拉格朗日插值问题一、方法原理n次拉格朗日插值多项式为:Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1)二、主要思路使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。
对节点xi(i=0,1,…,n)中任一点xk(0<=k<=n)作一n次多项式lk(xk),使它在该点上取值为1,而在其余点xi(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x)上式表明:n个点xi(i=0,1,…,k-1,k+1,…,n)都是lk(x)的零点。
可求得lk三.计算方法及过程:1.输入节点的个数n2.输入各个节点的横纵坐标3.输入插值点4.调用函数,返回z函数语句与形参说明程序源代码如下:形参与函数类型参数意义intn节点的个数doublex[n](double*x)存放n个节点的值doubley[n](double*y)存放n个节点相对应的函数值doublep指定插值点的值doublefun()函数返回一个双精度实型函数值,即插值点p处的近似函数值#include<iostream>#include<math.h>usingnamespacestd;#defineN100doublefun(double*x,double*y,intn,doublep);voidmain(){inti,n;cout<<"输入节点的个数n:";cin>>n;doublex[N],y[N],p;cout<<"pleaseinputxiangliangx="<<endl;for(i=0;i<n;i++)cin>>x[i];cout<<"pleaseinputxiangliangy="<<endl;for(i=0;i<n;i++)cin>>y[i];cout<<"pleaseinputLagelangrichazhiJieDianp="<<endl;cin>>p;cout<<"TheAnswer="<<fun(x,y,n,p)<<endl;system("pause");}doublefun(doublex[],doubley[],intn,doublep){doublez=0,s=1.0;intk=0,i=0;doubleL[N];while(k<n){if(k==0){for(i=1;i<n;i++)s=s*(p-x[i])/(x[0]-x[i]);L[0]=s*y[0];k=k+1;}else{s=1.0;for(i=0;i<=k-1;i++)s=s*((p-x[i])/(x[k]-x[i]));for(i=k+1;i<n;i++)s=s*((p-x[i])/(x[k]-x[i]));L[k]=s*y[k];k++;}}for(i=0;i<n;i++)z=z+L[i];returnz;}四.运行结果测试:五.实验分析n=2时,为一次插值,即线性插值n=3时,为二次插值,即抛物线插值n=1,此时只有一个节点,插值点的值就是该节点的函数值n<1时,结果都是返回0的;这里做了n=0和n=-7两种情况3<n<100时,也都有相应的答案常用的是线性插值和抛物线插值,显然,抛物线精度相对高些n次插值多项式Ln(x)通常是次数为n的多项式,特殊情况可能次数小于n.例如:通过三点的二次插值多项式L2(x),如果三点共线,则y=L2(x)就是一条直线,而不是抛物线,这时L2(x)是一次式。
拉格朗日插值实验报告
拉格朗日插值实验报告一、实验目的本实验旨在通过实际实验,深入理解拉格朗日插值法的原理和应用,掌握其计算过程和相关技巧。
二、实验原理Pn(x) = ∑ [yi * li(x)]其中,li(x)称为拉格朗日基函数,具体的计算公式如下:li(x) = ∏ [(x-xj)/(xi-xj)] (i≠j)利用拉格朗日插值法可以对数据进行插值计算,从而得到原函数未知的点的函数值。
三、实验步骤1.根据实验要求,选择一组离散的数据点,确保它们在横坐标轴上不共线。
2. 使用拉格朗日插值法计算插值多项式的各个基函数li(x)。
3.对插值多项式进行求和,得到最终的插值多项式Pn(x)。
4.在给定的范围内选择一些未知数据点,利用插值多项式Pn(x)计算其函数值。
5.将实际计算的函数值与原函数值进行对比,评估插值方法的准确性和精确度。
四、实验结果以实验要求给定的数据点为例,具体数据如下:x:1,2,3,4,5,6y:5,19,43,79,127,187根据拉格朗日插值法的计算公式,可以得到以下结果:l0(x)=(x-2)(x-3)(x-4)(x-5)(x-6)/(-120)l1(x)=(x-1)(x-3)(x-4)(x-5)(x-6)/120l2(x)=(x-1)(x-2)(x-4)(x-5)(x-6)/(-48)l3(x)=(x-1)(x-2)(x-3)(x-5)(x-6)/48l4(x)=(x-1)(x-2)(x-3)(x-4)(x-6)/(-20)l5(x)=(x-1)(x-2)(x-3)(x-4)(x-5)/20插值多项式Pn(x)=5*l0(x)+19*l1(x)+43*l2(x)+79*l3(x)+127*l4(x)+187*l5(x)综合以上计算结果,可以对给定范围内的未知数据点进行插值计算,从而得到相应的函数值。
五、实验分析与结论在实际实验中,我们可以利用拉格朗日插值法对任意给定的函数进行逼近计算,从而得到函数在离散数据点之间的近似值。
拉格朗日插值法实验报告
拉格朗日插值法实验报告一、实验目的本实验旨在通过使用拉格朗日插值法,以给定的一些数据点为基础,来预测其他未给定数据点的函数值。
通过实验,掌握拉格朗日插值法的具体计算步骤和应用范围。
二、实验原理给定 n+1 个互异的点 (x0, y0), (x1, y1), ..., (xn, yn),其中n 为自然数,我们希望通过这些点来构建一个多项式函数 P(x),满足P(xi) = yi,其中 i = 0, 1, ..., n。
构建多项式的具体步骤如下:1. 对于每个 xi,令Li(x) = ∏ (x - xj) / (xi - xj),其中 j ≠ i。
2. 最终的多项式P(x) = ∑ yi * Li(x)。
三、实验步骤1. 给定一组数据点 (x0, y0), (x1, y1), ..., (xn, yn)。
2. 对于每个 xi,计算Li(x) = ∏ (x - xj) / (xi - xj),其中 j ≠ i。
3. 构建多项式P(x) = ∑ yi * Li(x)。
4.给定一个新的x值,使用多项式P(x)预测对应的函数值。
四、实验结果和分析在本实验中,我们给定了如下的一组数据点:(0,1),(1,5),(2,17),(3,41),(4,83)。
根据计算步骤,我们计算出每个Li(x)和多项式P(x)的具体形式如下:L0(x)=(x-1)(x-2)(x-3)(x-4)/(-24)L1(x)=(x-0)(x-2)(x-3)(x-4)/6L2(x)=(x-0)(x-1)(x-3)(x-4)/(-4)L3(x)=(x-0)(x-1)(x-2)(x-4)/6L4(x)=(x-0)(x-1)(x-2)(x-3)/(-24)P(x)=1L0(x)+5L1(x)+17L2(x)+41L3(x)+83L4(x)使用上述多项式预测x=5时的函数值,得到P(5)=309我们可以将预测值与实际值进行比较,确认预测的准确性。
如果有多组数据点,我们可以使用更多的数据点来构建多项式,提高预测的精度。
拉格朗日插值法实验报告
拉格朗日插值法实验报告一、实验目的1、学习和掌握拉格朗日插值多项式。
2、运用拉格朗日插值多项式进行计算。
二、算法步骤函数定义double lgrr(int n,double X)输入所求节点x和已知的节点数n输出插值结果s步骤:1、输入n对数(x[i],y[i])(i=0--n)2、令s=03、对于 i=0-n T=y[i]对j=0- n但j!=i T=T*(X-x[j])/(x[i]-x[j]) 令s=s+T4、输出结果三流程图四、原程序#include<stdio.h>main(){double X;int n;double lgrr(int n,double X);printf("input the aim number'X' ");printf("input the number of pairs of numbers 'n':");scanf("%lf%d",&X,&n);lgrr(n,X);return 0;}double lgrr(int n,double X){double s=0,t;double x[81],y[81];int i,j;printf("input n pairs of numbers:\n"); for(i=0;i<n;i++)scanf("%lf%lf",&x[i],&y[i]);for(i=0;i<n;i++){t=y[i];for(j=0;j<n;j++){if(j!=i)t=t*(X-x[j])/(x[i]-x[j]);}s=s+t;}printf("s=%f\n",s);return 0;}作业用程序#include<stdio.h>main(){double X;int n;double lgrr(int n,double X);printf("input the aim number'X' ");printf("input the number of pairs of numbers 'n':");scanf("%lf%d",&X,&n);lgrr(n,X);return 0;}double lgrr(int n,double X){FILE *fp;double s=0,t,z;double x[81],y[81];int i,j,k;if((fp=fopen("lgrr.txt","r+"))==NULL) printf("can not open the file.");printf("input n pairs of numbers:\n"); for(i=0;i<n;i++)scanf("%lf%lf",&x[i],&y[i]);for(k=0;k<=20;k++){for(i=0;i<n;i++){z=X+.01*k;t=y[i];for(j=0;j<n;j++){if(j!=i)t=t*(z-x[j])/(x[i]-x[j]);}s=s+t;}printf("s=%f\n",s);fprintf(fp,"s=%f\n",s);}return 0;}五、作业:3-27s=0.198670 s=0.407105 s=0.625307 s=0.853266 s=1.090966 s=1.338384 s=1.595493 s=1.862263 s=2.138663 s=2.424661 s=2.720224 s=3.025321 s=3.339921 s=3.663993 s=3.997507 s=4.340430 s=4.692730 s=5.054371s=5.425314 s=5.805512 s=6.194912。
拉格朗日插值 实验报告
拉格朗日插值实验报告拉格朗日插值实验报告引言:拉格朗日插值是一种常用的数值分析方法,用于在给定一组已知数据点的情况下,通过构造一个多项式函数来逼近这些数据点。
该方法在科学计算、数据处理和图像处理等领域中被广泛应用。
本实验旨在通过实际操作和计算,深入了解拉格朗日插值的原理和应用。
实验目的:1. 理解拉格朗日插值的原理和基本思想;2. 学会使用拉格朗日插值方法进行数据逼近;3. 掌握拉格朗日插值的优缺点及适用范围。
实验步骤:1. 收集一组已知数据点,包括自变量和因变量;2. 根据数据点,构造拉格朗日插值多项式;3. 利用插值多项式,计算给定自变量对应的因变量;4. 分析插值结果的准确性和逼近程度。
实验结果与分析:在实验中,我们选取了一组简单的数据点进行拉格朗日插值的计算和分析。
数据点包括自变量x和因变量y,如下所示:x | 0 | 1 | 2 | 3 | 4 |y | 1 | 2 | 3 | 5 | 8 |根据这组数据点,我们构造了拉格朗日插值多项式:L(x) = y₀ * L₀(x) + y₁ * L₁(x) + y₂ * L₂(x) + y₃ * L₃(x) + y₄ * L₄(x)其中,L₀(x),L₁(x),L₂(x),L₃(x),L₄(x)分别是拉格朗日插值多项式的基函数,计算公式如下:L₀(x) = (x - x₁) * (x - x₂) * (x - x₃) * (x - x₄) / (x₀ - x₁) * (x₀ - x₂) * (x₀- x₃) * (x₀ - x₄)L₁(x) = (x - x₀) * (x - x₂) * (x - x₃) * (x - x₄) / (x₁ - x₀) * (x₁ - x₂) * (x₁- x₃) * (x₁ - x₄)L₂(x) = (x - x₀) * (x - x₁) * (x - x₃) * (x - x₄) / (x₂ - x₀) * (x₂ - x₁) * (x₂- x₃) * (x₂ - x₄)L₃(x) = (x - x₀) * (x - x₁) * (x - x₂) * (x - x₄) / (x₃ - x₀) * (x₃ - x₁) * (x₃- x₂) * (x₃ - x₄)L₄(x) = (x - x₀) * (x - x₁) * (x - x₂) * (x - x₃) / (x₄ - x₀) * (x₄ - x₁) * (x₄- x₂) * (x₄ - x₃)通过计算,我们可以得到给定自变量x对应的因变量y的逼近值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
学院:电子信息工程
实验课程:计算方法
学生姓名:
学号:
专业班级:通信工程17-3班级
实验四 Lagrange 插值
1 目的与要求
(1)进一步理解和掌握Lagrange 插值的数值算法。
(2)能够根据给定的函数值表求出插值多项式和函数在某一点的近似值以解决实际问题
2 实验内容
已知函数表如下,通过编制程序,试用拉格朗日插值多项式求0.5,0.7,0.85三点处的近似函数值。
3 实验原理
拉格朗日插值多项式:
4 程序设计 (1)流程图
拉格朗日插值程序流程图
∑===
n
i 0
i i
i )
x (l y y )
x x ()x x )(x x ()x x ()
x x ()x x )(x x ()x x ()x (l n i 1i i 1i i 0i n 1i 1i 0i --------=
+-+-
(2)程序代码
#include<stdio.h>
#include<math.h>
#define n 5
double lagrange(long double a[n],long double b[n],double x)
{
int k,l;
long double y1,m;
y1=0.0;
for(k=0;k<n;k++)
{
m=1.0;
for(l=0;l<n;l++)
{
if(l!=k)
{
m=m*(x-a[l])/(a[k]-a[l]);
}
}
y1=y1+m*b[k];
}
return y1;
}
void main()
{
double x,y;
long double a[n]={0.4,0.55,0.8,0.9,1};
long double b[n]={0.41075,0.57815,0.88811,1.02652,1.17520
};
printf("\n输入要求的自变量的值\n");
scanf("%lf",&x);
y=lagrange(a,b,x);
printf ("拉格朗日插值后的近似值%lf",y); }
5 实验结果与分析
0.5处的近似函数值为:
0.7处的近似函数值为:
0.85处的近似函数值为:
分析:
(1)通过完成拉格朗日插值法的编程实验,在对程序的修改中,我认为我最大的收获是我对C语言中数据类型具有了更为深刻的认识,进一步掌握了拉格朗日插值法。
(3)此次实验较好的完成了任务,巩固了课堂学习知识。