基于不规则三角网构建的网格生长算法

合集下载

基于不规则三角网(I数模建构的优化算法TN)

基于不规则三角网(I数模建构的优化算法TN)

旧采 用点与 直线 的关 系 公 式 ( ) 判 断 , 1来 同时 结 合
三 角形之间 的拓扑 关 系 , 方便 地 找 到包 含 新点 的 可 三 角形 。该 方 法 的基 本 过 程 是通 过 d的正 负 来 判 断搜 索方 向。约 定 三 角 形 的顶 点 按 照 逆 时 针 方 向

6 ・
浙 江测 绘 2 0 0 7年 第 1 期
的点 。然后用 一个递 归 过程 , 出所 需 的 点生 成 一 找
果 三个 d值 中有 一个 为 正 的 , 则说 明点 P在 该边 的
个包含 所有数 据 的凸壳 。
由于凸壳数 据是 按逆 时 针方 向排列 的 , 只要 找
右边, 然后 根 据 拓 扑 关 系 , 个 要搜 索 的就 是 这 条 下 边 的邻接 三角形 , 这样 一 直找 到 三个 d值 都 是负 数
点 , 表达 地 表形态方 面表现 较为 出色 。 在
把 四个 初 始边 界点 按 逆 时钟 方 向顺 序 相 连 成 为初始 凸 壳 。根 据初 始 凸壳 按 公 式 ( ) 点 与 直 线 1( 的关 系式 ) 出相 应凸壳 边右侧 的数 据块 。 找
d: ( v J x— v x)* v 2 y一 ( 1 v y— V y) * VX— V Y * 2 2
浙 江测 绘 2 0 0 7年 第 1期
基 于 不规 则 三 角 网 ( I 数 模 建 构 的优 化 算 法 T N)
南 胜
( 江 省 水 利 河 1研 究 院 测 绘 分 院 , 州 3 0 0 ) 浙 : 2 杭 1 0 8
摘 要 : 文 分 析 了基 于 不规 则三 角 网( N) 存 贮 结 构 , 以此 结 构 为 基 础 的 三 角 剖 分 的优 化 算 法 。 本 TI 的 并

不规则三角网生成算法及其应用探讨

不规则三角网生成算法及其应用探讨

不规则三角网生成算法及其应用探讨
李梅;张学雷
【期刊名称】《测绘与空间地理信息》
【年(卷),期】2010(33)2
【摘要】不规则三角网(TIN)是数字高程模型的一个重要表示方法,其传统算法一再被优化,也得到广泛地应用.本文在传统算法的基础上总结了一些改进算法,并且提出了相关的应用前景.
【总页数】4页(P44-45,48,51)
【作者】李梅;张学雷
【作者单位】郑州大学,水利与环境学院,河南,郑州,450001;郑州大学,自然资源与生态环境研究所,河南,郑州,450001;郑州大学,水利与环境学院,河南,郑州,450001;郑州大学,自然资源与生态环境研究所,河南,郑州,450001
【正文语种】中文
【中图分类】P235.1
【相关文献】
1.基于不规则三角网的分块地形网格生成算法 [J], 黄争舸;陈建军;郑耀
2.基于栅格局部细分的带约束条件的不规则三角网生成算法 [J], 崔雪森;杨胜龙;樊伟
3.基于凸包切割的不规则三角网及其邻接关系的生成算法 [J], 刘永和;刘玉芳;王燕平
4.平面离散点集的不规则三角网自动生成算法的实现研究 [J], 刘鹏;方勇;钟联炯;
马永社
5.一种非凸包边界约束不规则三角网生成算法 [J], 刘永和;王润怀;齐永安
因版权原因,仅展示原文概要,查看原文内容请购买。

基于不规则三角网构建的网格生长算法

基于不规则三角网构建的网格生长算法

基于基于不规则三角网不规则三角网不规则三角网构建构建构建的的网格生长算法刘 刚,李永树李永树,,张水舰(西南交通大学地理信息工程中心,成都 610031)摘 要:提出一种基于离散点Delaunay 三角网快速构建的网格生长算法,采用分治算法将离散点表达为唯一网格,利用稀疏矩阵完成网格数据的压缩存储,通过标识码实现有值单元格与离散点之间的高效检索,从而提高网格构建的效率。

依据有值单元格的密度获取预设正方形搜索空间,并在三角网扩展时根据需要动态建立正方形搜索空间,从而保证网格生长的准确性。

实验结果表明,该算法的时间复杂度为O (n log n ),对于少量或海量离散点均具有较好的适应性。

关键词关键词::Delaunay 三角网;不规则三角网;离散点;正方形搜素空间;网格生长算法Grid Growing Algorithm Based onTriangular Irregular Network ConstructionLIU Gang, LI Yong-shu, ZHANG Shui-jian(Geography Information Engineering Center, Southwest Jiaotong University, Chengdu 610031, China)【Abstract 】This paper presents a grid growing algorithm for fast construction of Delaunay irregular network based on discrete point. In this algorithm, a grid is achieved to express discrete point uniquely based on the divide-and-conquer method, which is compressed storage in a sparse matrix, and an efficient retrieval method is established between value cell and discrete point by identification code, which is effectively to improve the efficiency of the construction of Triangular Irregular Network(TIN). According to the density of value cells, a default square search space is acquired, and it is allowed to create the square search space dynamically in the expansion process of TIN, which ensures the accuracy of the grid growing. Experimental results show that the time complexity of the proposed algorithm is O (n log n ), and the algorithm is available to both small and massive amount of discrete points.【Key words 】Delaunay triangular network; Triangular Irregular Network(TIN); discrete point; square search space; grid growing algorithm DOI: 10.3969/j.issn.1000-3428.2011.12.019计 算 机 工 程 Computer Engineering 第37卷 第12期V ol.37 No.12 2011年6月June 2011·软件技术与数据库软件技术与数据库·· 文章编号文章编号::1000—3428(2011)12—0056—03 文献标识码文献标识码::A中图分类号中图分类号::P2091 概述不规则三角网(Triangular Irregular Network, TIN)表面建模是一种很重要的表面建模方法[1-2]。

不规则角网(TIN)的建立

不规则角网(TIN)的建立
5.2.1 无约束散点域的三角剖分算法与实现
5.2 TIN的建立
目前散点域的三角剖分使用最为广泛的算法是 Delaunay直接三角剖分算法。 根据实现过程,把DT分成三类:
1)三角网生长算法 2)逐点插入算法
3)分割合并算法
2019/2/7 28
第5章 不规则三角网(TIN)的建立
1、三角网生长算法
目前这类算法主要有地形骨架法、地形滤波 法等。
2019/2/7 23
• 地形骨架法:
– 利用地形特征点、线建立地形的骨架模型, 然后对其进行插点,达到预定的精度;
• 地表滤波法:
– 将格网DEM看作为一幅数字图像,可使用空 间高通滤波器对其滤波,保留图像中的高频 信息,即为地形特征点,滤掉低频信息也即 对地形特征而言不重要的点,在此基础上建 立TIN模型。
2019/2/7 24
第5章 不规则三角网(TIN)的建立
5.1.3 三角剖分算法分类与特点
5.1 TIN概述
从混合数据生成三角网(P70)
混合数据:是指链状数据 (如断裂线、河流线等)与规 则格网采样数据结合形成的一 种数据。
此种数据建立三角网的方法: 首先分解规则三角形,然后考 虑特征线上的点,在格网中生 成不规则三角形。
2019/2/7
根据规则数据建成的三角形格网
22
第5章 不规则三角网(TIN)的建立
5.1.3 三角剖分算法分类与特点
5.1 TIN概述
规则分布采样数据三角剖分
重要点法DEM建模有两个关键步骤: 1)确定格网点的“重要程度”:全局最重要或局 部最重要; 2)确定终止条件:达到预设的点数或预设的精度、 或两者折中。
2019/2/7 15

基于VB语言的不规则三角网构建

基于VB语言的不规则三角网构建

基于VB语言的不规则三角网构建
高峰
【期刊名称】《新探索》
【年(卷),期】2017(000)006
【摘要】在GIS应用领域中,Delaunay三角网作为一种主要的数字表面模型(DTM)表示法,具有极其广泛的用途.利用VB语言对Delaunay三角网的构建问题进行了相关探讨,程序实现了基本地形图测绘的TIN构建,为快速生成等高线和数字高程模型创造了前提条件.
【总页数】4页(P37-40)
【作者】高峰
【作者单位】甘肃省水利水电勘测设计研究院,甘肃兰州730000
【正文语种】中文
【中图分类】P225
【相关文献】
1.基于多源数据的河道不规则三角网构建方法 [J], 刘兆峰;丁贤荣;程立刚
2.基于不规则三角网构建的网格生长算法 [J], 刘刚;李永树;张水舰
3.基于不规则三角网的水下地形导航数据库构建方法的优化 [J], 王立辉;高贤志;梁冰冰;余乐;祝雪芬
4.不规则三角网数字水深模型缓冲面快速构建的滚动球加速优化算法 [J], 董箭;张志衡;彭认灿;李改肖;王沫
5.基于地性线的不规则三角网优化构建算法 [J], 江帆;王志伟;朱长青;安敏
因版权原因,仅展示原文概要,查看原文内容请购买。

基于不规则三角网构建的网格生长算法

基于不规则三角网构建的网格生长算法

go n . x ei na rs l h w ta et o lxt f h rp s dag r h i O(lg )a dteag r h i a albet b t l a d rwig E p r me tl eu t s o t mec mp e i o epo o e lo i m no n , n l oi m v i l o oh s l n s h t i h y t t s h t s a ma
数 据的压缩存储 , 通过标识码实现有值单元格与离散点之 间的高效检索 ,从而提高网格构建的效率。依据有值单元格 的密度获取预设正 方 形搜索空问 , 并在 三角网扩展 时根据需 要动态建立 正方形搜索 空间,从而保证 网格生长 的准确性 。实验结果表明 , 该算法 的时间复杂度为
O no n ,对于少量 或海量离散点均具有较好 的适应性 。 (lg )
第 3 卷 第 1 期 7 2
、0 . 7 ,13







2 1 年 6月 01
J e 01l un 2
NO 1 .2
Co pu e m t rEng n e i g i e rn
软 件技 术 与数 据库 ・
文章编号: 00_2( 11 _ 5 _ lo—3 801 2 0 6 0 4 2 )— 0 — 3
a g rt m,a g i s a h e e o e p e sd s r t o n n q e y ba e n t e d v d — n — o q e t od wh c sc mp e s d so a e i p s l o ih rd i c iv d t x r s i c e e p i tu i u l s d o h i i e a d c n u r meh , i h i o r s e t r g n a s a e r ma rx a d a f c e t e re a t o s e t b i h d bewe n vau e l n ic ee p n y i e tfc t n c d , ti , n n e i i n ti v l r me h d i sa ls e t e l e c l a d d s r t oi t d n i a i o e wh c s e f c i e y t mp o e b i o i h i f e t l o i r v v

不规则三角网(TIN)的建立

不规则三角网(TIN)的建立
数字高程模型
不规则三角网(TIN)的建立算法
马仕航 1410040222
2016/11/20
1
TIN概述
5.1.1 TIN的理解 5.1.2 TIN的三角剖分准则
5.1.3

三角剖分算法分类与特
2016/11/20
2
TIN的基本概念
不规则三角网(Triangulated Irregular Network 简称TIN):是用一系列互不交叉、互不重叠的连接在一 起的三角形来表示地形表面。TIN既是矢量结构又有栅格 的空间铺盖特征,能很好地描述和维护空间关系。
20
2、逐点插入算法 :
• 1)定义包含所有数据点的最小外界矩形范围,并以此作 为最简单的凸闭包。 • 2)按一定规则将数据区域的矩形范围进行格网划分(如 限定每个格网单元的数据点数)。 • 3)剖分数据区域的凸闭包形成两个超三角形,所有数据 点都一定在这两个三角形范围内。 • 4)对所有数据点进行循环,作如下工作(设当前处理的 数据点为P):
将等高线作为特征线的方法;
自动增加特征点及优化TIN的方法。
2016/11/20
25
等高线离散点直接生成TIN方法
该方法直接将等高线离散化,然后利用常用TIN的生成 算法,该方法没有考虑离散点间原有的连接关系,模拟 的地形就会失真,具体表现为三角形的边穿越等高线和 存在平三角形的两种情况。 在实际应用中该方法较少使用。
无约束数据域是指数据点之间不存在任何关系,即 数据分布完全呈离散状态,数据点之间在物理上相互 独立。
约束数据域则是部分数据点之间存在着某种联系, 这种联系一般通过线性特征来维护,如地形数据中的 山脊线、山谷线上的点等。
2016/11/20

第五章 不规则三角网(TIN)的建立

第五章 不规则三角网(TIN)的建立
对地形特征而言不重要的点,在此基础上建 立TIN模型。
2020/3/24
24
第5章 不规则三角网(TIN)的建立
5.1.3 三角剖分算法分类与特点
➢从混合数据生成三角网(P70)
混合数据:是指链状数据 (如断裂线、河流线等)与规 则格网采样数据结合形成的一 种数据。
此种数据建立三角网的方法: 首先分解规则三角形,然后考 虑特征线上的点,在格网中生 成不规则三角形。
平方之比最小。
对角线准则:两三角形组成的凸四边形的两条对角线之比。这一准
则的比值限定值,须给定,即当计算值超过限定值才进行优化。
2020/3/24
14
第5章 不规则三角网(TIN)的建立
说明:
5.1 TIN概述
1)三角形准则是建立三角形格网的基本原则,应 用不同的准则将会得到不同的三角网。
2)一般而言,应尽量保持三角网的唯一性,即在 同一准则下由不同的位置开始建立三角形格网,其最 终的形状和结构应是相同的。
递归生长算法
2020/3/24
2 13
2 13
31
第5章 不规则三角网(TIN)的建立
1、三角网生长算法
2)凸闭包收缩法
5.2 TIN的建立
该算法的基本思路:首先找到包含数据区域的最小凸多边 形,并从该多边形开始从外向里逐层形成三角形格网。
平面点凸闭包的定义是包含这些平面点的最小多边形。
在凸闭包中,连接任意两点的线段必须完全位于多边形 内。凸闭包是数据点的自然极限边界,相当于包围数据 点的最短路径。
5.1.3 三角剖分算法分类与特点
5.1 TIN概述
➢ 不规则分布采样数据三角剖分 ➢ 规则分布采样数据三角剖分 ➢ 从混合数据生成三角网 ➢ 基于等高线采样数据三角剖分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于基于不规则三角网不规则三角网不规则三角网构建构建构建的的网格生长算法刘 刚,李永树李永树,,张水舰(西南交通大学地理信息工程中心,成都 610031)摘 要:提出一种基于离散点Delaunay 三角网快速构建的网格生长算法,采用分治算法将离散点表达为唯一网格,利用稀疏矩阵完成网格数据的压缩存储,通过标识码实现有值单元格与离散点之间的高效检索,从而提高网格构建的效率。

依据有值单元格的密度获取预设正方形搜索空间,并在三角网扩展时根据需要动态建立正方形搜索空间,从而保证网格生长的准确性。

实验结果表明,该算法的时间复杂度为O (n log n ),对于少量或海量离散点均具有较好的适应性。

关键词关键词::Delaunay 三角网;不规则三角网;离散点;正方形搜素空间;网格生长算法Grid Growing Algorithm Based onTriangular Irregular Network ConstructionLIU Gang, LI Yong-shu, ZHANG Shui-jian(Geography Information Engineering Center, Southwest Jiaotong University, Chengdu 610031, China)【Abstract 】This paper presents a grid growing algorithm for fast construction of Delaunay irregular network based on discrete point. In this algorithm, a grid is achieved to express discrete point uniquely based on the divide-and-conquer method, which is compressed storage in a sparse matrix, and an efficient retrieval method is established between value cell and discrete point by identification code, which is effectively to improve the efficiency of the construction of Triangular Irregular Network(TIN). According to the density of value cells, a default square search space is acquired, and it is allowed to create the square search space dynamically in the expansion process of TIN, which ensures the accuracy of the grid growing. Experimental results show that the time complexity of the proposed algorithm is O (n log n ), and the algorithm is available to both small and massive amount of discrete points.【Key words 】Delaunay triangular network; Triangular Irregular Network(TIN); discrete point; square search space; grid growing algorithm DOI: 10.3969/j.issn.1000-3428.2011.12.019计 算 机 工 程 Computer Engineering 第37卷 第12期V ol.37 No.12 2011年6月June 2011·软件技术与数据库软件技术与数据库·· 文章编号文章编号::1000—3428(2011)12—0056—03 文献标识码文献标识码::A中图分类号中图分类号::P2091 概述不规则三角网(Triangular Irregular Network, TIN)表面建模是一种很重要的表面建模方法[1-2]。

在所有生成TIN 的方法中,Delaunay 三角网最优,它尽可能避免了病态三角形的出现,常被用来生成TIN 。

目前,利用离散点构建Delaunay 三角网的方法有很多,主要有逐点插入法、三角网生长法、分治算法等[1]。

逐点插入算法是Lawson C L [3]提出的,之后Bowyer A [4]、Watson D F [5]等人对其进行发展。

该算法的时间复杂度一般在3/2()O n ~(log )O n n [6-7],在处理过程中每插入一个点都要判断插入点所在的三角形,随着数据点的不断插入,三角形的个数成倍增加,将花费大量的时间在三角形的定位上,从而直接影响算法效率。

三角网生长法、分治法等算法的时间复杂度的下界为(log )O n n 。

三角网生长法将大部分时间花费在搜索符合要求的给定基线的邻域点过程中,分治算法由于递归执行,算法需要较大内存空间[8],对海量数据而言,两者的效率都较低。

为提高不规则三角网的构建效率,本文提出一种基于离散点构建不规则三角网的网格生长算法,重点研究如何由离散点生成规则网格,并在此基础上建立TIN 模型。

2 一种一种构建构建构建不规则三角网的不规则三角网的不规则三角网的网格网格网格生长算法生长算法2.1 离散点离散点网格网格网格化化网格由许多单元格组成,通常将单元格看成一个对象。

从处理效率上看,单元格值的情况越少,单元格之间的计算速度越快。

所以,从计算效率出发,针对离散数据确定如下规则网格构建准则:规则网格包含所有离散点,每个离散点对应一个单元格,且一个单元格内的离散点数量小于2。

当单元格内存在一个离散点时表示该单元格有值(用1表示),称为有值单元格,当不存在离散点时表示该单元格无值(即为Null),称为空值单元格,并将按照该准则建立的规则网格称为唯一网格,其唯一性体现在离散点与有值单元格的一一对应关系。

原理如图1所示,图1(a)表示一个单元格只包含 1个或0个离散点,图1(b)是对有值单元格进行赋值的结果(其中,黑色表示有值单元格即为1;其余无值即为Null)。

(a)离散点与网格关系 (b)网格化结果图1 离散点离散点网格网格网格化化 基金项目基金项目::“十一五”国家科技支撑计划基金资助项目(2006BAJ05 A13)作者简介作者简介::刘 刚(1986-),男,硕士,主研方向:复杂网络,GIS 原理及其应用;李永树,教授、博士生导师;张水舰,博士 收稿日期收稿日期::2011-01-08 E-mail :liugang233666@第37卷 第12期 57刘刚, 李永树, 张水舰:基于不规则三角网构建的网格生长算法2.2 网格网格生长生长生长算法原理算法原理空间自相关理论反映空间相邻对象在地理特性上的相互影响程度,认为距离越近的实体,彼此的影响程度越大(也可理解为共性越多或联系越紧密)。

从空间自相关角度可知,在不规则三角网构建过程中,距离当前基线较近的点对生成三角形的贡献较大,所以,算法采用局部搜索策略进行三角网的扩展,基本思想如下:根据有值单元格在网格中的密度,并以常数C N 表示每次搜索需要参考的有值单元格数量,从而确定一个正方形搜索范围R [X min, Y min, X max, Y max],之后每次扩展只需在当前基线周围的R 区域内寻找一个与当前基线满足Denaulay 三角形的有值单元格即可。

当引入局部约束条件时,将约束条件范围表达为对应的网格区域并建立相应规则。

网格生长算法原理如图2所示。

图2 网格网格生长生长生长算法原理算法原理在图2中,黑色粗线框为正方形搜索范围R ,其4个参数X min 、Y min 、X max 、Y max 为指定的行、列位置;实线三角形是已有三角形;以该三角形一边为基线并在当前正方形空间内搜索到一个有值单元格满足Delaunay 准则并生成一个新三角形,如虚线所示。

2.3 网格网格生长生长生长算法流程算法流程网格生长算法流程主要分为3个阶段:第1个阶段是由离散点构建唯一网格,建立离散点与有值单元格之间的对应关系;第2个阶段是确定每次搜索需要参考的有值单元格的数量(用N c 表示),并计算有值单元格在整个网格中的密度,从而获取空间R 的预设大小;第3个阶段是基于所建网格按照Delaunay 准则构建不规则三角网。

网格生长流程见图3。

图3 网格网格生长生长生长算法流程算法流程2.4 网格网格生长生长生长算法实现算法实现 2.4.1 数据结构在算法的整个实现过程中,需要频繁地对网格数据和离散数据进行调度,提高算法效率必须建立离散点与有值单元格之间的高效检索。

为此,建立如下数据结构,其中,Point 表示离散点;Edge 表示三角边;Triangle 表示三角形;HasUnit 表示有值单元格。

typedef struct { long id; /*离散点id 号*/ double X,Y; /*X 坐标、Y 坐标*/ } Point;typedef struct { long id; /*三角形边的id*/ long point_id[2]; /*from-point, to-point*/ long lt_id, rt_id; /*边左右邻接三角形*/ } Edge;typedef struct { long id; /*三角形id*/ long edge_id[3]; /*三角形三条边的id*/ } Triangle; typedef struct { long row, column; /*单元格行、列号*/ long point_id; /*单元格对应的离散点id*/ } HasUnit;按照2.1节中网格构建准则构建的规则网格的单元格数量很大,但有值单元格所占比重极小。

在空间分布上可认为该网格是一个稀疏矩阵,所以,采用三元组顺序表实现网格的压缩存储以及与离散点的高效检索。

网格存储结构见表1。

表1 网格网格存储结构存储结构有值单元格的行号 有值单元格的列号 对应的离散点id 号25 28 3 201 139 … … … mnk2.4.2 基于离散点的唯一网格构建根据离散点数据构建唯一网格的过程如下:(1)求出离散点集合P 的最小矩形范围T [X min, Y min, X max, Y max]。

相关文档
最新文档