传热的基本原理和规律
导热理论-热传导原理

图4-3 温度梯度与傅里叶定律 第二节 热传导热传导是由物质内部分子、原子和自由电子等微观粒子的热运动而产生的热量传递现象。
热传导的机理非常复杂,简而言之,非金属固体内部的热传导是通过相邻分子在碰撞时传递振动能实现的;金属固体的导热主要通过自由电子的迁移传递热量;在流体特别是气体中,热传导则是由于分子不规则的热运动引起的。
4-2-1 傅里叶定律一、温度场和等温面任一瞬间物体或系统内各点温度分布的空间,称为温度场。
在同一瞬间,具有相同温度的各点组成的面称为等温面。
因为空间内任一点不可能同时具有一个以上的不同温度,所以温度不同的等温面不能相交。
二、温度梯度从任一点开始,沿等温面移动,如图4-3所示,因为在等温面上无温度变化,所以无热量传递;而沿和等温面相交的任何方向移动,都有温度变化,在与等温面垂直的方向上温度变化率最大。
将相邻两等温面之间的温度差△t 与两等温面之间的垂直距离△n 之比的极限称为温度梯度,其数学定义式为:n t n t gradt ∂∂=∆∆=lim(4-1) 温度梯度nt ∂∂为向量,它的正方向指向温度增加的方向,如图4-3所示。
对稳定的一维温度场,温度梯度可表示为:xt gradt d d = (4-2) 三、傅里叶定律导热的机理相当复杂,但其宏观规律可用傅里叶定律来描述,其数学表达式为:nt SQ ∂∂∝d d 或 n t S Q ∂∂-=d d λ (4-3) 式中 nt ∂∂——温度梯度,是向量,其方向指向温度增加方向,℃/m ; Q ——导热速率,W ;S ——等温面的面积,m 2;λ——比例系数,称为导热系数,W/(m ·℃)。
式4-3中的负号表示热流方向总是和温度梯度的方向相反,如图4-3所示。
傅里叶定律表明:在热传导时,其传热速率与温度梯度及传热面积成正比。
必须注意,λ作为导热系数是表示材料导热性能的一个参数,λ越大,表明该材料导热越快。
和粘度μ一样,导热系数λ也是分子微观运动的一种宏观表现。
传热学(第二章)

(2-32)
热阻
R=
1 1 1 ( 4πλ r r2 1
(2-33)
由球坐标系一般形式的导热微分方程
1 T 1 T 1 T T (λr2 + 2 2 (λ ) + 2 (λ sin θ ) + Φ = ρcp r2 r r) r sin θ r sin θ θ θ τ
2 1
λ1
第二章
导热基本定律及稳态导热
2-3 通过平壁,圆筒壁,球壳和其他变截面物体的导热 通过平壁,圆筒壁,
1 T 1 T T T (λr + 2 (λ ) + (λ ) + Φ = ρcp τ r r r) r z z d dt 简化变为 dr (r dr ) = 0 (2-25)
⒉ 通过圆筒壁的导热 由导热微分方程式(2—12)
⒉ 通过圆筒壁的导热 根据热阻的定义,通过整个圆筒壁的导热热阻为 (2-29) 29) 与分析多层平壁—样,运用串联热阻叠加的原则,可得通过图2-9所示的多层圆筒壁的 导热热流量 2πl(t1 t4 ) Φ= (2-30) ln( d2 / d1) / λ1 + ln( d3 / d2 ) / λ2 + ln( d4 / d3) / λ3 ⒊ 通过球壳的导热 导热系数为常数,无内热源的空心球壁.内,外半径为r1,r2,其内外表面均匀 恒定温度为t1,t2,球壁内的温度仅沿半径变化,等温面是同心球面. 由傅立叶定律得: dt 各同心球面上的热流率q不相等,而热流量Φ相等. Φ = 4πr2λ dr dr Φ 2 = 4πλdt r
的热传导微分方程:
T(r,τ ) τ ρc 当 λ = const 时, 2T(r,τ ) + Φ = p T(r,τ ) λ λ τ [λT(r,τ )] + g(r,τ ) = ρcp
热传导的基本原理与计算方法

热传导的基本原理与计算方法热传导是指热量从高温区向低温区传递的过程。
它是热力学的一种基本现象,广泛应用于物理学、化学、材料科学等领域。
热传导研究的是物质中热量的传导机制、热传导的速率和规律以及如何控制和改变热传导过程。
一、热传导的基本原理在物理学中,热量的传导可以用热传导定律来描述,即热传导的速率与热差成正比,与导热系数和传热面积成反比。
物质温度较高的区域传递给相邻温度较低的区域,热量的传导是靠原子、分子、电子等的热运动完成的。
这些粒子在物质内做无规则的振动、流动,高温区的热粒子向低温区运动,直到它们的热平衡达到。
热传导的基本原理可以用一维热传导方程来描述:$$\frac{\partial T}{\partial t}=\alpha\frac{\partial^2 T}{\partialx^2}.$$其中,T代表温度,x代表长度,t代表时间,α代表物质的导热系数。
方程的右侧表示温度梯度,表示热量的传递速度。
二、计算热传导的基本方法由于热传导过程的复杂性,通过简单的数学方程来计算热传导的速率是不可能的。
因此,人们开发了许多传热学模型和计算方法。
这些方法主要可以分为两种:一种是基于传热学原理和模型计算的解析解,另一种是基于数值方法求解的计算机模拟。
1. 解析解法解析解法是指根据物理模型和数学方程分析热传导的过程,得到解析解的方法。
这种方法的优点是计算结果精确,适用于简单的热传导问题,如一维热传导、恒定温差热传导等。
解析解法的缺点是只能用于特定情况下的计算,不适用于复杂的三维热传导问题。
2. 数值模拟法数值模拟法是指利用数字计算机来模拟热传导过程,在计算机上求解热传导方程。
这种方法的优点是可以模拟任意形状复杂的热传导问题,适用范围广,计算结果较为准确。
数值模拟法的缺点是需要高性能计算机进行计算,耗费时间和资源较多。
三、热传导应用范围热传导的应用范围非常广泛,涉及物理、化学、材料等多个领域。
在工程领域,热传导的应用与产品的保温、散热、冷却、加热等相关。
传热学手册 下册 1987

传热学手册下册1987引言概述传热学是热力学的一个重要分支,研究热量如何在物质之间传递的规律。
《传热学手册下册1987》是一部经典的教材,深入剖析了传热学的各个方面,为学习者提供了丰富的知识和深刻的理解。
本文将对该手册进行全面介绍,以帮助读者更好地理解其中的关键内容。
一、基本概念与原理1.1 传热学基础热传递机制:介绍传热的基本机制,包括传导、传热与对流,并深入解析不同物质中的热传递规律。
传热方程:探讨传热方程的推导和应用,阐释不同传热问题中的数学模型。
传热原理:阐述传热的基本原理,如热平衡、热传递速率等,为读者奠定坚实的理论基础。
1.2 传热材料与性质导热材料:对导热材料的分类、选择和性质进行详细介绍,探讨不同材料在传热中的应用。
相变材料:分析相变材料在传热中的独特性质,包括潜热的利用和相变对传热的影响。
传热流体:讨论传热流体的特性,研究不同流体在热交换中的效果和应用。
1.3 传热设备与应用传热设备分类:对传热设备进行分类,包括换热器、冷却塔等,介绍其结构和工作原理。
传热设备选型:分析传热设备的选型依据,包括流体特性、传热效率等因素。
实际应用案例:通过实际案例,展示传热学在工程领域的应用,使读者更好地理解理论知识的实际运用。
二、深度解读与案例分析2.1 传热实验技术实验仪器与方法:详细介绍进行传热实验所需的仪器设备和实验方法,确保读者能够独立进行相关实验。
数据分析与处理:强调实验数据的采集、整理和分析方法,培养读者实际应用传热学知识的能力。
实验案例:提供一些典型的传热实验案例,通过案例分析,帮助读者更好地理解实验技术的应用。
2.2 传热系统优化优化理论:探讨传热系统的优化理论,包括传热表面增大、传热介质选择等方面的优化方法。
能源效率:分析传热系统在提高能源效率方面的策略,减少能源浪费,实现可持续发展。
案例研究:通过一些实际案例,展示传热系统优化在工程实践中的成功经验。
2.3 新兴技术与未来发展新材料应用:探讨新型材料在传热领域的应用前景,如纳米材料、复合材料等。
热传导与传热的基本规律与计算

热传导与传热的基本规律与计算热传导是热量从高温区域传递到低温区域的过程,是热能传播的一种方式。
传热则是指热能从一个物体传递到另一个物体的过程。
在这篇文章中,我们将探讨热传导和传热的基本规律以及相关的计算方法。
一、热传导的基本规律在固体中,热传导是通过原子、分子的相互碰撞传递热能的过程。
基于这一过程,热传导满足以下基本规律:1. 热传导方向:热传导的方向是从高温区域到低温区域,即热量总是沿着温度梯度的方向传递。
2. 热传导速率:热传导速率与物体的热导率成正比,与物体的截面积成反比,与温度梯度成正比。
具体计算公式如下:Q = k * A * ΔT / d其中,Q表示传导热量,k表示物体的热导率,A表示传热截面积,ΔT表示温度差,d表示传热距离。
该公式表明,热传导速率正比于传热截面积和温度梯度,反比于传热距离。
二、导热物质的热导率热导率是导热物质的一个重要物理参数,它表示单位时间内,单位面积上的热量传递量。
不同物质的热导率不同,常见物质的热导率如下:- 金属材料:金属具有较高的热导率,如铜的热导率约为401W/(m·K),铝的热导率约为237 W/(m·K),铁的热导率约为80 W/(m·K)。
- 非金属材料:非金属材料的热导率较低,如水的热导率约为0.6W/(m·K),木材的热导率约为0.1 W/(m·K)。
三、传热的计算方法在进行传热计算时,我们常用以下几种方法:1. 热传导计算:利用热传导速率公式,可以计算出物体的传导热量。
通过测量温度差、传热截面积和传热距离等参数,我们可以计算出传导热量的数值。
2. 对流传热计算:对流传热是指通过流体的传热过程。
常见的对流传热计算方法有冷却方式、自然对流、强制对流等。
其中,冷却方式是通过调整传热流体的流速、温度等参数,计算出传热量的大小。
3. 辐射传热计算:辐射传热是指通过热辐射的方式传递热量。
辐射传热计算需要考虑物体的表面温度、辐射率等参数,通过辐射传热公式计算出传热量的数值。
傅里叶导热定律:单位时间、单位面积上的传热量(热流密度)与温度梯度成正比。

傅里叶导热定律:单位时间、单位面积上的传热量(热流密度)与温度梯度成正比。
1.引言1.1 概述傅里叶导热定律是热传导领域中的基本定律之一,它描述了物质内部传热的规律。
根据傅里叶导热定律,单位时间内通过一个单位面积的物质的传热量(热流密度)与温度梯度成正比关系。
也就是说,当一个物体内部存在温度差时,热量会以固定比例从高温区域传导到低温区域。
傅里叶导热定律是以法国数学家和物理学家傅里叶的名字命名的,在19世纪初他提出了这一理论。
这个定律对于热传导问题的研究有着重要的意义,不仅在物理学中具有广泛应用,而且在工程领域、地球科学、材料科学等方面也得到了广泛的应用和发展。
通过研究傅里叶导热定律,我们可以了解热传导过程中的热量分布规律,掌握不同物质导热性能的特点,为热工系统的设计和优化提供基础理论依据。
同时,这个定律的应用也使得我们可以解释一些实际问题,比如热传导导致的温度分布不均匀、能量损失问题等。
本文将介绍傅里叶导热定律的概念和原理,并深入探讨传热量与温度梯度之间的关系。
通过实验和理论分析,我们将进一步验证这一定律,并探讨其在实际应用中的意义和局限性。
最后,我们将给出结论,确认单位时间、单位面积上的传热量与温度梯度成正比的观点,并讨论傅里叶导热定律在热传导问题中的应用前景。
下一部分将介绍傅里叶导热定律的概念和原理。
1.2文章结构1.2 文章结构本文将从以下几个方面探讨傅里叶导热定律与传热量与温度梯度之间的关系。
文章结构如下:2. 正文2.1 傅里叶导热定律的概念和原理- 介绍傅里叶导热定律的基本概念以及其背后的物理原理- 着重解释热传导过程中的热流以及导热系数的概念2.2 传热量与温度梯度的关系- 分析传热量与温度梯度之间的关系,深入探讨它们的数学表达式- 解释为什么传热量与温度梯度成正比3. 结论3.1 结论1: 单位时间、单位面积上的传热量与温度梯度成正比- 总结并确认傅里叶导热定律的核心观点:单位时间、单位面积上的传热量与温度梯度成正比- 进一步解释这一结论的重要性和实际应用3.2 结论2: 傅里叶导热定律的应用与意义- 探讨傅里叶导热定律在不同领域中的应用,如工程热学、材料科学等- 讨论傅里叶导热定律对于能源利用、环境保护等方面的意义通过以上结构,我们将全面展示傅里叶导热定律的概念和原理,以及传热量与温度梯度的关系。
第五章 传热

液体被加热时,(/w)0.14=1.05,液体被冷却时,(/w)0.14=0.95
16
2. 圆直管强制滞流
Nu=1.86(RePrdi/l)1/3(/w)0.14 定性温度、定性尺寸和 (/w)0.14的处理同上 3. 圆直管过渡流
先按湍流计算,然后乘以校正因数
j=1-6×105/Re1.8<1
流体垂直流过单管时表面传热系数的变化
19
Nu=CRenPr0.4
Re 50~80 80~5000 ≥5000 C 0.93 0.715 0.226 n 0.4 0.46 0.6
2. 流体垂直流过管束 Nu=CeRenPr0.4 C、e、n的值由下表确定:
20
列序 1 2 3 4
直列 n 0.6 0.65 0.65 0.65
2
Pr
c p l
三、流体无相变对流表面传热系数的关联式
(一)流体在管内强制对流时的对流传热系数 1.流体在圆形直管内强制湍流时的对流传热系数 Nu=0.023Re0.8Prn 定性温度:流体进出口温度的算术平均值 定性尺寸:管内径 流体被加热时,n=0.4 流体被冷却时,n=0.3 对高粘度流体(粘度大于水粘度的2倍),用: Nu=0.027Re0.8Pr1/3(/w)0.14 定性温度:流体进出口温度的算术平均值 定性尺寸:管内径
E Et
Et:透过的能量
E:被反射的能量
33
由能量衡算:
Ea E Et E
Ea E
E E
Et E
1
a t 1
几种物体的定义:
黑体
镜体
a=1 =0 t=0 →例:黑煤a=0.97
a=0 =1 t=0 →例:磨光的铜镜面=0.97 t=0 a+=1
(完整PPT)传热学

温度对导热系数的影响因材料而异,一般情况下,随着温度的升高 ,导热系数会增加。
压力
对于某些材料,如气体,压力的变化会对导热系数产生显著影响。
稳态与非稳态导热过程
稳态导热
物体内部各点温度不随时间变化而变化的导热过程。在稳态导热过程中,热流 密度和温度分布保持恒定。
非稳态导热
物体内部各点温度随时间变化而变化的导热过程。在非稳态导热过程中,热流 密度和温度分布会发生变化,通常需要考虑时间因素对导热过程的影响。
辐射换热计算方法
辐射换热量计算
通过斯蒂芬-玻尔兹曼定律计算两 个物体之间的辐射换热量,需要 考虑物体的发射率、温度以及物 体间的角系数等因素。
角系数计算
角系数表示一个表面对另一个表 面辐射能量的相对大小,可以通 过几何方法或数值方法计算得到 。
辐射换热网络模型
对于多个物体之间的复杂辐射换 热问题,可以建立辐射换热网络 模型,通过求解线性方程组得到 各个物体之间的辐射换热量。
06 传热学实验技术 与设备
实验测量技术与方法
温度测量
使用热电偶、热电阻等 温度传感器,配合数据 采集系统,实现温度的
精确测量。
热量测量
采用量热计、热流计等 设备,测量传热过程中
的热量变化。
热阻测量
通过测量传热设备两侧 温差和传热量,计算得
到热阻。
热流密度测量
利用热流计等设备,测 量单位面积上的热量传
(完整PPT)传热学
contents
目录
• 传热学基本概念与原理 • 导热现象与规律 • 对流换热原理及应用 • 辐射换热基础与特性 • 传热过程数值计算方法 • 传热学实验技术与设备 • 传热学在工程领域应用案例
01 传热学基本概念 与原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
差较大时,辐射传热才能成为主要的传热方式。
2021/2/7
17
第五章 传 热
5.1 传热过程概述
5.1.1 热传导及导热系数
5.1.2 对流
5.1.3 热辐射 5.1.4 冷热流体(接触)热交换方式及 换热器
2021/2/7
18
冷热流体(接触)热交换方式及换热器
一、直接接触式换热和混合式换热器 二、蓄热式换热和蓄热器 三、间壁式换热和间壁式换热器√
间壁式换热器内冷、热流体间的传热过程包括以 下三个步骤: (1)热流体以对流方式将热量传递给管壁; (2)热量以热传导方式由管壁的一侧传递至另 一侧; (3)传递至另一侧的热量又以对流方式传递给 冷流体。
2021/2/7
22
第五章 传 热
5.1 传热过程概述 5.1.1 热传导及导热系数 5.1.2 对流 5.1.3 热辐射 5.1.4 冷热流体(接触)热交换方式及换热器 5.1.5 载热体及其选择
和混合而引起的热量传递过程 对流传热
在化工生产中特指流体与固体壁面之间的热 量传递过程。
2021/2/7
14
对流
对流传热速率可由牛顿冷却定律描述
dQ t dS
微分对流 传热通量
对流传 热系数
温度差
2021/2/7
15
第五章 传 热
5.1 传热过程概述 5.1.1 热传导及导热系数 5.1.2 对流 5.1.3 热辐射
傅立叶定律(Fourier’s Law)
描述热传导现象的物理定律为傅立叶定律 (Fourier’s Law),其表达式为
微分导 热通量
2021/2/7
dQ t
dS
n
热通量与 温度梯度 方向相反
导热系 数
温度梯 度
6
二、导热系数
导热系数
dQ dS t n
导热系数表征了物质热传导能力的大小,是物 质的基本物理性质之一,其值与物质的形态、组 成、密度、温度等有关。
2021/2/7
19
冷热流体(接触)热交换方式及换热器
动画22
图5-1 套管式换热器 1-内管 2-外管
2021/2/7
20
冷热流体(接触)热交换方式及换热器
图5-2 单程管壳式换热器
动画21 1-外壳,2-管束,3、4-接管,5-封头,6-管
板,7-挡板,8-泄水池
2021/2/7
21
冷热流体(接触)热交换方式及换热器
L
eT
良好的电导体必然是良好的导热体,反之亦然。
2021/2/7
9
二、导热系数
对大多数均质固体,导热系数与温度近似呈线性 关系
01t
对大多数金属材料,为负值;而对大多数非金属 材料,为正值;对理想气体,=1/T ,1/K。
2021/2/7
10
二、导热系数
2.液体的导热系数 除水和甘油外,大多数非金属液体的导热系数亦 随温度的升高而降低。 金属液体的导热系数比一般的液体要高 纯液体的导热系数比其溶液的要大
第五章 传 热
学习目的 与要求
通过本章学习,掌握传热的基本原理和规律 ,并运用这些原理和规律去分析和计算传热过程 的有关问题。
2021/2/7
1
第五章 传 热
5.1 传热过程概述
2021/2/7
2
概述
传热
热量从高温度区向低温度区移动的过程称为热 量传递,简称传热。 化工生产中对传热过程的要求
一是强化传热过程,如各种换热设备中的传热。 二是削弱传热过程,如对设备或管道的保温,以 减少热损失。
2021/2/7
3
第五章 传 热
5.1 传热过程概述 5.1.1热传导及导热系数
2021/2/7
4
一、热传导(导热)
热传导(导热)
不依靠物体内部各部分质点的宏观混合运动 而借助于物体分子、原子、离子、自由电子等 微观粒子的热运动产生的热量传递称为热传导, 简称导热。
2021/2/7
5
一、热传导(导热)
对平壁一维稳态热传导
Q S dt
dx
积分并整理得
Q
S
b
(t1
t2
)
微分式 积分式
2021/2/7
28
一、单层平壁一维稳态热传导
Q t1 t2 t bR S
导热热 阻
q Q t1 t 导 导 推 热 动 阻 力
2021/2/7
29
2021/2/7
23
载热体及其选择
载热体
在化工生产中,物料在换热器内被加热或冷却 时,通常需要用另一种流体供给或取走热量, 此种流体称为载热体,其中起加热作用的称为 加热介质(或加热剂);起冷却(冷凝)作用的 称为冷却介质(或冷却剂)。
2021/2/7
24
载热体及其选择
选择载热体原则 (1)载热体的温度易调节控制; (2)载热体的饱和蒸气压较低,加热时不易分解; (3)载热体的毒性小,不易燃、易爆,不易腐 蚀设备; (4)价格便宜,来源容易。
2021/2/7
7
二、导热系数
气体 液体 非导电固体 金属 绝热材料
导热系数[W/(m.oC)] 0.006~0.06 0.1~0.7 0.2~3.0 15~420 0.003~0.06
2021/2/7
8
二、导热系数
1.固体的导热系数 纯金属的导热系数与电导率的关系可用魏德曼 (Wiedeman)-弗兰兹(Franz)方程描述
2021/2/7
11
二、导热系数
3.气体的导热系数
气体导热系数随温度升高而增大。 在相当大的压力范围内,气体的导热系数随压力 的变化很小,可以忽略不计。
2021/2/7
12
第五章 传 热
5.1 传热过程概述 5.1.1 热传导及导热系数 5.1.2 对流
2021/2/7
13
对流
对流 对流是由流体内部各部分质点发生宏观运动
二、多层平壁的一维稳态热传导
假设: 1. 导 热 系 数 不 随 温 度变化,或可取平均 值; 2.一维稳态 3.忽略热损失 4.没有接触热阻
2021/2/7
16
热辐射
热辐射
因热的原因而产生的电磁波在空间的传递称 为热辐射。
1. 可 以 在 完 全 真 空 的 地 方 传 递 而 无 需 任 何 介 质 。
2.不仅产生能量的转移,而且还伴随着能量形式 的转换。
3.任何物体只要在绝对零度以上,都能发射辐
射能,但仅当物体的温度较高、物体间的温度
2021/2/7
25
第五章 传 热
5.2 热传导 5.2.1 平壁一维稳态热传导
2021/2/7
26
一、单层平壁一维稳态热传导
假设: 1. 导 热 系 数 不 随 温 度变化,或可取平均 值; 2.一维稳态 3.忽略热损失。
2021/2/7
图5-3 单层平壁热传导
27
一、单层平壁一维稳态热传导