《初等数论(闵嗣鹤、严士健)》习题解答2012完整版

合集下载

闵嗣鹤、严士健,初等数论第四章习题解答

闵嗣鹤、严士健,初等数论第四章习题解答

第四章 同余式§1 习题(P61)1. 求下列各同余式的解 (i )256179(mod337) x ≡ (ii )1215560(mod 2755) x ≡ (iii )12961125(mod 1935) x ≡ 解:(i )由(256,337)1=,∴有唯一解解不定方程 256337179x y -= ……(1) 先解不定方程 2563371x y += ……(2) 由得30(1)79y =-,40(1)104x =-为(2)之特解104179x '=⨯,79179y '=⨯为(1)之特解1041791861681(mod337) x ∴≡⨯=≡是原同余式之一解。

(ii )由(1215,2755)5=,5560,∴有5个不同的解。

解不定方程 12152755560x y -= (1)即解等价不定方程243551112x y -= ……(2) 先解: 2435511x y += ……(3) 解得(3)的特解0195x =-,086y =即得(2)的特解0195112x =-⨯,086112y =-⨯ ∴原同余式五个不同解为 195112551200551(mo x K K =-⨯+≡+ 0,1,2,3,4K = (iii )由(1296,1935)9=,91125 ∴有9个不同解解不定方程 129619351125x y -= ……(1) (1)等价于不定方程 14421512x y -= ……(2) 先解: 1442151x y += ……(3) 解得(3)的一特解 0106x =-,071y =于是得(2)的一特解 0106125x =-⨯,071125y =-⨯∴原同余式的9个不同解为106125215295215(mod 1935) x K K =-⨯+≡+2561 = q 1337 256 813 = q 2256 243 13 6 = q 381 78 3 4 = q 4 13 12 1 q P Q 0 1 2 3 4 13 641 1 4 25 104 01319 790,1,2,,8K =2. 求联立同余式的解4290(mod143) x y +-≡ 29840(m o d 1x y -+≡ 解:解 414329 x y z +-= ……(1) 2914384x y z --=- ……(2) 由(2)2(1)-⨯:14317142z y -=- ……(3) 由(143,17)1=,∴(3)有唯一解。

初等数论闵嗣鹤第四版答案

初等数论闵嗣鹤第四版答案

初等数论闵嗣鹤第四版答案介绍《初等数论闵嗣鹤第四版答案》是对闵嗣鹤所著《初等数论》第四版的习题答案进行了整理和解析。

《初等数论》是普通高校数学系本科生的一门基础课程,有助于培养学生的数学思维和推理能力。

通过学习该答案,学生可以更好地理解和掌握《初等数论》中的知识点,并提高解题能力。

目录1.第一章素数2.第二章同余3.第三章数论函数4.第四章域上的多项式5.第五章幂的剩余与解方程6.第六章整数的几何性质第一章素数1.1 什么是素数?简要解答:素数指的是只能被1和自身整除的正整数。

详细解答:一个大于1的正整数如果只能被1和它本身整除,则称之为素数,也叫质数。

反之,如果大于1的正整数可以被其他正整数整除,则称之为合数。

最小的素数是2。

1.2 素数的性质简要解答:素数有无限多个,并且一个数是否是素数可以通过试除法判断。

详细解答:欧几里得证明了素数有无限多个的结论。

对于给定的一个正整数n,如果在2到√n之间找不到小于n的因数,那么n就是素数。

这就是试除法。

试除法是素数判断的基础,但它的效率不高,因为需要逐个试除所有小于n的数。

1.3 素数的应用简要解答:素数在密码学和随机数生成中经常被使用。

详细解答:由于素数具有唯一分解性质,使得许多密码学算法中的关键操作依赖于素数。

比如RSA算法中,公钥和私钥的生成需要使用两个大素数。

此外,素数还在随机数生成和随机性检验中发挥重要作用。

第二章同余2.1 什么是同余?简要解答:同余是数论中的一种等价关系。

详细解答:a和b对模m同余,记作a≡b(mod m),当且仅当a和b的差是m的倍数。

同余关系具有三个基本性质:反身性、对称性和传递性。

同余关系的性质使得其在数论中有广泛的应用。

2.2 同余定理简要解答:同余定理是一类用来计算同余的定理,包括欧拉定理、费马小定理等。

详细解答:欧拉定理是指当a和m互质时,a的φ(m)次方与1同余模m,其中φ(m)表示不大于m且与m互质的正整数的个数。

福师期末考试《初等数论》复习题及参考答案

福师期末考试《初等数论》复习题及参考答案

福师期末考试《初等数论》复习题及参考答案本复习题页码标注所用教材为:教材名称单价作者版本出版社初等数论14.20闵嗣鹤,严士健第三版高等教育出版社复习题及参考答案一一、填空(40%)1、求所有正约数的和等于15的最小正数为考核知识点:约数,参见P14-192、若b1,b2,L L,b11是模11的一个完全剩余系,则8b1+1,8b2+1,L L,8b11+1也是模11的剩余系.考核知识点:完全剩余系,参见P54-573.模13的互素剩余系为考核知识点:互素剩余系,参见P584.自176到545的整数中是13倍数的整数个数为考核知识点:倍数,参见P11-13p是素数,a是任意一个整数,则a被p整除或者5、如果考核知识点:整除,参见P1-4a,b的公倍数是它们最小公倍数的.6、提示:要证明原式成立,只须证明 3 a + a +1,或者 3 a + a 成立即可。

四、(10%)设 p 是不小于 5 的素数,试证明 p ≡ 1(mod 24)考核知识点:最小公倍数,参见 P11-137、如果 a , b 是两个正整数,则存在 整数q , r ,使 a = bq + r , 0 ≤ r p b .考核知识点:整除,参见 P1-48、如果 3 n , 5 n ,则 15( ) n .考核知识点:整除,参见 P1-4二、(10%)试证:6|n(n+1)(2n+1),这里 n 是任意整数。

考核知识点:整除的性质,参见 P9-12提示: i)若 则ii)若 则iii)若 则又三、(10%)假定 a 是任意整数,求证 a 2+ a + 1 ≡ 0(mod 3 ) 或a 2+ a ≡ 0(mod 3 )考核知识点:二次同余式,参见 P882 22 考核知识点:同余的性质,参见 P48-52提示: 且 是不小于 5 的素数. 又 且 是不小于 5 的素数.⎩14 x ≡ 2(mod 8)⎪⎩ x ≡ 3(mod 8) ⎪⎩如果 n = x + y , 所以 x , y 只能与 0,1 同余,所以 x + y ≡ 0,1, 2(mod 4)只能是奇数且即 即五、(15%)解同余式组 ⎧5 x ≡ 1(mod 7) ⎨考核知识点:同余式,参见 P74-75 提示∵ (14,8)=2 且 2 | 2∴ 14x≡2(mod8) 有且仅有二个解 解 7x≡1(mod4) ⇒ x≡3 (mod4) ∴ 6x≡10(mod8)的解为x≡3,3+4(mod8)⎧⎪x ≡ 3(mod 7) 原同余式组等价于 ⎨ ⎧⎪x ≡ 3(mod 7)或 ⎨x ≡ 7 (mod 8)分别解出两个解即可。

《初等数论》各章习题参考解答

《初等数论》各章习题参考解答

《初等数论》各章习题参考解答第一章习题参考解答1.解:因为25的最小倍数是100,9的最小倍数是,所以满足条件的最小正整数11111111100a =。

2.解:3在100!的分解式中的指数()1001001001003100!33113148392781⎡⎤⎡⎤⎡⎤⎡⎤=+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 在100!的分解式中的指数()1001001001001002100!50251261942481664⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++=++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,∴ ()9448474847100!2343123,,61k k k k =⋅⋅=⋅⋅=⋅=。

故 max 47n =,min 3M k =,(),61k =。

故 当M 最小值是3的倍数,但不是2的倍数。

3.解:112121n n n n x x ++++++等价于()()21221n n n x x x ++-+-,从而3x ³(n 就不会太大,存在反向关系)。

由()()22121n nn x x x -+-?+,得()()2212n n n x x -+?,即()()()121122nn x x -+?。

若2n ³,则()()()()251221114242nn x xx x-?+??,导致25140x x -+?,无解。

所以,只有1n =,335314x x x +-?,只能是37,14x +=,从而4,11x =。

综上所述,所求正整数对()()(),4,111,1x n =、。

4.解:按题意,2m n >>,记*,m n k k N =+?;则()222211111n n k nk n k k a a a a a a a a a a a a +++-+-?-+--++-22211111n k k n k k a a a a a a a a a ++?---+?-+-,故 存在无穷多个正整数a 满足2111n k k a a a a ++-+-。

《初等数论(闵嗣鹤、严士健-高等教育出版社)》习题解答完整版

《初等数论(闵嗣鹤、严士健-高等教育出版社)》习题解答完整版

第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++ 是m 得倍数.证明: 12,,n a a a 都是m 的倍数。

∴ 存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===又12,,,n q q q 是任意n 个整数1122n n q a q a q a ∴+++ 1122n n q p m q p m q p m =+++ 1122()n n p q q p q p m =+++即1122n n q a q a q a +++ 是m 的整数 2.证明 3|(1)(21)n n n ++ 证明 (1)(21)(1)(2n n n n n n n ++=+++-(1)(2)(1)(n n n n n n =+++-+又(1)(2)n n n ++ ,(1)(2)n n n -+是连续的三个整数 故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++.证: ,a b 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何?证:作序列33,,,,0,,,,2222b b b bb b --- 则a 必在此序列的某两项之间 即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t < ()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> 而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t == 当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b ---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b rq r -=,┄, d '|21(,)n n n n r r q r a b --=+=, 即d '是(,)a b 的因数。

(完整版)初等数论练习题答案

(完整版)初等数论练习题答案

初等数论练习题一一、填空题1、d(2420)=12;(2420)=_880_ϕ2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。

5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。

.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。

7、18100被172除的余数是_256。

8、 =-1。

⎪⎭⎫⎝⎛103659、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。

二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。

解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余方程有4解。

作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。

2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-∙--∙-()()()(),()()()(,(()()(()(解: 故同余方程x 2≡42(mod 107)有解。

《初等数论(闵嗣鹤、严士健)》第三版课件1-3


1
k
rk 1 1 rk 1 qk 1rk
k
其中 P0 1, P1 q1 , Pk qk Pk 1 Pk 2 , k =2, n
Qk 1a Pk 1b qk 1 Qk a Pk b qk 1Qk Qk 1 a qk 1 Pk Pk 1 b
2 2 1 2 1 1 3 3 1 2 2 2 1 1 2 3 2 2 1 3 1 2 2 3 1
a a a k 1

, b a , c a, c
k k
k
.
5解 : 1387 162 8 91, q1 8, r1 91,
3
162 91 1 71, q2 1, r2 71, 91 71 1 20, q3 1, r3 20, 71 20 3 11, q4 3, r4 11, 20 11 1 9, q5 1, r5 9, 11 9 1 2, q6 1, r6 2,
11
知mn是a1 , a2 , , an的一个公倍数. 对a1 , a2 , , an的任一公倍数m, 由a1 m , a2 m ,且[a1 , a2 ] m2 m2 m ,m3 m , ,mn m . [a1 , a2 , , an ] mn .
12
3
推论 若m是a1, a2, , an的公倍数,则[a1, a2, , an]m 。
k
a a , c , b b, c .
k k
代入即得证.
5.求整数x,y,使得1387x-162y=(1387,162).
14
1证 : C pj
p 1 ! p! p j ! p j ! j ! p j !

闵嗣鹤严士健初等数论部分习题解答(剩余类及完全剩余系)

闵嗣鹤严士健初等数论部分习题解答(剩余类及完全剩余系)1.证明,0,1,,1,0,1,,1,s t s t t x u p v u p v p t s --=+=-=-≤是模s p 的一个完全剩余系。

证 易知,当0,1,,1,0,1,,1s t t u p v p -=-=- 时,s t x u p v -=+通过s p 个整数,下证这s p 个整数对模s p 两两部同余。

设()mod ,s t s t s u p v u p v p --''''''+≡+ (1)其中01,01,01,01,s t s t t t u p u p v p v p --''''''≤≤-≤≤-≤≤-≤≤-则()()mod ,mod .s t s t s t s t u p v u p v p u u p ----'''''''''+≡+≡又因01,01s t s t u p u p --'''≤≤-≤≤-,故.u u '''=从而由(1)式得()()mod ,mod .s t s t s t p v p v p v v p --''''''≡≡又由01,01ttv p v p '''≤≤-≤≤-得.v v '''=故这sp 个整数对模sp 两两不同余,从而它们作成模sp 的完全剩余系。

2. 若12,,,k m m m 是k 个两两互质的正整数,12,,,k x x x 分别通过模12,,,km m m 的完全剩余系,则1122k k M x M x M x +++通过模12k m m m m = 的完全剩余系,其中,1,2,,.i i m m M i k == 。

《初等数论(闵嗣鹤、严士健)》习题解答2012完整版[1]

第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++ 是m 得倍数.证明: 12,,n a a a 都是m 的倍数。

∴ 存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===又12,,,n q q q 是任意n 个整数1122n n q a q a q a ∴+++ 1122n n q p m q p m q p m =+++ 1122()n n p q q p q p m =+++即1122n n q a q a q a +++ 是m 的整数 2.证明 3|(1)(21)n n n ++ 证明 (1)(21)(1)(2n n n n n n n ++=+++-(1)(2)(1)(n n n n n n =+++-+又(1)(2)n n n ++ ,(1)(2)n n n -+是连续的三个整数 故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++.证: ,a b 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何?证:作序列33,,,,0,,,,2222b b b bb b --- 则a 必在此序列的某两项之间 即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t < ()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> 而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t == 当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b ---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b rq r -=,┄,d '|21(,)n n n n r r q r a b --=+=, 即d '是(,)a b 的因数。

闵嗣鹤、严士健,初等数论第四章习题解答

第四章 同余式§1 习题(P61)1. 求下列各同余式的解 (i )256179(mod337) x ≡ (ii )1215560(mod 2755) x ≡ (iii )12961125(mod 1935) x ≡ 解:(i )由(256,337)1=,∴有唯一解解不定方程 256337179x y -= ……(1) 先解不定方程 2563371x y += ……(2) 由得30(1)79y =-,40(1)104x =-为(2)之特解104179x '=⨯,79179y '=⨯为(1)之特解1041791861681(mod337) x ∴≡⨯=≡是原同余式之一解。

(ii )由(1215,2755)5=,5560,∴有5个不同的解。

解不定方程 12152755560x y -= (1)即解等价不定方程243551112x y -= ……(2) 先解: 2435511x y += ……(3) 解得(3)的特解0195x =-,086y =即得(2)的特解0195112x =-⨯,086112y =-⨯ ∴原同余式五个不同解为 195112551200551(mo x K K =-⨯+≡+ 0,1,2,3,4K = (iii )由(1296,1935)9=,91125 ∴有9个不同解解不定方程 129619351125x y -= ……(1) (1)等价于不定方程 14421512x y -= ……(2) 先解: 1442151x y += ……(3) 解得(3)的一特解 0106x =-,071y =于是得(2)的一特解 0106125x =-⨯,071125y =-⨯∴原同余式的9个不同解为106125215295215(mod 1935) x K K =-⨯+≡+2561 = q 1337 256 813 = q 2256 243 13 6 = q 381 78 3 4 = q 4 13 12 1 q P Q 0 1 2 3 4 13 641 1 4 25 104 01319 790,1,2,,8K =2. 求联立同余式的解4290(mod143) x y +-≡ 29840(m o d 1x y -+≡ 解:解 414329 x y z +-= ……(1) 2914384x y z --=- ……(2) 由(2)2(1)-⨯:14317142z y -=- ……(3) 由(143,17)1=,∴(3)有唯一解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r1 b
(a,b) rn
d | a bq1 r1 , d | b r1q2 r2 ,┄, d | rn2 rn1qn rn (a, b) ,
即 d 是 (a, b) 的因数。
反过来 (a, b) | a 且 (a, b) | b ,若 d | (a,b), 则 d | a, d | b ,所以 (a, b) 的因数都是 a, b 的公因数,从而
n(n 1)(n 2) (n 1)n(n 1) 又 n(n 1)(n 2) , (n 1)n(n 2) 是连续的三个整数 故 3 | n(n 1)(n 2), 3 | (n 1)n(n 1) 3 | n(n 1)(n 2) (n 1)n(n 1) 从而可知 3 | n(n 1)(2n 1) 3.若 ax0 by0 是形如 ax by (x,y 是任意整数,a,b 是两不全为零的整数)的数中最小整数,则 (ax0 by0 ) | (ax by) . 证: a, b 不全为 0
2
2
2
(ii) 当 q 为奇数时,若 b 0 则令 s q 1,t a bs a q 1b ,则有
2
Hale Waihona Puke 2b t a bs a q 1b a q 1 b 0 t b
2
2
2
2
若 b 0 ,则令 s q 1,t a bs a q 1b ,则同样有 t b 综上所述,存在性得证.
(a, b) (b, t) (t, t1) (t1, t2 ) (tn, tn1) (tn, 0) tn ,存在其求法为:
(a,b) (b, a bs) (a bs,b (a bs)s1)
(76501, 9719) (9719, 76501 9719 7) (8468,9719 8468) (1251,8468 1251 6) (3,1) 1
在整数集合 S ax by | x, y Z 中存在正整数,因而有形如 ax by 的最小整数 ax0 by0
1 / 51
x, y Z ,由带余除法有 ax by (ax0 by0 )q r, 0 r ax0 by0
《初等数论》习题解答
则 r (x x0q)a ( y y0q)b S ,由 ax0 by0 是 S 中的最小整数知 r 0
3 b 2
b 1
b 2
b
2
(
b 2
),
t1
b, 2
t1
b 2
§2 最大公因数与辗转相除法
1.证明推论 4.1
推论 4.1 a,b 的公因数与(a,b)的因数相同.
证:设 d 是 a,b 的任一公因数, d |a, d |b
由带余除法
a bq1 r1,b r1q2 r2 , , rn2 rn1qn rn , rn1 rnqn1, 0 rn1 rn rn1
3 / 51
s1, t1
,使
b
s1t
t1,|
t1
|
|t| 2
b 22
,
, 如此类推知:
《初等数论》习题解答
sn , tn , tn2 tn1sn tn ;
sn1, tn1, tn1 tnsn1 tn1;
且|
tn
|
|
tn1 2
|
|
tn2 22
|
|t| |b| 2n 2n1
而 b 是一个有限数,n N, 使 tn1 0
2
22 2
即存在一个整数 q ,使 q b a q 1 b 成立
2
2
(i) 当 q 为偶数时,若 b 0. 则令 s q ,t a bs a q b ,则有
2
2
0 a bs t a q b a q b q b t b
2
22
2
若 b 0 则令 s q ,t a bs a q b ,则同样有 t b
ax0 by0 | ax by
ax0 by0 | ax by ( x, y 为任意整数) ax0 by0 | a, ax0 by0 | b
ax0 by0 | (a,b). 又有 (a,b) | a , (a,b) | b
(a,b) | ax0 by0 故 ax0 by0 (a, b)
a, b 的公因数与 (a, b) 的因数相同。
2.证明:见本书 P2,P3 第 3 题证明。 3.应用§1 习题 4 证明任意两整数的最大公因数存在,并说明其求法,试用你的所说的求法及辗转相除法实际 算出(76501,9719). 解:有§1 习题 4 知:
a,b Z,b 0, s,t Z,使 a bs t,| t | b 。, 2
第一章 整数的可除性
《初等数论》习题解答
§1 整除的概念·带余除法 1.证 明 定理 3
定 理 3 若 a1,a2, ,an 都 是 m 得 倍 数 , q1,q2, ,qn 是 任 意 n 个 整 数 , 则 q1a1 q2a2 qnan 是 m 得 倍 数 .
证明: a1, a2 , an 都是 m 的倍数。 存在 n 个整数 p1, p2 , pn 使 a1 p1m, a2 p2m, , an pnm 又 q1, q2 , , qn 是任意 n 个整数 q1a1 q2a2 qnan q1 p1m q2 p2m qn pnm ( p1q1 q2 p2 qn pn )m 即 q1a1 q2a2 qnan 是 m 的整数 2.证明 3 | n(n 1)(2n 1) 证明 n(n 1)(2n 1) n(n 1)(n 2 n 1)
2
2
2,
下证唯一性
2 / 51
当 b 为奇数时,设 a bs t bs1 t1 则 t t1 b(s1 s) b
《初等数论》习题解答
b
b
而 t 2 , t1 2 t t1 t t1 b 矛盾 故 s s1,t t1
当 b 为偶数时, s,t 不唯一,举例如下:此时 b 为整数 2
4.若 a,b 是任意二整数,且 b 0 ,证明:存在两个整数 s,t 使得
a bs t, | t | | b | 2
成立,并且当 b 是奇数时,s,t 是唯一存在的.当 b 是偶数时结果如何?
证:作序列
3b
b b 3b
, , b , , 0, , b , , 则 a 必在此序列的某两项之间
相关文档
最新文档