硅酸盐水泥熟料的煅烧与冷却(精选)
硅酸盐水泥熟料的煅烧

·强吸热反应;
每1 kg纯碳酸钙在890℃时分解吸收热量为1645J/g,是 熟料形成过程中消耗热量最多的一个工艺过程。分解所需总
热量约占预分解窑的二分之一;
·反应起始温度较低; ·分解温度与CO2分压和矿物结晶程度有关 。
3. 碳酸钙的分解过程
①热气流向颗粒表面的传热过程; ②热量由表面以传导方式向分解面传递的过程; ③碳酸钙在一定温度下吸收热量,进行分解并放出CO2 的化学过程; ⑤表面的CO2向周围介质气流扩散的过程。
• 回转窑内”带”的划分及其作用 1.干燥带 物料温度20—150℃ 气体温 度200—400℃ 2.预热带 物料温度150—750℃ 气体温 度400—1000℃ 3.碳酸盐分解带 物料温度750—1000℃ 气体温 度1000—1400℃ 4.放热反应带 物料温度1000—1300℃ 气体 温度1400—1600℃ 5.烧成带 物料温度1300—1450--1300℃ 气体温度1650—1700℃ 6.冷却带
生料中自由水量因生产方法与窑型不同而异: 干法窑﹤1% 立窑、半干法立波尔窑:12 ~15% 湿法窑:30~40 % 半湿法立波尔窑:18 ~22%
2.脱 水
脱水是指粘土矿物分解放出化合水 。
层间吸附水:以水分子状态
·水存在形式:
脱水温度:100℃左右 晶体配位水:OH脱水温度:400~600℃以上
第五章 硅酸盐水泥熟料的煅烧
本章主要内容: 本章主要介绍新型干法水泥生产过程中的 熟料煅烧技术以及煅烧过程中的物理化学变 化,以旋风筒—换热管道—分解炉—回转 窑—冷却机为主线,着重介绍当代水泥工业 发展的主流和最先进的煅烧工艺及设备、生 产过程的控制调节等。
研究方法:
• 在实验室内进行 • 在试验窑与生产窑上进行
水泥生产工艺熟料煅烧

➢ 3.1 新型干法煅烧工艺技术
➢ 3.1.1 悬浮预热技术
➢ 悬浮预热技术是在水泥中空窑的尾部(生料喂入端) 装设悬浮预热器(也称旋风预热器),使出窑废热气体 在预热器内通过,同时使入窑的低温生料粉分散于废热 气流之中,在悬浮状态下进行热交换,使物料得到迅速 加热升温后再入窑煅烧的一项技术。
➢ 传统的回转窑煅烧水泥熟料过程完全是在窑内进行 的,即生料喂入到窑内后的干燥→预热→碳酸盐分解→ 放热反应→熟料矿物的形成→冷却这六个过程完全是在 回转窑内完成的(见下图),使得窑体长度相对较长, 热量损失较大,窑的产量不高。
新型干法(现代水泥)回转窑
悬浮或立筒预热器
干法回转窑
加热机
立波尔回转窑(已被淘汰)
普通干法回转窑(逐渐被淘汰)
湿法回转窑(逐渐在改造成为新型干法窑)
二次风入窑 出窑熟料
不同类型回转窑各带划分
➢ 3.1.1.1 悬浮预热器单元组成
➢ 悬浮风预热器单元由换热管道、预热器、衬料、出风 管(废热气体将热量传给生料后排出)、下料管和锁风阀 (重锤)组成,见下图(C1代表第一级旋风预热器,以下 类推)。悬浮预热器系统由上述多个(四级串联的称为四 级旋风预热器,五级串联的称为五级旋风预热器)单元组 合构成:
热电偶 重锤
分解后的 生料入窑
窑体(窑尾)
分解炉、第四级预热器、 回转窑窑尾之间的关系
分解炉
重锤
喷煤嘴(3个) 三次风来自冷却机
窑体(窑尾)
物气料体放温温热度度反::应~~带11370000CC
回转窑
物气料体温温度度::13烧0~01成70带104C5~0~130冷0 C却物带料温度: ~1000 C
煤粉三次风
火焰
生料成分对熟料煅烧的影响

生料成分对熟料煅烧的影响生料成分对熟料煅烧的影响一硅酸盐水泥熟料的组成1. 化学组成及矿物组成硅酸盐水泥熟料中的主要化学成分是CaO,SiO2,Al2O3,Fe2O3四种氧化物,其总和通常占熟料总量的95%以上。
此外还有少量的其他氧化物,如:MgO,SO3,Na2O,K2O,TiO2,P2O5等,它们的总量通常占熟料的5%以下。
硅酸盐水泥熟料中各主要氧化物的波动范围一般为:CaO(62%~67%),SiO2(20%~24), Al2O3(4%~7%), Fe2O3(2.5%~6%).硅酸盐水泥熟料中的四种主要矿物:C3S(45%~65%), C2S(15%~32%), C3A(4%~11%),C4AF(10%~18%)。
另外,还有少量的游离氧化钙,方镁石,含碱矿物以及玻璃体等。
通常,熟料中硅酸三钙和硅酸二钙的含量为75%左右,合称为硅酸盐矿物,它们是熟料中的主要组分,铝酸三钙和铁铝酸四钙含量占22%左右。
在煅烧过程中,它们与氧化镁,碱等在1250~1280度开始,会逐渐熔融成液相以促进硅酸三钙的顺利形成,因而把它们称之为溶剂型矿物。
硅酸盐矿物和溶剂型矿物在熟料中占总量的95%左右。
2.化学成分与矿物组成间的关系熟料中的主要矿物均由各主要氧化物经高温煅烧化合而成,熟料矿物组成取决于化学组成,控制合适的熟料化学成分是获得优质水泥熟料的中心环节,根据熟料的化学成分也可以推测出熟料中各种矿物的相对含量高低。
(一)CaOCaO是水泥熟料中的最重要的化学成分,它能与SiO2,Al2O3,Fe2O3经过一系列复杂的反应过程生成C3S, C2S, C3A C4AF等矿物,适量增加熟料氧化钙含量有利于提高硅酸三钙含量。
但并不是说氧化钙越高越好,因氧化钙过多易造成反应不完全而增加未化合的氧化钙(即游离氧化钙)的含量,从而影响水泥的安定性如果熟料中氧化钙过低,则生成硅酸三钙太少,硅酸二钙却相应增加。
会降低水泥的胶凝性。
第5章 硅酸盐水泥熟料的煅烧

1.最低共熔温度(组分多,温度低)
存在次要氧化物,最低共熔温度一般1250 ℃ 矿化剂、氧化钒、氧化锌也有影响。
影响熟料烧结过程的因素
2.液相量(一般为20~30% )
1400℃
L 2 . 95 A 2 . 2 F M R
(液相量与煅烧温度、组分含量有关)
1450℃
L 3 . 0 A 2 . 25 F M R
五、熟 料 的 冷 却
熟料的冷却 烧成温度→常温;液相→凝固 熟料颗粒结构形成(凝固和相变) C2S的多晶转变 C3S分解 冷却目的 改善熟料质量与易磨性;降低熟料的温度,便于 运输(安全)、储存(砼开裂) 和粉磨(假凝) 回收热量,预热二次空气,降低热耗、提高热利 用率。
冷却方式
平衡冷却 淬冷 独立结晶
成
形成C2S〃CaSO4, 4CaO〃3Al2O3〃SO3 无水硫铝酸钙早强,适量有利
1050℃形成,1400 ℃分解
C 4A 3S
三、 复合矿化剂
石膏和萤石复合矿化剂(氟硅酸钙,硫硅酸钙,氟硫硅 酸钙;低温烧成,高温烧成)
重晶石和萤石(BaO可提高水泥早期和后期强度) 氧化锌及其复合矿化剂(阻止C2S转化、促进C3S形成, 提高水泥早期强度、降低水泥需水量。过多会影响水泥 凝结核强度。)
(1)温度
(2)铝率
(3)加入MgO、SO3、硫酸钾、硫酸钠,粘度降低
降低
(4)加入氧化钾、氧化钠,粘度增加。
影响熟料烧结过程的因素
4.液相的表面张力(小,润湿,利于固液反应)
(1)温度 (2)镁、碱、硫增加,表面张力下降
影响熟料烧结过程的因素
第五章硅酸盐水泥的煅烧

两个传热、一个化学 反应、两个传质
反应条件 悬浮程度 粘土质性质
CA、CF、C2S C12A、C2F C3A、C4AF C3A、C4AF、C2S
生料的细度均匀性 温度和时间 原料性质 矿化剂
C2S+CaO C3S
提高熟料的质量 改善熟料的易磨性 回收余热 易于熟料的输送、 储存和粉磨
最低共熔温度 液相量 液相粘度 液相表面张力 氧化钙溶解速率 反应物存在状态
作用
含氟化合物:常用萤石(CaF2) 硫化物:常用石膏(天然石膏、工业副产石膏) 氯化物:CaCl2 其他:铜矿渣、磷矿渣等 萤石:氟离子破坏晶格;降低液相生成温度;降低液相粘度
硫化物:能降低液相出现温度,降低液相粘度和表面张力 复合矿化剂(萤石-石膏、萤石-重晶石)
晶种:硅酸盐水泥熟料
挥发性组分:碱、氯、硫
4. 入窑物料碳酸钙分解率达30~40%,从而减轻了回转窑 的负荷,使窑的长度缩短。
5. 窑内没有干燥带、预热带,只有其余四个带。
5.5.3 预分解窑内熟料的煅烧
熟料煅烧特点
1. 分解炉中,温度为820~900℃时,分解率可达85~95%, 分解时间 4~10 s,而在窑内分解需30多分钟。
(1)尽可能多地回收熟料的热量,以提高入窑二次空气 温度,降低熟料热耗。 (2)缩短熟料的冷却时间,以提高熟料质量,改善易磨 性。 (3)冷却单位质量熟料的空气消耗量要小,以便提高二 次空气温度,减少粉尘飞扬,降低电耗。 (4)结构简单,操作方便,维修容易,运转率高。
2. 分类:
水泥熟料冷却机
筒式冷却机
5.5.1 回转窑内熟料的煅烧
燃料
低端 窑头 热端
传动大齿轮
高端 窑尾 冷端 生料
煅烧高硅、高铝料的操作、调整方法

煅烧高硅、高铝料的操作、调整方法从硅酸盐物理化学角度讨论飞砂的成因。
飞砂产生与否主要取决于熟料液相量和液相性质(主要是表面张力)。
飞砂有两类:一类是熟料液相量太少而产生;另一类是粘散料,由于液相表面张力太小所致。
碱、硫和MgO等微组分含量高能使液相表面张力降低,特别是碱和硫酸盐含量高将使液相表面张力降低更明显。
所谓飞砂是回转窑烧成带产生大量细粒并飞扬的熟料。
这种飞砂料的大小一般在1mm以下,在窑内到处飞扬。
飞砂料的出现,既影响熟料质量,又影响窑的操作。
据报导,大同水泥厂曾因飞砂料的出现被迫降低煅烧温度,从而使熟料强度下降5MPa。
关于飞砂的成因,主要是SiO2含量太高、Al2O3和Fe2O3含量太低,因而液相出现太慢、液相量太少,熟料难以结粒,导致飞砂;另一原因是火焰太长,煅烧温度不够高,在料层中还存在大量不飞扬的料粒,未能结粒,待物料进入冷却带,细料粒才到处飞扬。
克服飞砂的方法,若是由于SiO2太高引起则应适当降低硅酸率;若是由于煅烧操作中火焰太长而引起,则应适当缩短火焰或缩短高温带。
笔者认为,还有一种飞砂是由于粘散料引起,而粘散料的产生则是由于高温液相的表面张力太小所致。
乔龄山在分析飞砂形成机理时认为,“国内水泥生产者忽视了液相表面张力和结粒的问题”他还指出:“硫酸盐饱和度过高降低了液相粘度和表面张力”。
他所提出的表面张力太小形成的飞砂实际上是一种粘散料,这种飞砂的产生与液相量少所引起的飞砂在机理上完全不同。
因此,解决这种飞砂的措施也应该完全有别于液相量少所产生的飞砂。
本文在前人研究工作的基础上从硅酸盐物理化学角度讨论飞砂的成因并提出预防和解决飞砂问题的措施或途径。
1 回转窑内物料结粒的机理从水泥工艺学原理看,水泥熟料是一种多矿物的集合体,是结晶细小的人造岩石。
这些结晶一般都在100μm以下,即小于0.1mm。
有人认为,水泥熟料中矿物晶体的平均尺寸为:阿利特65μm以下,贝利特55μm以下。
水泥工艺生产硅酸盐水泥的原料及配料计算

4.1.2.3 配料方案的选择
确定熟料率值的依据 1、水泥品种(以下列举几种水泥) 抗硫酸盐水泥:分中抗硫酸盐水泥、高抗硫酸盐水泥 – 高抗硫酸盐硅酸盐水泥:以适当成分的硅酸盐水泥
熟料,加入适量石膏,磨细制成的具有抵抗较高浓 度硫酸根离子侵蚀的水硬性胶凝材料,称为高抗硫 酸盐硅酸盐水泥。简称高抗硫水泥。 – 代号P·HSR。其C3S < 50.0 C3A < 3.0
4.1.2.3 配料方案的选择
确定熟料率值的依据 5、窑型与规格 见前,不同窑型率值的一般取值范围。 6、生料的易烧性 生料易烧性(形成熟料的难易程度)好,可采用高KH、 高n、高p,否则配低一些。 影响易烧性的因素很多,如生料的潜在矿物组成、原料 的性质和颗粒组成、生料中的次要氧化物和微量元素、生料 的均匀性和粉磨细度、矿化剂、液相、燃煤的性质等。
4.1.2.3 配料方案的选择
确定熟料率值的依据 1、水泥品种(以下列举几种水泥) 大坝水泥:防水化热,应降C3S、C3A,但C3S降得过多, 必影响强度等,所以应先考虑降C3A,即低p,再适当降C3S。
4.1.2.3 配料方案的选择
确定熟料率值的依据
1、水泥品种(以下列举几种水泥)
抗硫酸盐水泥:分中抗硫酸盐水泥、高抗硫酸盐水泥
4.1.2.2 配料计算的依据
熟料组成确定后,即可根据所用原料进行配料计算,求 出符合熟料组成要求的原料配合比。
配料计算的依据是物料平衡,即反应物的量应等于生成 物的量。
随着温度的升高,生料煅烧成熟料经历以下过程:生料 干燥蒸发物理水;粘土矿物分解放出结晶水;有机物质的分 解挥发;碳酸盐分解放出二氧化碳;液相出现使熟料烧成。 因为有水分、二氧化碳以及某些物质逸出,所以,计算时必 须采用统一基准。
浅谈关于提高硅酸盐水泥熟料28天强度的实践解读

工程技术Һ㊀关于提高硅酸盐水泥熟料28天强度的实践解读戴昌军摘㊀要:工厂出窑熟料28天抗压强度不稳定ꎬ有下滑趋势ꎮ本文通过对原燃材料㊁出窑熟料烧失量㊁配料方案㊁煅烧制度㊁熟料冷却效果等进行分析并提出相关优化措施ꎬ以希优化措施实施后ꎬ出窑熟料28天强度得到明显的提升ꎬ获得较好的实践效果ꎮ关键词:熟料强度ꎻ原燃料ꎻ配料方案㊀㊀我厂有一条设计产能为4800t/d的新型干法水泥生产线ꎬ回转窑规格为Φ4.8mˑ74mꎬ目前实际产量为5800t/dꎮ2017年5月起出窑熟料28天强度一直不稳定ꎬ整体呈下滑趋势ꎬ28天抗压强度平均值仅有53.2MPaꎬ低于本厂内控标准(R28ȡ58MPa)ꎬ使得水泥中混合材掺量明显降低ꎬ水泥生产成本明显增加ꎮ为了提高熟料的28天抗压强度ꎬ降低生产成本ꎬ本文从各个方面分析了影响熟料28天抗压强度的因素ꎬ寻找优化方案ꎬ制订了相应的措施ꎬ2017年8月11日起出窑熟料28天抗压强度均在56MPa以上ꎬ8月份28天抗压强度最高已达到58.2MPaꎮ一㊁原燃材料的控制我厂采用石灰石㊁湿粉煤灰㊁砂岩碎屑㊁有色金属灰渣以及黏土五组分配料ꎬ湿粉煤灰㊁砂岩碎屑㊁有色金属灰渣以及黏土货源地以及质量一直比较稳定ꎬ成分未发生明显的变化ꎮ我厂的石灰石矿山质量较不稳定ꎬ石灰石呈鸡窝矿形式存在ꎬ石灰石中夹杂的废石中MgO含量较高ꎬ石灰石中搭配一定比例的废石后ꎬ石灰石的MgO含量就容易偏高ꎮ2017年1月~5月进厂石灰石CaO含量㊁MgO含量㊁SO3含量㊁碱含量以及入磨石灰石配比ꎬ如表1所示ꎮ表1㊀2017年1月~5月进厂石灰石主要化学成分及入磨石灰石配比月份堆数进厂石灰石化学成分(%)CaOMgOSO3R2O入磨石灰石配比(%)1月649.781.290.060.3282.282月349.661.250.090.3580.223月649.391.250.130.3682.584月848.671.290.120.3986.835月848.011.400.110.3488.51㊀㊀从进厂石灰石化学成分看ꎬ2017年5月由于进厂石灰石中搭配废石及夹土比例偏高ꎬ导致进厂石灰石中MgO含量较高ꎬ为1.40%ꎬ入磨石灰石配比较高ꎬ达到88.51%ꎮ因为2018年5月份进厂石灰石MgO含量偏高ꎬ导致5月份出窑熟料MgO含量偏高(2.11%)ꎮ熟料中MgO含量偏高会降低原料的熔融温度ꎬ降低熟料需要的煅烧温度ꎬ从而使A矿由于煅烧温度低而无法形成规则的六方片状ꎬ影响熟料的28天强度ꎮ我厂自建厂以来使用的燃料一直为低灰分㊁低硫份㊁高发热量的优质煤炭ꎬ本厂2018年可使用的煤炭总量仅有17.5万吨ꎬ为了保证本厂水泥窑的正常运转ꎬ本厂于2017年5月份开始在原煤中搭配石油焦作业ꎬ石油焦搭配比例最高为25%ꎮ进厂原煤及石油焦工业分析结果对比ꎬ如表2所示ꎮ表2㊀进厂原煤及石油焦工业分析结果对比燃料全水分(Mar)%内水(Mad)%灰分(Aad)%挥发分(Vad)%固定碳(Fcꎬad)%硫分(Stꎬad)%热值(Qbꎬad)kJ/kg烟煤10.01.7714.3931.2052.640.7327398石油焦5.70.320.7310.6188.343.0734587差值-4.3-1.45-13.66-20.5935.702.347189㊀㊀从烟煤与石油焦工业分析对比结果看ꎬ石油焦的空干基全硫较烟煤高2.34%ꎬ烟煤中搭配25%石油焦后ꎬ出窑熟料SO3含量较原来增加了0.21%ꎬ由原来的0.90%增加到1.11%ꎮ熟料中过高的SO3含量可降低熟料液相出现的温度和黏度ꎬ使A矿晶核形成的速率变慢ꎬ而晶体生长的速度加快ꎬ导致为数不多的晶核长成大的晶体ꎬ阿利特的尺寸虽大ꎬ但其数量减少ꎮ此外ꎬ当熟料SO3含量较高时ꎬ容易与熟料中的C3A反应形成易于膨胀的单硫型水化硫铝酸钙(CaO Al2O3 CaSO4 31H2O)ꎬ从而造成水泥熟料强度的降低ꎮ本文针对进厂石灰石中MgO含量偏高以及搭配25%石油焦导致出窑熟料SO3含量偏高的因素ꎬ制定了相应的控制措施:一是严格进厂石灰石搭配废石及夹土的措施ꎬ保证进厂石灰石MgO含量在1.30%以下ꎬ保证入磨石灰石配比低于85%ꎬ保证出窑熟料的MgO含量低于2.00%ꎮ二是尽量降低烟煤中搭配石油焦的比例ꎬ将石油焦的搭配比例由25%降低到15%ꎬ控制出窑熟料SO3含量在1.05%以下ꎮ二㊁控制出窑熟料烧失量熟料烧失量与熟料强度有着很微妙的关系ꎬ是反映熟料28天强度高低的一个不可忽视的指标ꎮ通过出窑熟料烧失量ꎬ我们可以判定窑内熟料煅烧气氛ꎬ窑内的煅烧气氛直接影响着熟料强度ꎮ专家研究表明ꎬ熟料强度与煅烧温度成正比ꎬ只有在窑内煤粉完全燃烧㊁煅烧气氛介于氧化和还原之95间ꎬ才能使火焰达到最佳温度ꎬ为提高熟料强度创造条件ꎮ出窑熟料烧失量偏高ꎬ则表明窑内煅烧温度偏低ꎬ窑内物料还有一部分碳酸钙未完全分解或者有一部分碳粒未完全燃尽ꎮ本文将2017年1月~5月出窑熟料烧失量与28天抗压强度制作了散点图并进行回归分析所得的出窑熟料28天抗压强度与烧失量对应关系图ꎬ如图1所示ꎮ图1㊀2017年1月~5月出窑熟料28d强度与烧失量对应关系图我们通过图中所示的对应关系发现ꎬ出窑熟料28天强度与烧失量具有反比关系ꎬ我们为了降低出窑熟料烧失量采取了相关措施:一是提高篦冷机一段篦下压力ꎬ加大篦冷机冷却风量ꎬ提高窑头二次风温温度ꎬ严格控制窑头煤的使用量ꎬ保证烟煤完全燃尽ꎮ二是合理控制分解炉出口温度至890ħ以上ꎬ提高入窑生料分解率至95%以上ꎬ保证入窑生料的分解ꎮ三是加强对出窑熟料烧失量的检测ꎬ尽量控制出窑熟料烧失量在0.35%以下ꎮ三㊁配料方案的优化2017年1月~5月出窑熟料三率值控制指标为:KH0.900~0.915ꎬSM2.40~2.45ꎬIM1.40~1.45ꎬ通过对2017年1月~5月出窑熟料三率值及矿物组成与28天强度对比分析ꎬ发现对与熟料28天强度呈正相关性的有KH㊁SM和C3S含量ꎬ其中影响28天强度最大的因素是熟料的KH和C3S含量ꎬ其次是SMꎮ为了得到较高28天强度的熟料ꎬ必须要在配料方案中适当提高熟料的KH和SMꎬ提高熟料的C3S含量ꎮ熟料中的晶形发育良好的A矿(C3S)是提供熟料强度的主要矿物组成ꎬ对熟料强度增进率的贡献最大ꎬA矿的28天强度可以达到1年强度的70%~80%ꎮ如果在配料方案中增加出窑熟料的KH及SMꎬ则熟料的液相量将会明显降低ꎬ生料需要的煅烧温度将会增加ꎬ料会较难烧ꎬ出窑熟料容易产生f-CaO偏高的现象ꎬ反而导致出窑熟料28天强度降低ꎮ为了提高出窑熟料的KH和SMꎬ从而提高出窑熟料C3S含量来提高出窑熟料28天强度ꎬ我们通过调研友厂发现黄磷渣中的P2O5含量可以降低生料的熔融温度ꎬ在提高熟料KH及SM的情况下ꎬ可以保证熟料的煅烧ꎬ形成规则的六方片状A矿ꎮ笔者取用湖北宜昌的黄磷渣掺入本厂生料中分别进行在1350ħ㊁1400ħ和1450ħ的高温炉煅烧30min的易烧性试验ꎬ通过试验确定在掺入黄磷渣后出窑熟料P2O5含量在0.10%时ꎬ相同三率值的熟料其熔融温度可以降低50ħ以上ꎬ同时通过偏光显微镜观察掺加黄磷渣后的生料在1400ħ温度下煅烧30min后的熟料A矿呈规则的六方片状ꎬ发育比较完整ꎬB矿基本呈圆形ꎬ发育比较完整ꎮ掺加黄磷渣后的熟料A矿及B矿岩相图片ꎬ如图2及图3所示ꎮ图2㊀掺加黄磷渣的熟料A矿岩相图3㊀掺加黄磷渣的熟料B矿岩相工厂于2017年7月份安排进行了生料配料站添加黄磷渣仓以及配料称改造ꎬ于8月份开始安排添加黄磷渣作业ꎬ控制出窑熟料P2O5含量在0.10%~0.12%ꎬ调整出窑熟料三率值控制指标为KH0.920~0.930ꎬSM2.50~2.60ꎬIM1.40~1.50ꎬ提高出窑熟料C3S含量达到58.5%以上ꎬ8月份出窑熟料28天强度提高到56MPa以上ꎮ四㊁优化措施实施后的效果经过相应优化措施的实施ꎬ2017年8月11日起出窑熟料28天强度已有明显的提升ꎬ28天抗压强度基本在56MPa以上ꎬ28天强度最高为58.2MPaꎮ2017年5月出窑熟料与2017年8月11日~31日出窑熟料结果对比ꎬ如表3所示ꎮ表3㊀2017年5月与8月11日~31日优化前后出窑熟料结果对比表月份LossMgOSO3P2O5KHSMIMC3S抗压强度3d28d单位%%%%%MPaMPa5月0.522.111.11 0.9142.421.4255.2831.953.28月0.492.071.050.110.9212.481.4358.0933.956.5差值-0.03-0.04-0.060.110.0070.060.012.812.03.3㊀㊀2017年8月11日~31日出窑熟料烧失量结果仍有所偏高ꎬ同时MgO含量未能控制到2.00%以下ꎬSM较控制指标略偏低ꎮ在此条件下ꎬ出窑熟料3天强度增加了2.0MPaꎬ28天强度增加了3.3MPaꎮ后期ꎬ我们将进一步实施优化措施ꎬ降低出窑熟料烧失量在0.35%以下ꎬ降低出窑熟料MgO含量ꎬ06工程技术Һ㊀同时保证出窑熟料SM在2.50~2.60ꎬ出窑熟料28天强度将会进一步提升ꎮ五㊁结论我厂2017年5月份硅酸盐水泥熟料28天强度偏低的主要原因是进厂石灰石的MgO含量偏高ꎬ搭配使用石油焦后出窑熟料SO3含量偏高ꎬ出窑熟料烧失量偏高ꎬ出窑熟料KH及SM指标偏低ꎬ窑系统煅烧温度有时偏低ꎬ急冷效果不佳ꎬ出窑熟料立升重偏低ꎬf-CaO有时偏高ꎮ通过控制进厂石灰石废石搭配比例㊁降低煤炭中搭配石油焦比例至15%㊁添加适量黄磷渣进行配料ꎬ提高出窑熟料KH及SMꎬ加强窑系统煅烧温度控制以及保证出窑熟料急冷ꎬ保证出窑熟料立升重在1.25kg/L以上ꎬf-CaO含量控制在0.5%~1.0%等措施ꎬ出窑熟料3天及28天强度均已有明显的提高ꎬ28天抗压强度已达到内控标准要求ꎮ参考文献:[1]沈威.水泥工艺学[M].武汉:武汉理工大学出版社ꎬ1991. [2]谢克平.水泥新型干法精细操作与管理[M].北京:化学工业出版社ꎬ2008.作者简介:戴昌军ꎬ江苏信宁新型建材有限公司ꎮ(上接第51页)理制度的具体要求ꎮ其次ꎬ体系的构建还要遵循战略性原则ꎮ随着深化国企改革的持续开展ꎬ企业发展也逐渐向着战略性方向发展ꎬ因此绩效薪酬激励体系的构建也要按照以此为基础来构建ꎬ并在其中真实反映出企业的长期作战规划㊁企业环境的公平与公正以等环节ꎬ以此彰显出制度的透明化和标准化ꎮ再次ꎬ企业本身就具有一定的竞争性ꎬ绩效考核和薪资管理制度的实施也是为了刺激职工的竞争意识ꎬ也是为了提升企业在外部环境中的竞争能力ꎮ因此ꎬ在具体的构建过程中还要重点把握住竞争性特点ꎮ(二)要拓宽多样的构建途径首先ꎬ为了增加激励体系的科学性ꎬ企业首要做的就是做好市场调研工作ꎬ根据统计出的数据来确定职工的薪资范畴ꎬ制定实际薪酬考核标准ꎬ从而减少因该企业内部职工与其他同行业之间薪资不平衡现象而导致的人才流失现象的发生ꎬ进而保持职工队伍的稳定性和可靠性ꎮ其次ꎬ每个职工薪酬管理大多数取决于他所做出的贡献的大小ꎬ而如何评定这种贡献就需要分析该职工所在的岗位对于企业发展有着怎样的作用ꎬ因此对岗位的综合性测评至关重要ꎮ这是企业内部薪酬设计的基础和保障ꎮ需要注意的是ꎬ职工是企业发展的核心力量ꎬ企业要尊重和提高职工群众的民主参与性ꎬ他们提出的意见㊁建议也是企业发展状况的真实反馈ꎬ因此企业要积极听取他们的评价和建议ꎬ从而对工作方向㊁模式等进行有针对性的调整ꎮ(三)要完善多元的构建方法首先要完善考核制度ꎮ企业要结合自身的实际情况ꎬ全面分析和理解现代企业管理规章和制度ꎬ从而建立起科学的工作考核机制ꎬ不但要积极落实ꎬ也要加大执行力度ꎬ提高整体的管理水平ꎮ另外ꎬ对现有岗位进行科学的分析与评价ꎬ制定有针对性的管理方案ꎬ建立起完整的岗位设置制度ꎮ不仅明确了各自的责任ꎬ还落实了多劳多得的薪酬原则ꎬ让两者的激励作用得到充分的发挥ꎮ其次要创新管理模式ꎮ企业要根据自身的发展战略来合理分析和管理员工薪酬ꎬ每个阶段都要按照战略目标进行创新ꎬ结合员工的实际工作情况㊁日常表现增加或减少薪资ꎬ同时有效利用网络平台㊁终端设备等加强职企的沟通和交流ꎬ缓解矛盾ꎬ创建和谐劳动关系ꎮ其次企业要研究同行业㊁市场上的薪酬制度ꎬ取长补短ꎬ弥补本企业在此方面的短板ꎬ让薪酬管理体系更加完善ꎬ为企业的顺利转型提供支撑ꎬ促进企业长效发展ꎮ五㊁结语企业的薪酬管理与企业内部的稳定和持续发展具有直接的关系ꎬ也与企业员工的切身利益紧密联系ꎮ因此企业的人力资源在开展工作时要引进先进的管理理念并结合企业和员工实际ꎬ创新思维ꎬ促进绩效薪酬激励体系的改革和完善ꎬ使其具备科学㊁合理性ꎮ参考文献:[1]李家华.研究国有企业绩效薪酬激励体系的改革与完善[J].科学技术创新ꎬ2017(13).[2]侯晓雨.浅析国有企业薪酬绩效激励体系的合理构建及完善[J].时代金融(中旬)ꎬ2017(12).[3]马聪.国有企业绩效薪酬激励体系的改革和完善[J].管理观察ꎬ2014(11).作者简介:宋美玲ꎬ陕西延长石油(集团)有限责任公司延安炼油厂ꎮ16。