人教版-数学-八年级上册-《15.3分式方程》第一课时 导学案
人教版数学八年级上15.3分式方程(第1课时)导学案

15.3分式方程(第1课时)一、教学目标:1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单分式方程,体会化归思想和程序化思想.3.了解需要对分式方程的解进行检验的原因.二、教学重点:利用去分母的方法解分式方程.三、教学难点:了解去分母的方法解分式方程产生增根的原因. 四、教学方法:讲练结合,类比学习. 五、教学过程:(一)知识储备1.若分式12-a 有意义,则a 的取值范围为( ) A .0=a B .1≠a C .1-≠a D .0≠a2.下列各式从左到右的变形正确的是( )A .c y c x y x ⋅⋅= B .c y c x y x ÷÷= C .11++=y x y x D .63321+=+x x 3.分式x 21和xy 1的最简公分母是__________.4.请对下列方程进行分类:(填序号)①532=-x ②32=+y x ③0342=+-x x ④1211=-+x x ⑤03=-y x ⑥133221=+--x x⑦275-=x x ⑧0252=-x 思考:分几类?怎么分类?5.解方程:131223=+-+x x(二)新课学习类比尝试:请你类比去分母解一元一次方程的方法和步骤,尝试解下列分式方程:(1)275-=x x (2) 2510512-=-x x(三)巩固练习——解下列分式方程: (1)323-=x x (2) 14341=--+-x x x(四)课堂小结(1)本节课学习了哪些主要内容?(2)解分式方程的基本思路和一般步骤是什么?解分式方程应注意什么? (五)目标检测1. 下列方程中,是分式方程的是( ).A .1231=+x B .52-=x x C .21=+xx D .042=-x 2. 将分式方程xx x 12=-化为整式方程时,方程两边可以同时乘( ). A .2-x B .x C .)2(2-x D .)2(-x x3. 解方程: (1)1533+=-x x (2)912322-=-x x (3)2)1(231--=-x x x。
人教初中数学八年级上册 15.3 分式方程(第1课时)教案

分式方程一、教学目标1.知识目标:(1)理解分式方程的意义;(2)了解解分式方程的基本思路和解法;(3)理解解分式方程时可能无解的原因,并掌握分式方程的验根方法.2.能力目标:经历“实际问题---分式方程---整式方程”的过程,发展学生分析问题﹑解决问题的能力,渗透数学的转化思想,培养学生的应用意识.3.情感目标:在活动中培养学生乐于探究﹑合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.二、教学重点和难点1.重点:解分式方程的基本思路和解法.2.难点:理解解分式方程时可能无解的原因.3.疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.三、教学过程(一)创设情境,导入新课问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间, 与以最大航速航行60千米所用时间相等, 江水的流速为多少?(学生依照第31页的分析,完成填空.根据“两次航行所用时间相等”这一相等关系列 出方程 )分析:设江水的流速为v 千米/时,则轮船顺流航行的速度为(20+v )千米/时,逆流航行的速度为(20-v )千米/时,顺流航行100千米所用的时间为v 20100+小时,逆流航行60千米所用的时间为v 2060-小时。
可列方程v 20100+=v2060- 这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.板书课题: 16.3 分式方程(1)(二)探究新知:1.教师提出下列问题让学生探究:(1)方程 与以前所学的整式方程有何不同?(2) 什么叫分式方程?v v -=+206020100(3)如何解分式方程 呢?怎样检验所求未知数的值是原方程的解?(4)你能结合上述探究活动归纳出解分式方程的基本思路和做法吗?(学生思考﹑讨论后在全班交流)2.根据学生探究结果进行归纳:(1) 分式方程的定义(板书):分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程练习:判断下列各式哪个是分式方程.在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程. (2)解分式方程 的基本思路是将分式方程化为整式方程.具体做法是 “去分母”.即方程 两边同乘最简公分母.这也是解分式方程的一般思路和做法. 3.仿照上面解分式方程的做法,尝试解分式方程2510512-=-x x ,并检验所得的解,你发现了什么?与你的同伴交流. 4. 思考:上面两个分式方程中,为什么 ①去分母后所得整式方程的解就是①的解,而2510512-=-x x ②去分母后所得整式方程的解却不是②的解呢?学生分组讨论上述结果产生的原因,并互相交流.5.归纳:(1)增根:将分式方程变为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根(2)解分式方程必须进行检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.(三)巩固练习:1.在方程 ①215837-+=-x x ②x x =-6216③18182-+=-x x x ④0211=--x x 中是分式方程的有( )A.①和②B.②和③C.③和④D.④和①2.解分式方程: (1) 3221+=x x (2)12112-=-x x (四)课堂小结:1.通过本节课的学习,你有哪些收获?2.在本节课的学习过程中,你有什么体会? 与同伴交流.引导学生总结得出:解分式方程的一般步骤:(1).在方程的两边都乘以最简公分母,约去分母,化为整式方程.(2).解这个整式方程.v v -=+206020100v v -=+206020100vv -=+206020100(3).把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去..解这个整式方程.五.教学反思。
人教版八年级数学上册 第15章 15.3 分式方程2 第1课时 分式方程及解法 导学案

15.3分式方程第1课时分式方程及其解法一、新课导入1.导入课题:前面我们探讨了分式的有关性质及其运算,在分式的研究中,还有一个重要的内容就是分式方程,今天我们一起走进分式方程.2.学习目标:(1)知道分式方程的概念,(2)会解分式方程.3.学习重、难点:重点:分式方程及其解法.难点:分式方程产生增根的原因.二、分层学习1.自学指导:(1)自学内容:教材第149页到第150页的内容.(2)自学时间:5分钟.(3)自学方法:对照自学提纲,认真阅读课本.重点词句或不理解的地方做上记号.(4)自学参考提纲:①什么样的方程叫分式方程?分母中含有未知数的方程叫分式方程.②解分式方程的基本思路是什么?将分式方程化为整式方程.③将分式方程化成整式方程的关键步骤是什么?去分母,即方程两边乘最简公分母.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否认识分式方程的特点和分式方程的解法.②差异指导:指导个别学生正确找出最简公分母.(2)生助生:学生之间相互交流帮助.4.强化:(1)判断分式方程的方法是:看分母是否含有未知数.(2)分式方程的关键步骤是去分母,难点是找最简公分母.(3)下列方程哪些是分式方程?④⑤.(4)指出下列方程中各分母的最简分母,并写出去分母后得到的整式方程.解:①最简公分母2x(x+3),去分母得x+3=4x;②最简公分母x2-1,去分母,得2(x+1)=4;③最简公分母3x+3,去分母,得3x=2x+3x+3.1.自学指导:(1)自学内容:教材第150页“思考”到第151页的内容. (2)自学时间:8分钟.(3)自学方法:认真阅读课本,思考去分母后化成的整式方程的解,为什么有的是原分式方程的解,有的不是?对照课本中的例子想想理由.归纳解分式方程的基本步骤.(4)自学参考提纲:①说说为什么解分式方程一定要检验?因为得到的解可能会导致最简公分母为0,即分母为0. ②说说解分式方程的检验方法.将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解③解分式方程的一般有哪些步骤? 去分母,解整式方程,检验.④某生在解例2时去分母得x(x+2)-1=3,你认为他错在哪里? 漏乘了最简公分母. ⑤试解方程23511x x =--; 解:去分母,得3(x+1)=5 x=53-1=23检验:当x=23时,(x+1)(x-1)≠0, 所以,原分式方程的解为x=23.32122x x x =--- 解:去分母,得2x=3-2(2x-2) 去括号得2x=3-4x+4 移项6x=7 系数化为1,x=76检验:当x=76时,2(x-1)≠0. 所以原分式方程的解为x=762.自学:同学们结合自学指导进行自学.3.助学: (1)师助生:①明了学情:观察学生在解分式方程过程中易产生错误的环节或步骤.②差异指导:对学生出现的错误进行分类指导. (2)生助生:交流提纲④,对⑤互相批改、纠错. 4.强化:(1)解分式方程的一般步骤. (2)分式方程的验根方法. (3)分式方程无解的条件.时,4x2-1=0,检验:当x=12不是原分式方程的解.因此x=12所以,原分式方程无解.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、情感、方法、成果及不足进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在本课的教学过程中,应从这样的几个方面入手:(1)分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件:①方程式里必须有分式,②分母中含有未知数.这两个条件是判断一个方程是否为分式方程的必要条件.同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根.正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验.(2)分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分渗透这种化归思想.(3)解分式方程时,如果分母是多项式,应先写出将分母进行因式分解的步骤,从而让学生准确无误地找出最简公分母.另外,对分式方程可能产生增根的原因,要启发学生认真思考和讨论.自测小练习一、基础巩固(每题10分,共60分)1.下列式子是分式方程的是(C)2.把分式方程两边同乘(x-1),约去分母后,得(D)3.分式方程的解是(D)D.无解A.x=1B.x =-1C.x=-14解:(1)去分母,3x-6+4(x+2)=16去括号,合并同类项7x=14系数化为1,x=2检验:当x=2时,(x+2)(x-2)=0,因此x=2不是原分式方程的解.所以,原分式方程无解.(2)去分母得,(x+1)(x+2)=x(x+4)去括号,合并同类项,得3x+2=4x移项,x=2检验:当x=2时,x(2+x)≠0,所以,原分式方程的解为x=2.二、综合应用(20分)7.已知关于x的方程有增根,求该方程的增根和k的值.解:去分母,得3x+3-(x-1)=x2+kx,整理,得x2+(k-2)x-4=0.因为有增根,所以增根为x=0或x=1.当x=0时,代入方程得-4=0,所以x=0不是方程的增根;当x=1时,代入方程,得k=5,所以k=5时方程有增根x=1.三、拓展延伸(20分)8.解方程:。
人教版数学八年级上册教学设计《15-3分式方程》(第1课时)

人教版数学八年级上册教学设计《15-3分式方程》(第1课时)一. 教材分析《15-3分式方程》是人教版数学八年级上册的教学内容,本节课的主要内容是让学生掌握分式方程的定义、解法以及应用。
分式方程是初高中数学的重要衔接点,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
教材通过引入实际问题,让学生在解决问题的过程中自然地接触到分式方程,并逐步引导他们理解和掌握分式方程的解法。
二. 学情分析学生在学习本节课之前,已经掌握了整式方程的解法,对代数式有一定的了解。
但由于分式方程与整式方程在形式和思想上都有较大的区别,学生可能存在一定的困难。
因此,在教学过程中,需要关注学生的认知差异,针对不同学生的学习情况,进行有针对性的教学。
三. 教学目标1.理解分式方程的定义,掌握分式方程的解法。
2.能够应用分式方程解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.分式方程的定义及解法。
2.分式方程在实际问题中的应用。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生自然地接触到分式方程。
2.启发式教学法:在教学过程中,引导学生主动思考,发现分式方程的解法,培养学生的逻辑思维能力。
3.案例教学法:通过分析实际问题,让学生学会将分式方程应用于解决实际问题。
六. 教学准备1.教学PPT:制作包含实际问题、解题步骤和应用案例的教学PPT。
2.教学素材:准备一些实际问题,作为课堂练习和拓展应用的材料。
3.板书设计:设计清晰、简洁的板书,帮助学生理解和记忆分式方程的解法。
七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题,让学生尝试解决。
在解答过程中,引导学生发现这是一个分式方程。
通过这个问题,引出本节课的主题——分式方程。
2.呈现(10分钟)讲解分式方程的定义,让学生了解分式方程的基本形式。
接着,介绍分式方程的解法,包括去分母、求解、检验等步骤。
在这个过程中,引导学生积极参与,发现问题、解决问题。
人教版八年级数学上册15.3.1《分式方程(第1课时)》导学案

人教版义务教育教科书八年级数学上册15.3.1《分式方程》第1课时导学案一、学习目标1、理解分式方程的意义;了解解分式方程的基本思路和解法;2、经历“实际问题—分式模型—求解——验证解的合理性”的数学思考过程,体会数学模型思想。
二、预习内容(一)温故1、什么叫方程?什么叫方程的解? 。
2、我们学过的方程有哪一些? 。
3、解方程 (1) (2)211242x x +++=(二)知新自学课本149页,完成下列问题:1、问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,轮船顺流航行速度为 千米/时,逆流航行速度为 千米/时,顺流航行90千米所用时间为 小时,逆流航行60千米所用时间为 小时,列出方程为 。
2、方程90603030v v=+- 与以前所学的整式方程有何不同? 。
3.什么叫分式方程? 。
三、探究学习1、在上问题中:得到方程 (类比整式方程解法,思考怎么样来解分式方程?)尝试解该方式方程:2、结合上述探究活动归纳出解分式方程的基本思路和做法? 。
1123x x +-=90603030v v=+-3、思考:解整式方程与解分式方程有何异同? 。
4、(小试牛刀)解分式方程(1) (2)2313x x =-+ (4)四、巩固测评1.判断下列各式哪个是分式方程?3x y +=( ); 1153x y -+=( ); 11x +( ); 05yy =+( ).2.把分式方程x x 23422=-化为整式方程,方程两边需同时乘以( )A .2xB .2x -4C .2x (2x -)D .2x (2x -4)3.解下列分式方程: ⑴.132+=x x ⑵.13132=-+--x x x4、(1)下列方程中,哪些是分式方程?哪些是整式方程.?A 、B 、C 、D 、E 、F 、 分式方程的是( )整式方程的是( )(2)解分式方程 (3)4分钟解出分式方程五、学习心得 。
新人教版初中数学八年级上册15.3第1课时分式方程及其解法公开课优质课导学案

15.3 分式方程第1课时 分式方程及其解法学教目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.学教重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 学教难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 学教过程:一、温故知新:1、前面我们已经学习了哪些方程?是怎样的方程?如何求解?(1)前面我们已经学过了 方程。
(2)一元一次方程是 方程。
(3)一元一次方程解法 步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。
如解方程:163242=--+x x2、探究新知:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 分析:设江水的流速为v 千米/时,根据“两次航行所用时间相同”这一等量关系, 得到方程: v v -=+206020100.像这样分母中含未知数的方程叫做分式方程。
分式方程与整式方程的区别在哪里?通过观察发现得到这两种方程的区别在于未知数是否在分母上。
未知数在分母的方程是分式方程。
未知数不在分母的方程是整式方程。
前面我们学过一元一次方程的解法,但是分式方程中分母含有未知数,我们又将如何解?解分式方程的基本思路是将分式方程转化为 方程,具体的方法是去分母,即方程两边同乘以最简公分母。
如解方程:v +20100=v-2060 …………………… ① 去分母:方程两边同乘以最简公分母(20+v )(20-v ),得100(20-v )=60(20+v )……………………②解得 v=5观察方程①、②中的v 的取值范围相同吗?① 由于是分式方程v ≠±20,而②是整式方程v 可取任何实数。
这说明,对于方程①说,必须要求使方程中各分式的分母的值均不为0.但变形后得到的整式方程②则没有这个要求。
数学导学案:15.3分式方程 -数学八年级上册

1.当x=时,分式 与 的值互为相反数。
2.已知 是分式方程 的根,则实数k=.
3.若方程 有增根,则增根为。
4.解方程:
(1) (2)
发展题
当 为何值时,分式方程 无解
四、课后反思:
今天学会了:1、
今日不足
教师终评等级:
优质资料---欢迎下载
15.3分式方程(1)
八年级数学学科姓名20年月日编号
课题:15.3分式方程(1)课型设置:新授课
一、学习目标1、了解分式方程的概念;2、掌握分式方程的一般解法;3、会检验一个数是不是原分式方程的根.
二、【定向导学、互动展示】独 学Βιβλιοθήκη 环 节互学环节展示环节
梳 理 环 节
自学指导内容、学法、时间
互动交流备展内容、
形式、时间
展示方案、 内容、
方式、时间
随 堂 笔 记
(成果记录·知识生成·自主演练 )
(导入)
旧知链接:
1.一元一次方程
2.一元一次方程的解法
3.解方程
【板块一】
认真自研课本p126页引言,及149页思考以上内容回答问题。
1.分式方程的定义:
2.分式方程和整式方程的区别:
【板块二】
认真自研课本149思考至149页归纳部分
(1)去分母的作用是什么?
(2)将分式方程化成整式方程的关键步骤是什么?
(3)解分式方程的基本思路是什么?
【板块三】
认真自研课本150页至151页例1以上内容
(1)为什么分式方程无解?
(2)分式方程的解必须检验.怎样检验转化得到的整式方程的解是不是原分式方程的解?
②组长带领成员将最后定案在黑板上进行板书规划。
八年级数学上册 15.3 分式方程 第1课时 分式方程及其解法导学案 (新版)新人教版

第1课时 分式方程及其解法1.理解分式方程的意义.2.了解分式方程的基本思路和解法.3.理解分式方程可能无解的原因,并掌握解分式方程的验根的方法.自学指导:阅读教材P149-151,完成下列问题.1.填空:(1)分母中不含有未知数的方程叫做整式方程(2)分母中含有未知数的方程叫做分式方程.2.判断下列说法是否正确: ①232x +=5是分式方程;②4x -43=3x 4+是分式方程; ③x x 2=1是分式方程;④1x 1+=1-y 1是分式方程. 解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.自学反馈1.下列方程中,哪些是分式方程?哪些是整式方程? ①22-x =3x ;②x 4+y 3=7; ③2-x 1=x 3;④x1)-x(x =-1; ⑤πx -3=2x ;⑥2x+51-x =10; ⑦x-x 1=2;⑧x 12x ++3x=1. 解:①⑤⑥是整式方程,因为分母中没有未知数.②③④⑦⑧是分式方程,因为分母中含有未知数.判断整式方程和分式方程的方法就是看分母中是否含有未知数.2.解分式方程的一般步骤是:(1)去分母;(2)解整式方程;(3)验根;(4)小结.活动1 小组讨论例1 解方程:3-x 2=x3. 解:方程两边乘x(x-3),得2x=3(x-3).解得x=9.检验:当x=9时,x(x-3)≠0.所以,原分式方程的解为x=9.例2 解方程:1-x x -1=2)1)(x -(x 3+. 解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3.解得x=1.检验:当x=1时,(x-1)(x+2)=0.所以x=1不是原方程的解.所以,原方程无解.活动2 跟踪训练1.解方程: (1)2x 1=3x 2+; (2)1x x+=33x 2x++1; (3)1-x 2=1-x 42; (4)x x 52+-x -x 12=0.解:(1)方程两边乘2x(x+3),得x+3=4x.去分母:x+3=4x.化简得:3x=3.解得x=1. 检验:将x=1代入2x(x+3)≠0.所以x=1是方程的解.(2)方程两边乘3(x+1),得3x=2x+3x+3.解得x=23-.检验:将x=23-代入(3x+3)≠0.所以x=23-是方程的解.(3)方程两边乘x 2-1,得2(x+1)=4.解得x=1.检验:将x=1代入x 2-1=0,所以x=1不是方程的解.所以,原方程无解.(4)方程两边乘x(x+1)(x-1),得5(x-1)-(x+1)=0.解得x=23.检验:将x=23代入x(x+1)(x-1)≠0.所以x=23是原方程的解.方程中分母是多项式,要先分解因式再找公分母.2.解分式方程:(1)1-x x =2-2x 3-2; (2)2-x 3-x +1=x -23; (3)1-2x 2x =1-2x 2+.解:(1)方程两边乘2x-2,得2x=3-2(2x-2).解得x=67.检验:当x=67时,2x-2≠0.所以x=67是原方程的解.(2)方程两边乘x-2,得x-3+x-2=-3.解得x=1.检验:当x=1时,x-2≠0.所以,x=1是原方程的解.(3)方程两边乘(2x-1)(x+2),得2x(x+2)=(2x-1)(x+2)-2(2x-1).解得x=0.检验:当x=0时,(2x-1)(x+2)≠0.所以,x=0是原方程的解.课堂小结解分式方程的思路是:教学至此,敬请使用学案当堂训练部分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.解方程:(1) (2)
(3)
【课堂练习】
1.分式方程 去分母后所得结果正确的是()
A. B.
C. D.
2、方程 的解是.
3、若分式 的值等于1,则x为.
4.解方程:(1) (2)
(3) (4)
(5)
1.分式方程的概念是?
2.下列方程是分式方程( )
A. B.
C D.
3.分式方程的特征是什么?如分式方程:
4.解分式方程的一般思路与做法是什么?
5.解分式方程: ,归纳解分式方程的一般步骤是什么?与解整式方程的一般步骤有什么区别?
【跟踪训练】1.判断下列式子是分式方程的有( )
(1) (2) (3) (4) (5) (6) (7) (8)
15.3分式方程(1)
主备
井霞
课型
新授课
学习目标
1.了解分式方程的概念.
2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验去分母后所得整式方程的解是否为原分式方程的解.
学习重点
会解可化为一元一次方程的分式方程.
学习难点
会检验去分母后所得整式方程的解是否为原分式方程的解.
学习过程
批注
【合作复习】
要求:1.独立完成下列各题,然后与同桌互相交流.
2.时间不超过5分钟.
1.下列各式中,哪些是整式,哪些是分式?整式与分式的区别.当 ___________时,分式 有意义.
3.回忆一元一次方程的解法,并且解方程
【自主学习】
要求:认真自学课本第149页,用红色笔标出重点,用蓝色笔标注有疑惑之处;