(完整版)无穷级数习题及答案.doc
第十章 无穷级数 习题详细解答

解 若级数分别为
∑u
n =1 ∞
∞
n
= 1 − 1 + 1 − " + (−1) n −1 + " ;
∑v
n =1 ∞
n
= −1 + 1 − 1 + " + (−1) n + " ;
∞ ∞
则级数
∞
∑ (u n + vn ) 显 然 收 敛 ; 但 是 如 果 另 外 有 级 数 ∑ wn = ∑ u n , 则 级 数
(3) (5) ∑ ( n + 2 − 2 n + 1 + n ) ;
n =1 ∞
(6)
1 1 1 1 + + 3 + 4 +"; 3 3 3 3
(7) ( − ) + (
1 1 1 1 1 1 − 2 ) + "" + ( n − n ) + " ; 2 3 2 3 2 3 2 1 3 5 7 2n − 1 +"; (8) + + + + " + 3 5 7 9 2n + 1
敛,由比较判别法,故级数
(sin 2n) 2 也收敛. ∑ 6n n =1
∞
(5)当 a > 1 时, u n =
∞ ∞ 1 1 1 1 ,而 收敛,故 收敛 < ∑ ∑ n n n n a 1+ a n =1 a n =1 1 + a
当 0 ≤ a ≤ 1 时, lim u n = lim
n→∞ ∞
(4)因为 S n = sin (5)因为
无穷级数习题课含解答

无穷级数习题课1.判别级数的敛散性:(1)(2)(3)(4)(5)()211ln1nn n¥=+å()41tan1nn p¥=+å363663666-+-++×××+-++×××++×××21sinlnnnnp¥=æö+ç÷èøå()211lnnnn n¥=--å解:(1)为正项级数,当时, ,根据比较审敛准则,与有相同敛散性,根据积分审敛准则,与反常积分有相同敛散性, 而发散,故发散.()211ln 1n n n ¥=+ån ®¥()2111~2ln ln 1n u n n n n =+()211ln 1n n n ¥=+å21ln n n n ¥=å21ln n n n¥=å21ln dx x x +¥ò21ln dx x x +¥ò()211ln 1n n n ¥=+å(2)为正项级数,当时,,而收敛,根据比较审敛准则,收敛.()41tan 1n n p¥=+ån ®¥()422421tan1tan~21n u n n n n npp p =+-=++211n n ¥=å()41tan1n n p¥=+å(3)为正项级数, 令,其中,易证单调递增且,故收敛;令,由,两边取极限得,,(舍去);,,根据达朗贝尔比值审敛法,该级数收敛.363663666-+-++×××+-++×××++×××3n n u a =-666n a =++×××+{}n a 3n a <{}n a lim n n a a ®¥=16n n a a -=+6a a =+Þ260a a --=3a =2a =-111113311333n n n n n n n a a u u a a a +++++-+=×=-++1111lim lim 136n n n nn u u a +®¥®¥+==<+(4)看成交错级数,单调递减趋于0,根据Leibniz 定理,该级数收敛; 其绝对值级数发散(这是因为当时,,而且),故级数条件收敛. ()2211sin 1sin ln ln n n n n n n p ¥¥==æö+=-ç÷èøåå1sin ln n ìüíýîþ21sin ln n n ¥=ån ®¥11sin ~ln ln n n 1lim ln n n n®¥×=+¥(5)为交错级数,其绝对值级数为,当时,, 所以,该级数绝对收敛.()211ln nn n n¥=--å211ln n n n ¥=-ån ®¥2211~ln n n n-2. 设,且,证明级数条件收敛. ()01,2,n u n ¹= lim 1n nn u ®¥=()111111n n n n u u ¥-=+æö-+ç÷èøå证明:设级数的部分和为,则 ,因为,所以,于是 ,即级数收敛;其绝对值级数为,因为, 所以级数发散,故原级数条件收敛.()111111n n n n u u ¥-=+æö-+ç÷èøån s ()()211223111111111111n n n n n n n s u u u u u u u u ---+æöæöæöæö=+-+++-++-+ç÷ç÷ç÷ç÷èøèøèøèø()111111n n u u -+=+-lim1n nn u ®¥=()()1111111lim 1lim 101n n n n n n n u u n --®¥®¥+++-=-×=+()1111111lim lim 1n n n n n s u u u -®¥®¥+éù=+-=êúëû()111111n n n n u u ¥-=+æö-+ç÷èøå1111n n n u u ¥=++å11111lim lim 21n n n n n n n n nn u u u u n ®¥®¥+++×+=+×=+1111n n n u u ¥=++å3. 填空(1) _____(2) 设幂级数在处收敛, 则级数__收敛__.(收敛还是发散)(3) 设幂级数在处条件收敛,则幂级数在处( 绝对收敛 ),在处( 发散 ); (4)设,, ,则________;________.11(1)2n n n -¥=-=å130(1)nn n a x ¥=-å12x =-0(1)n n n a ¥=-å1()nn x a n ¥=-å2x =-1()2nn n x a ¥=+åln 2x =-x p =11,02()1,12x f x x x ì£<ïï=íï ££ïî1()sin nn s x bn xp ¥==å102()sin n b f x n xdx p =ò3()2s =34-5()2s =344. 求幂级数的收敛域2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 解:令,原级数变为变量t的幂级数.因为,所以收敛半径.又时级数发散,时级数收敛, 故收敛域为;再由,解得, 原函数项级数的收敛域为.122xt x +=-21sin 2n n t n ¥=æöç÷èøå ()11sin21limlim 11sin2n n n nn a a n+®¥®¥+==1R =1t=21sin 2n n ¥=å1t=-()211sin 2nn n ¥=-å21sin 2n n t n ¥=æöç÷èøå [)1,1-12112x x +-££-133x -£<2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 13,3éö-÷êëø5.求下列级数的和函数(1) (2)221212n n n n x ¥-=-å()()()201123!nn n n x n ¥=-++å解:(1).令,,所以收敛半径. 当时,级数发散,所以幂级数的收敛域为.设级数的和函数为,对幂级数逐项积分得,, 对上式两边求导得, .221212n n n n x ¥-=-å212n n n a -=11lim 2n n n a a +®¥=1212R ==2x =±()2,2D =-()s x ()212200112122n xx n n n n n n x s x dx x dx -¥¥-==-==ååòò222212xx x x ==--()2,2x Î-()()2222222x x s x x x ¢+æö==ç÷-èø-()2,2x Î-(2). 易求该幂级数的收敛域为;设级数的和函数为,,, 两边取积分,逐项求积分得, ()()()201123!nnn n x n ¥=-++å(),-¥+¥()s x ()()()()201123!nn n n s x xn ¥=-+=+å()()()()2101123!nn n n xs x x n ¥+=-+=+å()()()()()()21220000111123!223!nnxx n n n n n xs x dx x dx x n n ¥¥++==-+-==++ååòò当时,,求导得 , 当时,由所给级数知.因此. 0x ¹()()()()230111sin 223!2nxn n xs x dx x x x x n x¥+=-==-+åò()2sin 1sin cos 22x x x x xxs x x x ¢--æö==ç÷èø()3sin cos 2x x x s x x -=0x =()106s =()3sin cos ,021,06x x xx xs x x -ì¹ïï=íï=ïî6.求级数的和.()22112n n n ¥=-å解:考虑幂级数,收敛区间,设和函数为, 则当且时,,. ()2211nn x n ¥=-å()1,1-()s x 11x -<<0x ¹()()222211121211nnnn n n x x s x x n n n ¥¥¥=====--+-ååå112212121n n n n x x x n x n -+¥¥===--+åå11220121212n n n n x x x x x n x n -+¥¥==æö=---ç÷-+èøåå()11ln 12224x x x x æö=--++ç÷èø()2211311153ln ln 2242288412nn s n ¥=æö==++=-ç÷-èøå()()211ln 1ln 1222x x x x x x éù=-------êúëû7.设,试将展开成的幂级数.()111ln arctan 412x f x x x x +=+--()f x x 解:,取0到x 的定积分,幂级数逐项求积分, .()241111111114141211f x x x x x¢=++-=-+-+-44011n n n n x x ¥¥===-=åå()11x -<<()()()4410111041xx nn n n f x f f x dx x dx x n ¥¥+==¢=+==+ååòò1x <8.设在上收敛,试证:当时,级数必定收敛. ()0nn n f x a x ¥==å[]0,1010a a ==11n f n ¥=æöç÷èøå证明: 由已知在上收敛,所以,从而有界. 即存在,使得 ,所以,;级数收敛,根据比较审敛准则,级数绝对收敛.()0n n n f x a x ¥==å[]0,1lim 0n n a ®¥={}n a 0M>n a M£()1,2,n = 0123232323111111f a a a a a a n n n n n n æö=++++=++ç÷èø()2231111111n M M M n n n n næö£++==ç÷-èø- ()2n ³()211n n n ¥=-å11n f n ¥=æöç÷èøå9.已知为周期是的周期函数,(1)展开为傅立叶级数; (2)证明;(3)求积分的值.[)2(),0,2f x x x p =Î2p ()f x ()1221112n n np -¥=-=å()10ln 1x dx x +ò解:(1)在处间断,其它点处都连续.所以由Dirichlet 收敛定理,时,级数收敛于,所以当时,有,亦即:.()f x ()20,1,2,x k k p ==±± ()()22220011183a f x dx f x dx x dx pppp pp pp-====òòò222022014cos ,14sin ,1,2,n n a x nxdx n b x nxdx n npp p p p ====-=òò ()()221414cos sin 20,1,2,3n f x nx nx x k k nn p p p ¥=æö=+-¹=±±ç÷èøå ()22214114cos sin ,0,23n x nx nx x nn p p p ¥=æö=+-Îç÷èøå()20,1,2,x k k p ==±± ()()2002022f f p p ++-=()20,1,2,x k k p ==±± 222141423n np p ¥=+=å22116n n p ¥==å(2)是连续点,所以即:;x p =()f x 2221414cos ,3n n np p p ¥==+å()221112nn n p¥=-=-å()1221112n n n p-¥=-Þ=å(3)积分是正常积分,不是瑕点, 对,令,.()10ln 1x dx x +ò0x=()1,1t "Î-()()()()111112000111ln 1111n n n tt tn n nn n n x dx x dx x dx tx n nn---¥¥¥--===+---===åååòòò1t -®()10ln 1x dx x +ò()01ln 1lim t t x dx x -®+=ò()12111lim n n t n t n --¥®=-=å()12111lim n n t n t n --¥®=-=å()1221112n n np -¥=-==å10.证明下列展开式在上成立:(1);(2).并证明. []0,p ()221cos 26n nxx x n pp ¥=-=-å()()()31sin 21821n n xx x n p p¥=--=-å()()133113221n n n p -¥=-=-å证明:将函数展开为余弦级数和正弦级数.(1) 对作偶延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的余弦级数处处收敛于.,()()f x x x p =-[]0,x p Î()f x []0,x p Î()f x ()f x ()()0022a f x dx x x dx ppp p p==-òò23202233x x pp p p æö=-=ç÷èø, ,所以在上,.()()022cos cos n a f x nxdx x x nxdx ppp p p==-òò()()()()200022sin 2sin 2cos x x nx x nxdx x d nx n n pppp p p ppéù=---=-êúëûòò()2211nn éù=--+ëû()()202112cos 11cos 26n n n n a f x a nx nx n p ¥¥==éù=+=--+ëûåå221cos 26n nxnp ¥==-å[]0,x p Î[]0,p ()221cos 26n nxx x n p p ¥=-=-å(2)对作奇延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的正弦级数处处收敛于. , ()f x []0,x p Î()f x ()f x ()()0022sin sin n b f x nxdx x x nxdx p pp p p ==-òò()()()()200022cos 2cos 2sin x x nx x nxdx x d nx n n p p p p p p p p éù=----=-êúëûòò()3411n n p éù=--ëû, 所以在上,. 令,有. ()()3114sin 11sin n n n n f x b nx nx n p ¥¥==éù==--ëûåå()()31sin 21821n n x n p ¥=-=-å[]0,x p Î[]0,p ()()()31sin 21821n n xx x n p p ¥=--=-å2x p =()()23181sin 214221n n n p p p ¥==--åÞ()()133113221n n n p -¥=-=-å。
(整理)第十一章无穷级数(答案)34872

第十一章 无穷级数一、选择题1、无穷级数∑∞=1n nu的部分和数列}{n S 有极限S ,是该无穷级数收敛的 C 条件。
A 、充分,但非必要B 、必要,但非充分C 、充分且必要D 、既不充分,又非必要 2、无穷级数∑∞=1n nu的一般项n u 趋于零,是该级数收敛的 C 条件。
A 、充分,但非必要B 、必要,但非充分C 、充分且必要D 、既不充分,又非必要 3、若级数∑∞=1n nu发散,常数0≠a ,则级数∑∞=1n nauBA 、一定收敛B 、一定发散C 、当0>a 收敛,当0<a 发散D 、当1<a 收敛,当1>a 发散。
4、若正项级数∑∞=1n nu收敛,则下列级数必定收敛的是 AA 、∑∞=+1100n n uB 、∑∞=+1)100(n nuC 、∑∞=-1)100(n n u D 、∑∞=-1)100(n n u5、若级数∑∞=1n na 收敛,∑∞=1n nb发散,λ为正常数,则级数∑∞=-1)(n n nb aλ BA 、一定收敛B 、一定发散C 、收敛性与λ有关D 、无法断定其敛散性 6、设级数∑∞=1n nu的部分和为n S ,则该级数收敛的充分条件是 DA 、0lim =∞→nn u B 、1lim1<=+∞→r u u nn nC 、21n u n≤D 、n n S ∞→lim 存在7、设q k 、为非零常数,则级数∑∞=-11n n qk收敛的充分条件是 CA 、1<qB 、1≤qC 、1>qD 、1≥q8、级数∑∞=+111n p n发散的充分条件是 AA 、0≤pB 、1-≤pC 、0>pD 、1->p9、级数∑∞=1n na收敛,是级数∑∞=1n na绝对收敛的 C 条件A 、充分,但非必要B 、必要,但非充分C 、充分必要D 、既不充分,又非必要10、交错级数∑∞=++-111)1(n p n n绝对收敛的充分条件是 A A 、0>p B 、0≥p C 、1>p D 、1≥p11、设常数0>k ,则级数∑∞=+-12)1(n n n n k BA 、绝对收敛B 、条件收敛C 、发散D 、敛散性与k 有关 12、设常数0>a ,则级数∑∞=12sin n naAA 、绝对收敛B 、条件收敛C 、发散D 、敛散性与a 有关13、级数∑∞=12!n nn 与∑∞=+-11)1(n nn 的敛散性依次是 、D A 、收敛,收敛 B 、发散,发散 C 、收敛,发散 D 、发散,收敛 14、下列级数中,为收敛级数的是 CA 、∑∞=131n n B 、∑∞=+111n n C 、∑∞=+121n nn D 、∑∞=+112n n n 15、下列级数中,为发散级数的是 BA 、∑∞=1!2n nn B 、∑∞=12!n nn C 、∑∞=+121n n n D 、∑∞=-12)1(n n n16、下列级数中,为绝对收敛级数的是 DA 、∑∞=+111n n B 、∑∞=+-11)1(n n n C 、∑∞=+-1212)1(n nn n D 、∑∞=-12)1(n nn17、下列级数中,为条件收敛级数的是 AA 、∑∞=+-121)1(n n n n B 、∑∞=+-11)1(n n n n C 、∑∞=+-121)1(n nnn D 、∑∞=-12!)1(n nn n 18、幂级数∑∞=+12)1(n nnn x 的收敛区间是 BA 、[-2,2]B 、[)2,2- C 、(-2,2) D 、(]2,2-19、幂级数∑∞=-+-111)1(n nn n x 的收敛域是 、DA 、(-1,1)B 、[-1,1]C 、[)1,1-D 、(]1,1-20、幂级数∑∞=+++-111)1()1(n n n n x 的收敛域是 CA 、[-2,0]B 、(-2,0)C 、(]0,2-D 、[)0,2-二、填空题21、当参数α满足条件 时,级数∑∞=--+111n n n n α收敛。
第8章 无穷级数--答案

收敛,
∞
∑u
n =1
∞
2 n
和
∑v
n =1
∞
2
n
都收敛.
(C)若正项级数
∞
∑u
n =1
n
发散,则 un ≥
1 . n
(D)若级数
∑ un 收敛,且 un ≥ vn ( n = 1, 2,
n =1
) ,则 ∑ vn 2 也收敛.
n =1
∞
解,选 A, ( un + vn ) = un + 2un vn + vn ≤ 2(un + vn ) ,因为
1 1+ x ⎧ , x <1 ⎪−1 + ln 由于 S1 ( 0 ) = 0 ,故 S1 ( x ) = ⎨ 2x 1− x ⎪0, x=0 ⎩ 1 ⎧ 1 1+ x − , x <1 ⎪ ln S ( x ) = S1 ( x ) − S2 ( x ) = ⎨ 2 x 1 − x 1 − x 2 ⎪0, x=0 ⎩
7. (95)将函数 f ( x ) = ln 1 − x − 2 x 解: f ( x ) = ln 1 − x − 2 x
(
2
) 展开成 x 的幂级数,并指出其收敛区间。
(
2
) = ln (1 + x ) + ln (1 − 2 x )
4
ln (1 + x ) = ∑ ( −1)
n=0 ∞
∞
n
第8章 一、填空选择 1. (91)设 0 ≤ an < (A)
无穷级数 (答案)
1 ( n = 1, 2, n
∞
) ,则下列级数中肯定收敛的是(
高等数学无穷级数上课习题与答案

第一次作业1.写出级数√x2+x2?4+x√x2?4?6+x22?4?6?8+?的一般项。
解:一般项为u n=(x12)n (2n)!!2.已知级数∑2n n! n n∞n=1收敛,试求极限limn→∞2n n!n n。
解:由级数收敛必要条件可知lim n→∞2n n!n=03.根据级数性质,判定级数∑(15n+2n)∞n=1的敛散性。
解:因为级数∑(1 5n )∞n=1收敛,级数∑(2n)发散,∞n=1所以由性质可推导出级数∑(15n+2n)发散。
∞n=14.根据级数收敛与发散定义判定级数∑(√n−1−√n)的敛散性,∞n=1若收敛,求其和。
解:设u n=√n−1−√n ,S n=√2−1+√3−√2+√4−√3+?+√n−1−√n=√n+1−1=n1+√n+1因为limn→∞S n=limn1+√n+1=∞ ,所以所求级数发散。
5.判定级数∑√n +1n∞n=1的敛散性。
解:因为lim n→∞u n =lim n→∞√n +1n=1≠0 , 所以由级数收敛的必要条件知级数∑√n +1n∞n=1发散 。
6.1√2−1−1√2+1+1√3−1−1√3+1的敛散性。
解:原式=(1√2−1−1√2+1)+(1√3−1−1√3+1)+?=12(1+12+13+?1n +?)=12∑1n∞n=1 第二次作业1.根据P—级数的敛散性,判定级数∑2n +1()2()2∞n=1 的敛散性。
解:因为2n +1(n +1)2(n +2)2<2n +2(n +1)2(n +2)2<2(n +1)3<2n 3由∑1n3∞n=1是收敛的,所以∑2n +1(n +1)2(n +2)2∞n=1收敛。
2.如果∑a n ∞n=1,∑b n ∞n=1为正项级数且收敛,试判定∑√a n b n ∞n=1的敛散性 。
解:因为√n b n ≤a n +b n2,所以由比较审敛法知∑√a n b n ∞n=1收敛。
3.根据极限审敛法,判别级数∑sin πn 的敛散性 。
[整理]11无穷级数习题与答案
![[整理]11无穷级数习题与答案](https://img.taocdn.com/s3/m/c340d0cac8d376eeaeaa31a9.png)
第十一章 无穷级数A1、根据级数发散与收敛性定义与性质判断级数收敛性1)()∑∞=-+11n n n2)...12)(12(1...751531311++-++⋅+⋅+⋅n n3)) (6)sin(...)62sin()6sin(πππn +++2、用比较法或极限形式的比较法判定级数收敛性。
1) )2sin()2sin()2sin(32n πππ+++2)∑∞=+111n n a ()1>a3)∑∞=++1)4)(1(1n n n4) ...11 (3131212112)22n n +++++++++3、用比值审敛法判定级数收敛性1)∑∞=+112tan n n n π2)∑∞=123n n n3)∑∞=132n n n n4、用根值法判定级数收敛性1)n n n n ∑∞=+1)13(2)[]∑∞=+1)1ln(1n n n5、下列级数是否收敛,若收敛是绝对收敛还是条件收敛 1)...4131211+-+-2)∑∞=--113)1(n n nn3)∑∞=⋅-1231)1(n nn6、求下列幂级数的收敛性半径和收敛域域。
1) ...)1(...21222nx x x n n -+++-2)∑∞=--122212n n n x n3)∑∞=-1!21)1(n n n nx n7、利用逐项求导或积分求级数的和函数. 1)∑∞=++11414n n n x2)∑∞=-11n n nx8、将函数展开成x 的 幂级数并求收敛区间.1)2xx e e shx --=2)x a3)x 2sinB1、判断积数收敛性 1) ∑∞=1!.2n n n n n2) ∑∞=-1!2)1(2n n n n2、利用逐项求导或积分求级数∑∞=+0212n nn x 的和函数.3、求幂级数∑∞=--1)5()1(n nn n x 的收敛域.4、将x cos 展开成3π+x 的幂级数.5、将函数231)(2++=x x x f 展开成4+x 的幂级数.C1、求 ∑∞=-1n nx ne的收敛域. 2、求 ∑∞=+022!1n n n x n n 的和函数. 3、)(x f 是周期为2的周期函数,且在区间[]2,0上定义为:⎩⎨⎧≤<≤≤=21,010,)(x x x x f 求傅里叶展开式. 4 利用3题结果证明用结果证明,∑∞==12261n n π第十一章 无穷级数答案习 题 答 案A1、1)发散 2) 收敛 3) 发散2、1) 收敛 2) 收敛 3)收敛 4)发散3、1) 收敛 2)收敛 3)收敛4、1) 收敛 2)收敛5、1) 条件收敛 2) 绝对收敛 3) 绝对收敛6、1) 收敛半径1=R ,收敛区间:[]1,1-2) 收敛半径2=R ,收敛区间为:()2,2- 3) 收敛半径∞=R , 收敛区间为:()∞∞-,7、1)∑∞=++11414n n n x x x x x --++=11ln 41arctan 21 )1(<x 2)211)1(1x nx n n -=∑∞=- )1(<x 8、1)∑∞=---=-=112)!12(2n n x x n x e e shx ()+∞∞-∈,x 2)n n n a x x x n a e a ∑∞===0ln !ln ()+∞∞-∈,x 3)x 2sin =)!2(4)1(21212cos 212120n x x n n nn ∑∞=--=- ()+∞∞-∈,x B1、1) 解:1111)1(2lim )1()!1(2!.2lim lim -∞→--∞→-∞→-=--=n n n n n n n n nn n n n n n n u u 12)11(lim 21.<=-+=---∞→e n n n n n 由比值法,级数∑∞=1!.2n n n nn 收敛2) 解: 12lim )!1(2!2lim lim 12)1(122>∞==-=-∞→-∞→-∞→n n n u u n n n n n n n n 由比值法,级数∑∞=-1!2)1(2n n nn 发散 2、解:dx x x n x x n x x n n n n n n ⎰∑∑∑∞=∞=+∞==+=+00201202112112 dx x x x ⎰-=02111 x x x -+=11ln 21 )1(<x3、解:11lim lim1=-==∞→-∞→n n a a n n n n ρ,收敛半径11==ρr 6=x 时级数()∑∞=-111n n n 为交错级数收敛4=x 时级数为∑∞=11n n 发散,所以:收敛域为:(]6,44、)3sin(3sin )3cos(3cos )33(cos cos ππππππ+++=-+=x x x x ∑∑∞=+∞=++-++-=01202)!12()3()1(23)!2()3()1(21n n nn n n n x n x ππ 或者直接展开为:n n x n n )3(!)23cos(0πππ∑∞=++- 5、将函数231)(2++=x x x f 展开成4+x 的幂级数 解:设4+=x t 则4-=t x1121341)24(1)(---=+--+-=t t t t x f t t -+--=112121∑∑∞=∞=+-=002)2(21n n n t t )2(<t 所以231)(2++=x x x f =∑∑∞=∞=+-=002)2(21n n n t t C1、解:x xn nx n n n n e e n ne u u ----∞→-∞→=-=)1(1)1(lim lim 当0>x 时1<-x e;0<x 时1>-x e ;0=x 时∑∑∞=∞=-=11n n nx n ne 发散所以:收敛域:()∞∈,0x2、解:令t x =2 ∑∑∑∞=∞=∞=+=+02002!!2!1n n n n n n n t n n n t x n n n n t t n n e ∑∞=-+-+=1)!1(11n n n n t t n t n e ∑∑∞=∞=-+-+=211)2(1)!1(1t t t e t te e 2++=)421(22x x e x++= 3、解2121)(00210200====⎰⎰x xdx dx x f a⎰⎰==2010c o s c o s )(x d x n x x d x n x f a n ππx d x n n x n x n x d x n xd n ⎰⎰-==101010sin 1sin 1sin 1ππππππ[]1)1()(1cos )(12102--==n n x n n πππ xdx n x xdx n x f b n ππsin sin )(1020⎰⎰==xdx n n x n x n xdx n xd n ⎰⎰+-=-=101010cos 1cos 1cos 1ππππππ 1102)1(1sin )(1)1(1+-=+--=n n n x n n n ππππ所以: []x n n x n n x f n n n ππππsin )1(1)12cos()12(1241)(1112+∞=∞=-+---=∑∑ 当1=x 时:收敛于21 4、由⎩⎨⎧≤<≤≤=21,010,)(x x x x f[]x n n x n n x f n n n ππππsin )1(1)12cos()12(1241)(1112+∞=∞=-+---=∑∑(1≠x )[]∑∞==--=120)12(1241)0(n n f π 8)12(1212π=-∑∞=n n ,记48)2(1)12(112121212s n n ns n n n +=+-==∑∑∑∞=∞=∞=π 所以:683412212ππ=⋅==∑∞=n n s。
无穷级数题(含答案)

⎛ ⎜⎝
∞ n=0
xn
⎞′′ ⎟⎠
=
1 2
(1 +
∞
x)n=2n(n− 1) x n −2
∑ ∑ = 1 ∞ n(n −1)xn−2 + 1 ∞ n(n −1)xn−1
2 n=2
2 n=2
∑ ∑ ∑ = 1
∞ (n + 2)(n +1)xn + 1
∞
(n +1)nxn =
∞
(n +1)2 xn ,
x <1
n=1
(2n)!n
∑ 27, 令 S(x) = ∞ 2n + 3 x2n , x ∈ (−∞, +∞).,则 n=0 n!
∑ ∑ ∑ S(x) =
∞
2nx2n + 3 ∞
(x2 )n
∞
=2
x2n + 3ex2
n=0 n!
n=0 n!
n=1 (n −1)!
∑∞
=2
x2 (x2 )n + 3ex2 = 2x2ex2 + 3ex2 = (2x2 + 3)ex2 .
=1 e
≠ 0 ,级数发散。
n
(6) lim un+1 = 0 , 级数收敛。 u n→∞
n
(7)因为 lim n→∞
un 1
∑ = lim n +1 = 1 , 原级数与级数 ∞
1
敛散
n→∞ n
n=1 (n +1) ln(n +1)
(n +1) ln(n +1)
性相同,故原级数发散。 18, (1)条件收敛(用莱布尼兹判别法即可);(2)条件收敛;
第十一章 无穷级数(答案)

第十一章 无穷级数(一)1.解:∵()∑=∞→-+=+-+=nk n n k k S 12212,(∞→n ),∴原级数发散。
2.解:∵()∑∑==→⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-=+=nk n k n n k k k k S 1141221212122121212221,(∞→n ),∴原级数收敛且和为41。
3.解:∵4121511511513113113151315131111+→-⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛-=+=⎪⎭⎫ ⎝⎛+=∑∑∑===n n nk k n k n k k k k n S43=,(∞→n ),∴原级数收敛且和为43。
4.解:∵()∞=++=∞→+∞→+∞→1001lim !100100!1lim lim 11n n n U U n n n n nn n ,∴由比值判别法知原级数发散。
5.解:∵()1111lim 1lim lim 11<=⎪⎭⎫ ⎝⎛+=+=∞→+∞→+∞→e n n e n e e n U U en e n n en nn n ,∴由比值判别法知,原级数收敛。
6.解:∵02121limlim ≠=+=∞→∞→n n U n n n ,∴原级数发散。
7.解:∵()()2332lim 1lim=++=∞→∞→n n n n nU n n n ,而∑∞=11n n发散,∴由比较判别法知原级数发散。
8.解:∵()()0111lim !!11lim lim 4441=⎪⎭⎫⎝⎛++=++=∞→∞→+∞→n n n n n n n U U n n nn n ,∴由比值判别法知,原级数收敛。
9.解:∵13113lim 13lim lim <=+=⎪⎭⎫⎝⎛+=∞→∞→∞→n n n n U n n nn n n n ,∴由比值判别法知,原级数收敛。
10.解:∵≤,而2121l i m 21l i m =-=+∞→∞→nn n n n n ,故121l i m <=∞→n n n U ,∴由根值判别法知,原级数收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 无穷级数(A)用定义判断下列级数的敛散性1. n 2n 1; .1;3. 11 。
2n 1 2n 2n2n 13 n5 nn 1判断下列正项级数的敛散性.n! ;5. n e; 6.n 1;7. 2n 3;8. n 4 ;n 1 e n1 2nn 1 n n 3 n 1 n! n 1 100 n nn nn1 n9.;10.3n n 12n。
n 11求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛.1n 1n 1 ; 12.1n1; 13.1.1 1.01 1.001 1.0001;112 nln nn 1n 214.122 2 3 1 4 1 ;21 32 4 2求下列幂级数的收敛半径和收敛区间.3n x n;16.1 n x n ; 17.n! xn; .1 n;n n n 1 2n n n 1 n n 1n 119.1 2n 1; 20. n 2n;1 2 n 1xn 1 3 n xn求下列级数的和函数21. n 1 nxn 1; 22. n 1 21n 1 x2n 1;将下列函数展开成 x x 0 的幂的级数23. shx e xe x , x 00 ;24. cos 2 x , x 00 ;225. 1 x ln 1 x , x 00 ; 26. 1, x 0 3 ;x将下列函数在区间, 上展开为付里叶级数27. A xcos x,x。
28. f x 2t , x22x , 3x t 029.将函数 f x, 0 t 3 展开成付里叶级数。
xx, 0 xl2分别展开成正弦级数和余弦级数。
30.将函数 f xllx , x l2(B)用定义判断下列级数的敛散性1.1;2.1; 3.n 2 2 n 2n 03n 1 3n4n 1n n 1 n2n 1判断下列正项级数的敛散性2n n!2n2n3n na n. ; 5.;6. ,( a 0 );4n3n 12n nn 1nn1n 11nb7.,其中 a na ( n), a n , b , a 均为正数;n 1a n11x8.n,( a 0);9. n 42x ;1 n 1 0 1 x n 1 1判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛n 12 n 2n 1ln 2110.1;11.n 1;12.1n 1 nn!12 n 13n 2 3nn 1n 1nn 1求下列幂级数的收敛半径和收敛域.nx 2 n;14.x n ,( a 0 ,b 0 ); 1312n!n 1 anb nn 115.n12 n 1; 16. 3n2 nn;12 n4 n x 5x 1 n 1n 1n求下列级数的和函数17. nx 2n ;18.2n 1x 2 n ; 19. n 2 x n ;n 1n 1n ! n 120.求证: ln 21;n ;; 2将下列函数展开成 xx 0 的幂的级数21.f x21,x 0 0 ;22.f x12 ,x 01;23. x ,x 0 0 ; 2x3x 1x1 x 224.证明偶函数的付里叶级数数仅含余弦项;25.写出函数 f x1 x 2k , x2k 1 , 2k1 , k 0, 1, 2,的2付里叶级数,并讨论收敛情况。
26 . 设 f x 是 周 期 为 2 的 周 期 函 数, 它 在, 上 的 表 达 式 为,x 22f xx ,x,将 f x 展开成付里叶级数。
2 2, x2227.将函数 f xx 2 ,( 0 x l )分别展开成正弦级数和余弦级数。
(C)1.用定义判断下列级数的敛散性1n 12n 1 2n 1 2n 32.设 a i0 , i 1,2,,判断级数a 1 a 2a n的敛散性。
1 a 11 a 1 1 a 21 a 1 1 a 21 a n判断下列正项级数的敛散性3nn! ;4.ln n1.;5.n n 2 11 ;3n 1n n1n 1n 2 2 nn 16.判断级数1sin n的敛散性。
n 1n2求下列幂级数的收敛半径和收敛区间7.n 1n 2n x 2n ;8.1 n 1 11 x n ;n 1n 12n求下列级数的和9.1 n 1n 1n 2n110.展开d e x 1为 x 幂级数,并推出 n1 。
dx x n 1 n 1 !n11.求级数n2 2 x 3 n 1 的收敛区间及和函数。
n 1x, 0 x2.设函数2,试分别将 f x 展成为以 2 为周期的12f x,x2区弦级数和余弦级数。
13.将周期函数 fx1 , ,0,展为付氏级数,并据此求周期函数1 ,0,f 1 xa ,,0| x | ,,的 付 氏 级 数 , 求 下 面 级 数b , 0, , f 2 x4 111 。
132422n 12第十一章 无穷级数(A)n1.解:∵ S nk2k1n22,( n), ∴原级数k1发散。
2 . 解 : ∵ S nn11 n 1 1 1 1 1 1 ,k 1 2k 2k 22 k 1 2k 2k 22 2 2n 24( n) ,∴原级数收敛且和为 1 。
41 1 n11 1 1 1 1 11 1n n1 33n 55n 3.解:∵ S n3k5kk 1 3kk 1 5k11 2 4k 111353 , ( n ) ,∴原级数收敛且和为 3。
4.解:∵ lim Un 1lim n 1 ! 100n limn1 ,∴由比值判别法知原级nU n n 100n 1 n ! n100数发散。
Un 1 n 1 e e n 1 n 1 e 15.解:∵lim lim 1 ,∴由比值判别法lim n 1 en U n n e n n e n e知,原级数收敛。
6.解:∵ lim U n lim n 1 1 0 ,∴原级数发散。
2n 2n n7.解:∵lim Unlim n 2n 3 2 ,而n 11发散,∴由比较判别法知原级n 1 n n n 3 nn数发散。
Un 1 n 1 4 n ! 1 n 1 48.解:∵lim lim 0 ,∴由比值判别法limU n n 1 ! n 4 n 1 nn n n知,原级数收敛。
n n n 19.解:∵lim n U n lim n lim 1 ,∴由比值判别法知,3n 1 3n 1 3n n n原级数收敛。
10 .解:∵n n1 n U n n n1,而 lim nn1 lim n n 11,故2 2 n 2 n 2 211,∴由比值判别法知,原级数收敛。
lim n U nn 211.解:|U n | n ,由正项级数的比值判别可知,此级数收敛,故n 1 n 12n 1原级数绝对收敛。
12.解:| U n| 1 1,而1发散,故1发散。
因此原级数非绝对ln n n n 2 n n 2 ln n收敛,又,显然ln 1 1 , n 2,3, ,且 lim 1 0 ,故由莱布尼兹判别n 1 ln n n ln n法知原级数条件收敛。
13.解:∵ lim |U n | lim | 0 0 | 0 ,∴原级数发散。
14.解:此为交错级数,∵| Un|n1n 1,( n ) 而级数 1 发散,1 n2 n 1 nn故| U n |发散,即原级数非绝对收敛,显然n 单调递减且趋向于零,故原n 2n 1 1级数条件收敛。
15.解:∵l im an 1 3n 1 n lim 3 n 3 ,∴R 1 1a nlim3nn 1,当 x 时,n n n 1 n 3 3级数为 1 发散,当 x 1时,级数为1 n 1 收敛。
故原级数的收敛区n 1 n 3 n 1 n 间为1, 1 。
3 316.解:∵an 1 n n 1 1 0 , n ,∴ R ,收敛a n n 1 n 1 n 1 1 n1n区间为, 。
17.解:∵an 1 1 1a n n 1 n11n, n,∴ R0 。
an 1lim2n n 1,∴ R 2 。
故当| x 1 | 2 ,即18 .解:∵ lim n 1n a n n 2 n 1 21 x 3时收敛,当 x 1或 x 3 时发散,当 x 1 时,级数为 1 n 1,收n 1 n敛;当 x 3 时,级数为1,发散。
故收敛区间为1,3 。
n 1 n19 .解:∵Un 1 x2n 3 2n 1 x 2 x2 , n ,当 x2 1 时,即U n 2n x 2n 1 2 2 22 x 2 时收敛,当x2 1 ,即 x 2 或 x 2 时发散,∴ R 2 。
当2x2 时原级数为 2 2 ,发散,故收敛区间为2, 2 。
n 120.解:∵a n 1221, nn 1 3n 1 n 1 ,∴ R 3 ,当 x 3a n3n 1 n 23 n3时,原级数1 n2,发散。
故收敛区间为3,3 。
nn 121.解:设 f xnx n 1 , | x | 1,n 1x x dxxnxn 1dx x 1 dxx n xf 0nxnn 1n 1 0 n 11 x∴ f xx1, | x | 1 。
x1 21 x22.解:设 f xf x1 x 2n 1 , | x | 1,则n 1 2n 1x1 x2 n 1 1 x 2 n 1x 2 nx 2n 1 2n 1n 1 2n 1n 11 x 2xx 2,f x dx1 x 2dx即 f x fx 11 11 dx ,21 x 1 x∴ f xf 01 ln 1 xx 1 x1 ln1 x, | x | 1。
21 x2 1 x23.解:e xe x11 x n1 x n1 1 x 2k , x。
22 n 0 n !n 0 n !2 k 0 2k !24.解: cos 2 x 1 1 cos2x1 11 n 12x 2n22n 02n !1 1 1 n 2nx 2n ,x。
2 2 n 02n !25.解: 1 x ln 1 x1 x1n 1x n , | x | 1n 1n1 n 1 x nnn 11 n 1 x1 n1 n 1 x n 1 。
n 1nn 1n 1n n126.解:11 n xn1 n 11 11 13x 3 nx x 3 3 3 1 x 3 3 n 03n 03n 13 x 3x 63 1,即 027.解:∵ f x cos x为偶函数,∴ b n 0 , n1,2,2a n1cos xcosnxdx2cos xcosnxdx2210 cos1n x cos1n x dx22x11 1 sin 1 n x 1 sin 1 n xn 21 n 2222cosnx cosnx 1 n 1 21 1 1 1 2n 1 2n 12n 2n1 n 1 411 , n 0,1,2,44n 2 cos x在令 n 0 ,得 a 0,且 f x, 上连续∴ cosx 224 1 cosnx , x 。