叶绿素的提取与含量测定
叶绿素的提纯实验报告(3篇)

第1篇一、实验目的1. 了解叶绿素的结构和性质。
2. 掌握叶绿素的提取和提纯方法。
3. 学习利用有机溶剂提取叶绿素,并通过色谱法进行分离和纯化。
二、实验原理叶绿素是绿色植物中进行光合作用的重要色素,主要由叶绿素a和叶绿素b组成。
叶绿素不溶于水,但可溶于有机溶剂,如乙醇、丙酮等。
通过提取和提纯,可以得到高纯度的叶绿素,为进一步研究其性质和作用提供条件。
实验过程中,首先将植物叶片用有机溶剂提取叶绿素,然后通过层析法分离叶绿素和其他色素,最后收集纯化的叶绿素。
三、实验器材1. 新鲜植物叶片(如菠菜、青菜等)2. 研钵、研杵3. 乙醇、丙酮(分析纯)4. 层析柱、层析板5. 滤纸、脱脂棉6. 移液管、滴管7. 恒温水浴锅8. 显微镜9. 紫外-可见分光光度计四、实验步骤1. 提取叶绿素(1)取新鲜植物叶片,用剪刀剪碎,放入研钵中。
(2)加入适量乙醇和丙酮(体积比1:1),研磨至匀浆。
(3)将匀浆倒入分液漏斗,静置分层。
(4)收集有机层,用无水硫酸钠干燥。
(5)过滤,得到叶绿素提取液。
2. 分离叶绿素(1)将层析板放入层析柱中,在底部铺一层脱脂棉。
(2)取适量叶绿素提取液,用移液管滴加于层析板上,确保液面低于层析板边缘。
(3)选择合适的溶剂系统,如正己烷-乙酸乙酯(体积比4:1)。
(4)将溶剂滴加于层析板上,观察层析过程,直至溶剂前沿到达预定位置。
(5)取出层析板,用铅笔标记层析结果。
3. 收集纯化叶绿素(1)用移液管收集叶绿素层,倒入小烧杯中。
(2)加入少量乙醇,搅拌均匀。
(3)用滤纸过滤,收集滤液。
(4)将滤液倒入蒸发皿中,用恒温水浴锅蒸干。
(5)用少量乙醇溶解残留物,得到纯化叶绿素。
五、实验结果与分析1. 叶绿素提取:通过有机溶剂提取,可以得到绿色叶片提取物,表明叶绿素已从植物叶片中提取出来。
2. 叶绿素分离:通过层析法,可以将叶绿素与其他色素分离,证明叶绿素具有独特的性质。
3. 叶绿素纯化:通过蒸发和溶解,可以得到纯化的叶绿素,说明实验过程中叶绿素得到了有效的纯化。
叶绿素的快速提取与精密测定

叶绿素的快速提取与精密测定一、本文概述本文旨在探讨叶绿素的快速提取与精密测定的方法。
叶绿素是绿色植物中的重要色素,不仅赋予植物鲜明的绿色,而且在光合作用中扮演着关键角色。
因此,叶绿素的提取与测定对于理解植物生理学、生态学和环境科学等领域的研究具有重要意义。
本文将详细介绍叶绿素的提取过程,包括材料的选取、提取剂的选用、提取条件的优化等,并阐述精密测定叶绿素的原理和方法,以提高测定的准确性和可靠性。
通过本文的阐述,读者可以了解叶绿素的提取与测定技术,为相关研究提供有益的参考和指导。
二、叶绿素的快速提取方法叶绿素的提取是植物生理学和生态学研究中不可或缺的一环,其准确性和效率直接影响到后续的分析结果。
传统的提取方法往往耗时较长,且提取效果不尽如人意。
因此,我们开发了一种快速、高效的叶绿素提取方法,以期满足现代科学研究对速度和精度的双重需求。
本方法采用有机溶剂萃取法,通过优化溶剂种类、温度和时间等参数,实现了叶绿素的快速提取。
具体来说,我们将新鲜植物叶片剪碎,加入预热的有机溶剂(如丙酮、甲醇等)进行浸泡和搅拌。
在适当的温度下,叶绿素分子能够迅速从植物组织中溶解到有机溶剂中,从而实现快速提取。
与传统方法相比,本方法具有显著的优势。
提取时间大大缩短,通常只需几分钟至十几分钟即可完成整个提取过程。
提取效率显著提高,能够更充分地释放叶绿素分子,减少损失。
本方法还具有操作简便、安全可靠等特点,适用于批量样品的快速处理。
为了验证本方法的准确性和可靠性,我们进行了多组对比实验。
结果表明,本方法提取的叶绿素含量与传统方法相比无显著差异,且重现性良好。
我们还对提取过程中可能出现的干扰因素进行了系统分析,并提出了相应的解决方案,以确保提取结果的准确性。
本方法是一种快速、高效、简便的叶绿素提取方法,适用于各种植物叶绿素的提取和分析。
我们相信,这一方法的推广应用将有力推动植物生理学和生态学等相关领域的研究进展。
三、叶绿素的精密测定技术在完成了叶绿素的快速提取之后,接下来就需要对提取的叶绿素进行精密测定。
叶绿素的提取与分析测定

植物叶绿体色素的分析一、实验目的:1、学会叶绿体色素的分离方法。
2、掌握叶绿素的定量测定。
一、3、了解高等植物叶绿体色素的种类组成、性质。
二、实验原理:1、叶绿体色素的提取:(1)原理:叶绿体色素是植物捕获太阳能进行光合作用的重要物质,高等植物的叶绿体色素一般由叶绿素a、叶绿素b、胡萝卜素和叶黄素等组成。
叶绿体色素的提取是利用叶绿体色素能溶于有机溶剂的特性,将待测的植物叶片用研钵研磨让植物组织破碎,利用丙酮的溶解能力将叶绿体色素溶于丙酮中,通过用滤纸过滤分离植物组织碎片,即可以得到叶绿体色素的丙酮粗提液。
(2)步骤:称取新鲜的植物叶子(菠菜等)4g,放入研体中加5ml80%丙酮,少许碳酸钙和石英砂,研磨成匀浆,再加入20ml丙酮,以漏斗过滤到棕色瓶中备用2、叶绿体色素的分离:(1)原理:叶绿体色素的分离提纯一般用层析的方法,其中纸层析是最简单的一种。
当溶剂不断地从纸上流过时,由于混合物中各成分在流动相和固定相间具有不同的分配系数,引起它们的移动速度不同,因而使混合物分离。
(2)步骤:1)取滤纸条(6.5×30cm),在离纸边1.5cm处用铅笔划一直线,在另一端两角分别拴上一根线(见图1),用毛细管取吸绿素提取液沿着铅笔线划一条样带,使样带宽度在3mm以内,如色素过淡用电吹风吹干后再点数次,直到样带呈深绿色为止。
2)在层析缸中加入四氯化碳20ml及少许无水硫酸钠,然后将滤纸吊在层析缸中,使下端浸入溶剂中,色素点要略高于液面,滤纸条边缘不可碰到层析缸璧(如图2)用聚乙烯薄膜两层封住层析缸,直立于暗处层析。
3)0.5小时后,观察色素带分布(最上端是橙黄色的胡萝卡素,其次是黄色的叶黄素,然后是兰绿色的叶绿素a和黄绿色的叶绿素b),记录色谱图。
如图所示:3、叶绿体色素的性质(一)荧光现象:叶绿体色素在吸收光能以后可以从基态跃迁到激发态,当处于第一单线态(激发态)的电子再回到基态时其携带的能量将以光的形式放射出来产生荧光,叶绿素荧光的颜色是红色的。
测定植物叶绿素含量的方法

测定植物叶绿素含量的方法
测定植物叶绿素含量的方法有多种,以下是其中两种常用的方法:
1. 酒精提取法:取少量的植物叶片,用95%的乙醇浸泡,放置约12小时,然后用过滤纸过滤液体,收集滤液。
将滤液置于比色皿中,用分光光度计读取吸光度,然后根据吸光度公式计算叶绿素含量。
2. 非破坏性叶绿素荧光法:该方法将载体中的叶绿素激发,然后测量释放出的荧光。
首先需要将植物叶子置于低温环境下(如-20℃),使其失去活性状态。
然后在光线较弱的环境下,用测量仪器(如SPAD仪)测量叶片的反射率,据此计算叶绿素含量。
以上两种方法均为常用的有效方法。
需要注意的是,在使用任何方法进行叶绿素含量测定时,应保证样品之间的处理方式一致,以获得准确的结果。
叶绿体色素的提取、分离及含量测定

叶绿体色素的提取、分离及含量测定实验目的叶绿素是植物吸收太阳光能进行光合作用的重要物质,主要有叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。
叶绿素a与叶绿素b是高等植物叶绿体色素的重要组分,约占到叶绿体色素总量的75%左右。
叶绿素在光合作用中起到吸收光能、传递光能的作用(少量的叶绿素a还具有光能转换的作用),因此叶绿素的含量与植物的光合速率密切相关,在一定范围内,光合速率随叶绿素含量的增加而升高。
另外,叶绿素的含量是植物生长状态的一个反映,一些环境因素如干旱、盐渍、低温、大气污染、元素缺乏都可以影响叶绿素的含量与组成,并因之影响植物的光合速率。
因此叶绿素含量a与叶绿素b含量的测定对植物的光合生理与逆境生理具有重要意义。
实验原理从植物叶片中提取和分离叶绿体色素是对其认识和了解的前提。
利用叶绿体色素能溶于有机溶剂的特性,可用95%乙醇提取。
分离色素的方法有多种,如纸层析、柱层析等。
纸层析是其中最简单的一种。
当溶剂不断地从层析滤纸上流过时,由于混合色素中各种成分在两相(即流动相和固定相)间具有不同的分配系数,它们的移动速度不同,使样品中的各种成分得到分离。
强光可以破坏离体的叶绿素,因为植物体内本来有还原酶,可以破坏光产生的强氧化物质。
而离体的叶绿素提取液中不含有还原酶,光产生的强氧化物质会破坏叶绿素。
叶绿素提取液中同时含有叶绿素a和叶绿素b,二者的吸收光谱虽有不同,但又存在着明显的重叠,在不分离叶绿素a和叶绿素b的情况下同时测定叶绿素a和叶绿素b的浓度,可分别测定在663nm和645nm(分别是叶绿素a和叶绿素b在红光区的吸收峰)的光吸收,然后根据Lambert-Beer定律,计算出提取液中叶绿素a和叶绿素b的浓度。
A663=82.04Ca+9.27Cb(1)A645=16.75Ca+45.60Cb(2)公式中Ca为叶绿素a的浓度,Cb为叶绿素b浓度(单位为g/L),82.04和9.27分别是叶绿素a和叶绿素b在663nm下的比吸收系数(浓度为1g/L,光路宽度为1cm时的吸光度值);16.75和45.60分别是叶绿素a和叶绿素b在645nm下的比吸收系数。
植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定

植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定引言:叶绿体是植物细胞中的一个重要细胞器,其中主要存在着叶绿素等色素,它们在光合作用中起着重要的作用。
研究叶绿体色素的提取、分离、理化性质和叶绿素含量的测定,对于了解光合作用的机理以及研究植物生理生化过程具有重要意义。
本实验旨在通过实验手段提取叶绿体色素,进行色素的分离、理化性质的研究和叶绿素含量的测定。
材料与方法:材料:菠菜叶片、研钵、磨杵、丙酮、乙醇、石油醚、叶绿素提取液、测色皿、高锰酸钾溶液、浓硫酸。
方法:1.取适量菠菜叶片放入研钵中,加入适量丙酮,用磨杵捣碎成糊状。
2.将捣碎的菠菜糊状物转移到玻璃漏斗中,用石油醚冲洗3次,使叶绿体附着物进一步析出。
3.将漏斗中的上清液收集,并加入适量乙醇,振摇混合,使叶绿素慢慢析出。
4.将释放出的叶绿体颗粒通过离心机离心沉淀10分钟,收集沉淀。
5.取收集到的叶绿体沉淀,加入适量叶绿素提取液,用乳钙酸钠解离剂进行叶绿素含量的测定。
6.将其中一部分叶绿体溶液加入高锰酸钾溶液,观察颜色变化。
7.将其余叶绿体溶液与浓硫酸混合,观察颜色变化。
结果与讨论:通过上述方法,我们成功地提取并分离出菠菜叶片中的叶绿体色素。
加入石油醚可以去除一部分杂质,使叶绿体进一步纯化。
加入乙醇可以使叶绿素从叶绿体中溶出。
通过离心沉淀,我们收集到了叶绿体的沉淀物。
叶绿体的提取液与高锰酸钾溶液反应后呈现蓝色或紫色,这是由于高锰酸钾通过氧化反应将一些具有现菌酮结构的物质氧化为合成叶绿素的前体物质所引起的。
这种反应也证实了叶绿体的存在。
叶绿体溶液与浓硫酸混合后呈现蓝绿色,这是由于浓硫酸通过剥离叶绿体周围的蛋白质和其他有机物质,将叶绿素分子释放出来,产生颜色变化。
叶绿素的含量测定是通过与乳钙酸钠解离剂反应来进行的。
乳钙酸钠解离剂能够与叶绿体中的叶绿素结合,并形成稳定的叶绿素-乳钙酸钠络合物。
这种络合物通过光密度的测定,可以根据比色法来测量叶绿素的含量。
叶绿素的提取与分析测定

叶绿素的提取与分析测定叶绿素是一类广泛存在于植物、藻类和一些细菌中的色素分子,它在光合作用中起着重要的作用。
叶绿素的提取和分析测定是植物生理学、植物生态学、环境科学等领域的研究中常用的实验操作之一、本文将介绍叶绿素的提取和分析测定的方法及其应用。
1.取新鲜叶片,将其放置于干净的细网纱袋中,用乙醇浸泡片刻,使其浸润。
2.将浸泡的细网纱袋取出,轻轻挤压以使叶绿素溶出。
3.用乙醇将溶液稀释至一定浓度。
4.离心沉淀,将上清液取出,即可得到叶绿素溶液。
叶绿素的浓度可以通过分光光度法进行测定。
分光光度法是根据不同物质对光的吸收特性来测定其浓度的一种分析方法。
具体步骤如下:1.将提取得到的叶绿素溶液置于紫外可见分光光度计中。
2. 使用合适的波长进行测定,一般波长为663 nm和645 nm。
3.依次测定样品和纯溶剂(如乙醇)的吸光度,并计算其差值。
4.根据比色法原理,利用比色计算公式或标准曲线,计算叶绿素的浓度。
叶绿素的分析测定可以帮助我们了解植物光合作用的效率、叶片的生理状态、环境因子对植物的影响等。
叶绿素浓度的变化可以指示植物对环境的适应能力和营养状态。
因此,叶绿素的提取与分析测定在植物生态学研究、农业生态学研究、环境科学研究等领域中得到广泛应用。
叶绿素的提取与分析测定方法的选择应根据具体的研究目的和实验条件进行优化。
例如,在进行叶片叶绿素含量测定时,应尽量选择含有丰富叶绿素的叶片样品,避免阳光直射、避免用硬物破坏叶片结构等。
在选择测定波长时,要根据叶绿素的特性选择吸收峰值附近的波长,以提高测定的准确性。
总之,叶绿素的提取与分析测定是植物生理学、植物生态学、环境科学等领域研究中常用的实验操作。
通过选择合适的提取方法和测定方法,可以准确测定叶绿素的含量,从而为相关研究提供重要的数据支持。
叶绿素的提取、分离和测定

Ca=12.7OD663-2.69OD645 Cb=22.9OD645-4.68OD663 Ct=Ca+Cb=20.2D645+8.02D663
解方程式得
(二)步骤
称取0.5g叶片,剪碎后置于玻璃匀浆器中加纯丙酮5mL,研成匀浆,用80%丙酮10mL洗匀浆器,用80%丙酮定容到25mL,避光静置5min。用移液管吸取上面的绿色清液1mL置于一大试管中,加入丙酮4ml稀释,摇动试管,作测定用。
测量光密度值 取上述提取液以80%丙酮作为空白对照,于663及645nm下读取光密度值
计算结果代入公式求出各来自绿素的含量(单位mg/L)最后计算时需考虑稀释因子
叶绿素a含量(mg/g鲜重)=CA*5 *25*2/1000 =0.25CA
叶绿素b的含量(mg/g鲜重)=0.25CB
研钵、吸管、小烧杯、试管、培养皿等
01
95%酒精、石油醚
02
碳酸钙
03
(二)仪器和药品
(三)步骤
用天平称取15g鲜叶,剪碎放入研钵中,加少量的CaCO3粉末及95%酒精5-10mL研成糊状,再加95%酒精20mL,充分混匀以提取叶片匀浆中的色素,5-10分钟后,过滤入三角烧瓶中加塞待用。
取一张色层分析纸或定性滤纸代用,剪成圆形,直径应略大于培养皿的直径;将圆形滤纸平放在培养皿上,用滴管吸取叶绿素提取液,滴在滤纸的中心位置,稍干后,再重复操作几次;然后取另一滴管吸取石油醚,慢慢地推动叶绿素提取液,不久即可看到分离的各种色素的同心圆环,由内到外依次为:叶绿素a为蓝绿色、叶绿素b为黄绿色、叶黄素呈鲜黄色、胡萝卜素为橙黄色。
叶绿素a、b在长波方面的最大吸收峰分别为为663nm和645nm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称: 植物生理学实验 指导老师: 成绩:__________________ 实验名称: 叶绿体色素的提取、分离、理化性质和叶绿素含量的测定 实验类型: 同组学生姓名:
一、实验目的和要求(必填) 二、实验内容和原理(必填)
三、实验材料与试剂(必填) 四、实验器材与仪器(必填)
五、操作方法和实验步骤(必填) 六、实验数据记录和处理
七、实验结果与分析(必填) 八、讨论、心得
一、 实验目的和要求:
1. 掌握植物中叶绿体色素的提取分离和性质鉴定。
2. 掌握定量分析的原理和方法。
二、 实验内容和原理:
以青菜为材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量分析。
原理如下:
1.叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,常用95%的乙醇或80%的丙酮提取。
2.皂化反应。
叶绿素是二羧酸酯,与强碱反应,形成绿色的可溶性叶绿素盐,就可与有机溶剂中的类胡萝卜素分开。
3.取代反应。
在酸性或加温条件下,叶绿素卟啉环中的Mg2+,可依次被H+和Cu2+取代形成褐色的去镁叶绿素和绿色的铜代叶绿素。
4.叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光。
5.定量分析。
叶绿素吸收红光和蓝紫光,红光区可用于定量分析,其中645和663用于定量叶绿素a,b 及总量,而652可直接用于总量分析。
三、实验材料与试剂
材料:青菜叶
试剂:KOH 固体、醋酸铜粉末、醋酸
四、主要仪器设备:
1.天平(万分之一)、可扫描分光光度计、离心机
2.研具、PE 管、酒精灯等
五、操作方法和实验步骤(必填)
1.定性分析:
荧光现象:鲜叶3-5g+95%乙醇15ml (逐步加入),磨成匀浆 ,过滤入三角瓶,观察荧光现象 皂化反应: 加KOH 数片剧烈摇均,加石油醚1ml 和H 2O 1ml ,分层后观察
取代反应:加醋酸约1ml ,观察颜色,取1/2加醋酸铜粉,加热变 亮绿 色
2.叶绿素和类胡萝卜素的吸收光谱测定:
皂化反应的上层黄色石油醚溶液(稀释470nm OD 0.5-1) ,在400-700nm 处扫描光谱,分别测定类胡萝卜素的吸收峰
反复用石油醚粹取,直到无类胡萝卜素,离心得叶绿素(盐),(稀释663nm OD 0.5-1) ,分别测定叶绿素的吸收峰
3.叶绿素定量分析:
鲜叶0.1g ,加1.9mlH 2O ,磨成匀浆,取2份0.2ml 加80%丙酮4.8ml,摇匀,4000转离心3min,上清液在645,652,663测定OD ,计算Chla,Chlb 和Chl 总量的值。
六、实验数据记录和处理
1.荧光现象:透射光 绿 色,反射光 红 光 装 订 线
2.皂化反应:上层呈黄色,为类胡萝卜素,吸收蓝紫光。
下层呈绿色。
为叶绿素。
吸收蓝紫光和红光。
皂化反应分层
3. 类胡萝卜素和叶绿素的吸收光谱测定:
上层黄色溶液扫描光谱
吸收峰为468nm、439nm、413nm、667nm和606nm 五个
下层绿色溶液扫描光谱
吸收峰为414nm、526nm、639nm三个
4.取代反应:
加醋酸约1ml,变褐(去镁叶绿素)
取1/2加醋酸铜粉加热变亮绿色,为铜代叶绿素。
去镁叶绿素铜代叶绿素
波长/nm 吸光度(第一组)吸光度(第二组)
645 0.068 0.072
652 0.093 0.095
663 0.164 0.170
根据公式:
C a(mg/L)=12.7OD663-2.69 OD645
C b(mg/L)=22.9OD645-4.68 OD663
C T(mg/L)= OD652?1000/34.5
Chla含量(mg/g.FW)= (C a(mg/L)/1000)?2/ 0.1 ?5/ 0.2
Chlb含量(mg/g.FW) = (C b(mg/L)/1000)?2/ 0.1 ?5/ 0.2
Chl总含量(mg/g.FW) = (C T(mg/L)/1000)?2/ 0.1 ?5/ 0.2
求得:
C a1= 1.899 mg/L C a2=1.965 mg/L
C b1=0.790 mg/L C b2=0.853 mg/L
C T1=2.696 mg/L C T2=2.754 mg/L
Chla含量1 =0.950 mg/g.FW Chla含量1 =0.982 mg/g.FW
Chlb含量 1 =0.395 mg/g.FW Chlb含量 1=0.426 mg/g.FW
Chl总含量1=1.348 mg/g.FW Chl总含量1=1.377 mg/g.FW
七、实验结果与分析
类胡萝卜素和叶绿素的吸收光谱测定:
类胡萝卜素的吸收峰为蓝紫光区468nm、439nm、413nm三个峰,在红光区667nm和606nm 的峰说明叶绿素有残留。
叶绿素在蓝紫光区有414nm、526nm两个峰,在红光区有639nm一个峰,蓝紫光区的峰比红光区的高,说明叶绿素吸收蓝紫光的能力比红光强。
叶绿素含量测定:
Chla含量1 =0.950 mg/g.FW Chla含量1 =0.982 mg/g.FW
Chlb含量 1 =0.395 mg/g.FW Chlb含量 1=0.426 mg/g.FW
Chl总含量1=1.348 mg/g.FW Chl总含量1=1.377 mg/g.FW
两组测定结果中叶绿素a与叶绿素b含量之和与用663nm求得的总叶绿素含量比较接近,说明实验结果较为理想,可能造成实验误差的因素有:
1.研磨后的叶绿素溶液中仍存在固体,可能堵塞移液枪管口,造成吸入的溶液量不准确
2.比色皿未清洗干净,造成测得的吸光度改变
3.分光光度计存在仪器误差
八、讨论、心得
思考题:
1.为什么叶绿素吸收红光和蓝紫紫光?
叶绿素的能级有基态(G),第一单线激发态(E1),第二单线激发态(E2)和三线激发态(E3),光子吸收必须遵守普朗克定律,被吸收光子的能量必须等于基态和激发态的能量差。
蓝紫光能量大,可使叶绿素分子中的电子跃迁到E2,而红光能量小,只能使其跃迁到E1,故叶绿素只能吸收蓝紫光和红光。
2.为什么可用皂化后的叶绿素盐来测定叶绿素的吸收光谱?
因为由于叶绿素皂化反应后的叶绿素盐并不影响叶绿素分子的骨架结构,叶绿素对光的吸收规律与叶绿素盐对光的吸收规律几乎是相同的,而且皂化反应可以从叶绿体色素中只筛选出叶绿素,排除了其他色素的干扰,所以可用皂化后的叶绿素盐来测定叶绿素的吸收光谱。
讨论:
1.皂化反应后的黄色溶液需用石油醚萃取多次,如果萃取补充分,会有叶绿素残留,在扫描吸收光谱
时除了在468nm、439nm、413nm有吸收峰,在667nm和606nm也会有微弱的叶绿素吸收峰。
2.在测定用皂化反应分离的叶绿素和类胡萝卜素的吸收光谱前,需将溶液稀释至
(470nm/663nm)OD在0.5-1之间,如果浓度过高,峰值可能会超出仪器的测量范围,将无法测得吸收峰。