蛋白质知识点整理教学文稿
高一蛋白质的知识点总结

高一蛋白质的知识点总结蛋白质是构成生物体的重要基本营养物质之一,也是人体各器官和组织的重要组成部分。
在高一生物学习中,我们需要了解蛋白质的结构、功能和分类等知识点。
本文将对高一蛋白质的知识点进行总结。
一、蛋白质的基本结构蛋白质由氨基酸组成,氨基酸是蛋白质的基本组成单位。
氨基酸由α-氨基酸、α-羧基、氢原子和侧链组成。
蛋白质的氨基酸可以通过肽键连接起来,形成多肽链。
当氨基酸数目较多时,多肽链就形成了蛋白质的主链结构。
蛋白质的结构分为四个层次:一级结构、二级结构、三级结构和四级结构。
一级结构指的是蛋白质的氨基酸序列,由多肽链中氨基酸的顺序决定。
二级结构是指氨基酸间的氢键相互作用,包括α-螺旋和β-折叠。
三级结构指的是蛋白质中各个二级结构的空间排列,由氢键、离子键和疏水相互作用等决定。
四级结构是由多个蛋白质链相互组合形成的复合物形态。
二、蛋白质的功能蛋白质在生物体内具有多种重要的功能。
首先,蛋白质是生物体的主要构建物质,参与细胞和组织的建设和修复。
其次,蛋白质具有酶的功能,是许多生物体内生化反应的催化剂。
蛋白质还可以参与细胞运输、免疫防御、调节代谢、传递信号等多种生物学功能。
三、蛋白质的分类根据其结构和功能的不同,蛋白质可以分为多种分类。
首先,根据结构分为纤维蛋白和球蛋白。
纤维蛋白结构紧密、线性排列,如角蛋白和胶原蛋白。
球蛋白的结构较为松散,呈球状,如酶和抗体。
其次,蛋白质还可以通过其酸碱性分为酸性蛋白质、碱性蛋白质和中性蛋白质等。
此外,根据功能分为结构蛋白、酶和抗体等。
四、蛋白质的来源和摄入蛋白质是我们日常饮食中必不可少的营养物质。
蛋白质可以通过摄入动物性食物和植物性食物获得。
动物性食物如肉类、禽类、鱼类和奶类等含有丰富的蛋白质。
植物性食物如大豆、豆腐、豆浆、谷类和坚果等也含有一定量的蛋白质。
合理饮食摄入蛋白质有助于维持身体健康和发展。
总之,高一生物学习中对蛋白质的知识点进行了总结。
了解蛋白质的基本结构、功能和分类对于我们进一步学习和理解生物学具有重要意义。
蛋白质说课稿

蛋白质说课稿一、引言蛋白质是生物体内重要的基本组成部份,它们在维持生命活动中发挥着关键作用。
本次说课将环绕蛋白质的定义、结构、功能和重要性展开,通过生动的教学方法和实例引导学生全面了解蛋白质的特点和作用。
二、知识点一:蛋白质的定义1. 蛋白质是由氨基酸组成的生物大份子,是生物体内最基本的有机物之一。
2. 蛋白质具有多样性,可以分为结构蛋白质、酶、抗体等多种类型。
三、知识点二:蛋白质的结构1. 蛋白质的结构包括一级结构、二级结构、三级结构和四级结构。
2. 一级结构是指蛋白质中氨基酸的线性罗列顺序。
3. 二级结构是指蛋白质中氨基酸之间的氢键和肽键形成的α-螺旋和β-折叠。
4. 三级结构是指蛋白质中氨基酸侧链之间的相互作用形成的空间结构。
5. 四级结构是指由多个蛋白质亚基组合而成的复合物。
四、知识点三:蛋白质的功能1. 结构蛋白质为生物体提供力学支持和保护作用,如肌肉组织中的肌动蛋白。
2. 酶是生物体内的催化剂,参预各种生化反应,如消化酶、代谢酶等。
3. 抗体是免疫系统中的重要组成部份,能够识别和中和病原体。
五、知识点四:蛋白质的重要性1. 蛋白质是生命活动的基础,参预细胞的结构和功能。
2. 蛋白质是人体组织和器官的重要组成部份,如肌肉、骨骼等。
3. 蛋白质在免疫系统中发挥着重要的作用,保护机体免受病原体的侵害。
六、教学方法与策略1. 案例分析:通过实例引导学生了解蛋白质的结构和功能。
2. 模型展示:使用模型展示蛋白质的不同级别结构,匡助学生理解。
3. 小组讨论:组织学生进行小组讨论,探讨蛋白质在生命活动中的重要性。
七、教学流程1. 导入:通过展示一张蛋白质结构示意图,引起学生的兴趣。
2. 知识点讲解:挨次介绍蛋白质的定义、结构、功能和重要性。
3. 案例分析:通过给出几个案例,让学生分析蛋白质在不同生物体中的作用。
4. 模型展示:使用蛋白质模型进行展示,让学生观察和比较不同级别结构。
5. 小组讨论:组织学生进行小组讨论,分享自己对蛋白质的理解和认识。
蛋白质教案完美版

蛋白质教案完美版第一章:蛋白质概述1.1 蛋白质的定义与重要性介绍蛋白质的定义和它在生物体中的重要性。
解释蛋白质在生命活动中的多种功能,如结构支持、酶催化、运输和免疫等。
1.2 蛋白质的基本组成单位介绍氨基酸的概念和分类。
解释氨基酸的化学结构和特性。
讨论氨基酸的脱水缩合反应形成肽链。
第二章:蛋白质的结构与功能2.1 蛋白质的一级结构解释蛋白质一级结构的含义,即氨基酸的排列顺序。
讨论蛋白质一级结构对蛋白质功能的影响。
2.2 蛋白质的二级结构介绍蛋白质二级结构的类型,如α-螺旋和β-折叠。
解释氢键在蛋白质二级结构形成中的作用。
2.3 蛋白质的三级结构和四级结构介绍蛋白质三级结构的含义,即蛋白质的折叠形态。
讨论蛋白质四级结构的含义,即多个多肽链的组合。
第三章:蛋白质的制备与分离3.1 蛋白质的提取与分离介绍蛋白质提取的基本步骤,如细胞破碎、蛋白质释放和纯化。
讨论常用的蛋白质分离方法,如凝胶渗透色谱和SDS-聚丙烯酰胺凝胶电泳。
3.2 蛋白质的纯化与鉴定解释蛋白质纯化的目的和方法。
介绍蛋白质鉴定的常用方法,如Western印迹和质谱分析。
第四章:蛋白质的功能与疾病4.1 蛋白质在生物体内的功能讨论蛋白质在细胞信号传导、代谢调控等方面的作用。
解释蛋白质功能障碍与疾病的关联。
4.2 蛋白质与人类疾病介绍蛋白质相关疾病,如血友病和囊性纤维化。
讨论蛋白质疗法在治疗蛋白质相关疾病中的应用。
第五章:蛋白质研究的前沿5.1 蛋白质组学介绍蛋白质组学的概念和意义。
解释蛋白质组学在疾病诊断和治疗中的应用。
5.2 蛋白质折叠与错折叠疾病讨论蛋白质折叠的过程和错折叠对蛋白质功能的影响。
介绍蛋白质错折叠与疾病的关系,如阿尔茨海默病和肌萎缩侧索硬化症。
第六章:蛋白质工程6.1 蛋白质工程的基本原理介绍蛋白质工程的定义和目标。
解释蛋白质工程中使用的基因重组技术和计算生物学方法。
6.2 蛋白质工程的应用讨论蛋白质工程在药物设计、生物催化、生物材料等方面的应用。
高一蛋白质功能知识点总结

高一蛋白质功能知识点总结一、蛋白质的结构和功能1. 蛋白质的结构特点蛋白质是由氨基酸经脱水缩合作用而成的,其结构特点包括:(1)氨基酸残基的肽键连接;(2)多肽链折叠形成的二级结构;(3)多肽链在空间上的折叠和组装形成三级结构;(4)由多个多肽链组装成的蛋白质具有四级结构。
2. 蛋白质的功能蛋白质在生物体内发挥的功能主要包括以下几个方面:(1)细胞结构和支持:细胞的骨架、细胞膜的受体和通道蛋白均由蛋白质构成,为细胞的结构和功能提供支持;(2)代谢调节:代谢酶和激素是蛋白质的重要功能,能够催化生物体内各种代谢活动;(3)免疫防御:抗体和抗原等免疫球蛋白是重要的免疫调节蛋白质,能够保护生物体免受病原体侵害;(4)运输调节:血红蛋白能够将氧气从肺部输送到身体各个组织细胞,从而维持生命活动;(5)肌肉收缩:肌肉中的肌动蛋白和肌球蛋白是肌肉收缩的重要蛋白质;(6)信号传导:激素和神经递质等信号传导物质也是蛋白质的一种。
二、蛋白质在生物体中的功能1. 细胞结构和支持蛋白质在细胞结构和支持方面的功能主要体现在以下几个方面:(1)细胞骨架:细胞内的骨架蛋白质能够维持细胞的形状和稳定性,同时也参与了细胞的分裂和运动;(2)细胞膜受体和通道蛋白:细胞膜上的受体蛋白和通道蛋白能够接收外界信号和将物质从细胞内外进行运输,是细胞与外界环境交换物质的重要通道。
2. 代谢调节蛋白质在代谢调节方面的功能是最为显著的,代谢酶作为蛋白质的一种,在生物体内催化了各种代谢反应,保持了生物体内各种代谢活动的正常进行。
而激素作为一种调节蛋白质,能够调节生物体内各种代谢活动和生理功能。
3. 免疫防御蛋白质在免疫防御方面的功能主要体现在两个方面:一是抗体,它是由B细胞产生的一种血液免疫球蛋白,能够识别和结合外来抗原,从而中和毒素和病原体;二是抗原,它是一切能够引起免疫系统产生免疫应答的物质,包括细胞表面的抗原和血清中的抗原。
4. 运输调节血红蛋白是一种蛋白质,它能够将氧气从肺部输送到身体的各个组织细胞,使得细胞能够进行呼吸和代谢活动。
蛋白质的知识点总结

蛋白质的知识点总结第一篇:蛋白质的知识点总结导语:蛋白质是组成人体一切细胞、组织的重要成分。
机体所有重要的组成部分都需要有蛋白质的参与。
下面是由小编整理的关于蛋白质的知识点总结。
欢迎阅读!篇一:蛋白质的知识点总结一个通式-两个标准-三个数量关系--四个原因--五大功能(1)一个通式:是指组成蛋白质的基本单位氨基酸;氨基酸的通式只有1个,即(形象记忆:碳周围有四个邻居,三个固定邻居即-H、-COOH、-NH2,一个变动邻居即-R基)。
不同的氨基酸分子,具有不同的-R基。
(2)两个标准:是指判断组成蛋白质的氨基酸必须同时具备的标准有2个:一是数量标准,即每种氨基酸分子至少都含有一个氨基(-NH2)和一个羧基(-COOH);二是位置标准,即都是一个氨基和一个羧基连接在同一个碳原子上。
(3)三个数量关系:是指蛋白质分子合成过程中的3个数量关系(氨基酸数、肽键数或脱水分子数、肽链数),它们的关系为:当m个氨基酸缩合成一条肽链时,脱水分子数为(m-1),形成(m-1)个肽键,即脱去的水分子数=肽键数=氨基酸数-1;当m个氨基酸形成n条肽链时,肽键数=脱水分子数=m-n。
(4)四个原因:是指蛋白质分子结构多样性的原因有4个:①组成蛋白质的氨基酸分子的种类不同;②组成蛋白质的氨基酸分子的数量成百上千;③组成蛋白质的氨基酸分子的排列次序变化多端;④蛋白质分子的空间结构不同。
(5)五大功能:是指蛋白质分子主要有5大功能(由分子结构的多样性决定):①有些蛋白质是构成细胞和生物体的重要物质,如人和动物的肌肉主要是蛋白质;②有些蛋白质有催化作用,如参与生物体各种生命活动的绝大多数酶;③有些蛋白质有运输作用,如细胞膜上的载体、红细胞中的血红蛋白;④有些蛋白质有调节作用,如胰岛素和生长激素都是蛋白质,能够调节人体的新陈代谢和生长发育;⑤有些蛋白质有免疫(包括细胞识别)作用,如动物和人体的抗体能清除外来蛋白质对身体生理功能的干扰,起着免疫作用。
生命活动的主要承担者—蛋白质教学设计方案教学文稿

生命活动的主要承担者—蛋白质教学设计方案六、教学过程教学过程教师活动学生活动设计意图及资源准备预习检查、疑惑反馈检查落实学生的预习情况,并了解学生的疑惑。
反馈预习时存在的问题。
使教学具有针对性创设情境、导入新课由“大头娃娃”事件引入,提出为什么缺少蛋白质的劣质奶粉会严重影响儿童的身体健康?在生命活动中蛋白质有什么重要作用呢?思考联系学生已有的知识和生活经验,创设问题情境导入新课问题激思、互动探学探究一:蛋白质具有哪些功能?指导学生阅读教材,阐明蛋白质是生命活动的主要承担者。
展示图片,提出问题:①我们平时所吃的食物中,哪些富含蛋白质? ②食物中的蛋白质能否被人体直接吸收利用呢?引导出氨基酸是组成蛋白质的基本单位。
阅读教材,归纳蛋白质的各种功能例举日常所吃的富含蛋白质的食物,说出食物中的蛋白质必须经过消化变成氨基酸才能被人体吸收和利用。
探究二:氨基酸是怎样形成蛋白质的?Ⅰ引导学生观察教材21页“由氨基酸形成蛋白质的示意图”,提问:从氨基酸到蛋白质大致有哪些结构层次?Ⅱ课件演示:氨基酸分子脱水缩合的过程,导出脱水缩合、肽键、二肽、三肽、多肽、肽链的概念。
Ⅲ探究活动“连连看”:如果将氨基酸的结构通式比喻成一个人:躯干代表碳、左手代表氨基、右手代表羧基、两条腿代表氢、头代表R基。
模拟氨基酸脱水缩合过程。
Ⅳ总结得出公式:⑴形成肽键数=脱去的水分子数=氨基酸分子数-肽链条数⑵至少含有的氨基数(羧基数)= 肽链数⑶蛋白质的分子量=氨基酸数×氨基酸的平均分子量-脱去的水分子数×18Ⅴ总结出蛋白质结构多样性的四大原因。
Ⅵ对点训练:第2、3题观察,归纳出氨基酸组成蛋白质的大致过程认真倾听,感悟氨基酸脱水缩合形成肽的具体过程请几位同学到黑板前演示氨基酸脱水缩合的过程,其余同学观察思考回答相关问题训练学生从图形中获取有效信息的能力通过动画演示将抽象的知识形象化,突破本节的重难点发挥学生主体作用,亲身体验知识的形成过程,充分享受学习的快乐引导学生积极思维、主动探索和形成结论。
蛋 白 质(优秀5篇)

蛋白质(优秀5篇)蛋白质篇一第2节课标解读dna分子的结构特点是dna特定功能的基础,因此在本小节教材的一开始就,联系其结构讲述了dna分子的复制功能。
这部分知识是理解后面几节内容的基础,因此是本节教材的教学重点。
在此基础上,教材又讲述了dna的另一个重要功能,即通过基因控制蛋白质的合成。
首先通过讲述两种rna在蛋白质合成过程中的作用,阐明了遗传信息的“转录”和“翻译”过程。
然后,用遗传学的中心法则对遗传信息的传递(dna分子的复制)和表达(基因控制蛋白质合成)的功能进行小结。
本小节的教学内容是本节教材的教学难点。
学习目标(1)理解dna的双螺旋结构模型和dna分子的复制过程,掌握运用碱基互补配对原则分析问题的方法。
(2)了解基因控制蛋白质合成的过程和原理。
(3)掌握翻译的概念和蛋白质生物合成体系的组成。
(4)理解从dna→rna→蛋白质的一系列连贯的过程。
重点(1)dna的复制过程及特点(2)基因控制蛋白质合成的过程和原理(3)中心法则难点(1)dna的复制过程(2)基因控制蛋白质合成的过程和原理测试一、选择题:1.在dna复制的过程中,dna分子首先利用细胞提供的能量,在的作用下,把两条螺旋的双链解开:a.dna连接酶; b.dna酶;c.dna解旋酶; d.dna聚合酶。
2.1条染色体含有1个双链的dna分子,那么,1个四分体中含有:a.4条染色体,4个dna分子b.2条染色体,4条脱氧核苷酸链c.2条染色体,8条脱氧核苷酸链d.4条染色体,4条脱氧核苷酸链3.dna分子具有多样性的原因是:a.dna是由4种脱氧核苷酸组成的b.dna的分子量很大c.dna具有规则的双螺旋结构d.dna的碱基对有很多种不同的排列顺序4.构成双链dna的碱基是a、g、c、t4种,下列那种比例因生物种类不同而变化:a.(g+c)/(a+t)b.(a+c)/(g+t)c.(a+g)/(c+t)d.g/c5.一个由15n标记的dna分子,放在没有标记的环境中培养,复制5次后标记的dna分子占dna分子总数的:a.1/10b.1/5c. 1/16d.1/256.某dna分子共有a个碱基,其中含胞嘧啶m个,则该dna分子复制3次,需要游离的胸腺嘧啶脱氧核苷酸数为:a.7(a-m)b.8(a-m)c.7(a/2 -m)d.8(2a-m)7.生物界这样形形色色、丰富多彩的根本原因在于:a.蛋白质的多样性;b.dna分子的复杂多样;c.自然环境的多种多样;d.非同源染色体组合形式多样。
高中生物必修一蛋白质的知识点总结

高中生物必修一蛋白质的知识点总结1. 蛋白质的组成蛋白质是由氨基酸组成的有机大分子,其基本结构是多个氨基酸通过肽键连接而形成的多肽。
氨基酸是蛋白质的构建单位,蛋白质的特性主要与氨基酸种类、数量、序列、结构、空间构型等有关,而不同的蛋白质种类,是由不同的氨基酸组成的。
蛋白质的化学结构和生物功能不仅与氨基酸相互作用有关,还与蛋白质的层次结构和分子结构有关。
蛋白质的层次结构包括:第一级——氨基酸序列;第二级——二级结构(α螺旋、β折叠等);第三级——三级结构(不同层面的卷曲、折叠等);第四级——四级结构(多个蛋白质单元之间的组装)。
2. 蛋白质的生物学功能蛋白质是生物体内最为重要的物质之一,具有丰富的生物学功能。
蛋白质的生物学功能主要有:1.酶功能。
蛋白质酶能使胰蛋白酶分解蛋白质分子,将其切割成一段一段,以便消化吸收。
2.结构功能。
蛋白质能够构成生物体内的许多重要结构组分,如肌肉、骨骼、细胞膜等。
3.运输、存储功能。
如血浆蛋白、四氧化三铁等。
4.激素功能。
如胰岛素、生长激素等。
5.免疫功能。
如免疫球蛋白等。
6.纤维结构功能。
如胶原蛋白等。
3. 蛋白质的合成蛋白质的合成又称翻译(translation),是基因表达的一个重要组成部分。
蛋白质合成的主要过程是:先将 DNA 上的一段基因转录成 mRNA(messenger RNA),再将 mRNA 带到核糖体上翻译成蛋白质。
蛋白质合成分为四个阶段:起始、延长、终止和后翻译修饰。
在起始阶段,核糖体识别到 mRNA 上的起始密码子,tRNA(transfer RNA)分子将特定的氨基酸带到核糖体上,形成起始肽链。
在延长阶段,核糖体将继续沿着 mRNA 移动,带来相应的 tRNA,蛋白质链不断延长。
在终止阶段,核糖体到达停止密码子时,翻译终止,蛋白质链释放出来。
后翻译修饰包括折叠、修饰、局部调节等过程,决定了蛋白质最终的生物学功能。
4. 常见的蛋白质问题1.蛋白质摄入量是否足够?对于日常人群,蛋白质摄入量应该保持在每天 0.8 克/公斤体重的标准,但在一些特殊情况下(如孕妇、锻炼者等),蛋白质摄入量应该适当增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 非极性氨基酸(疏水氨基酸)8种:丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)脯氨酸(Pro)苯丙氨酸(Phe)色氨酸(Trp)蛋氨酸(Met)极性氨基酸(亲水氨基酸)
2 极性不带电荷7种:甘氨酸(Gly)丝氨酸(Ser)苏氨酸(Thr)半胱氨酸(Cys)酪氨酸(Tyr)天冬酰胺(Asn)谷氨酰胺(Gln)
3 极性带正电(碱性氨基酸)3种:赖氨酸(Lys)精氨酸(Arg)组氨酸(His)
4极性带负电(酸性氨基酸)2种:天冬氨酸(Asp)谷氨酸(Glu)
5 脂肪族氨基酸:丙、缬、亮、异亮、蛋、天冬、谷、赖、精、甘、丝、苏、半胱、天冬酰胺、谷氨酰胺
6 芳香族氨基酸:苯丙氨酸、酪氨酸
7 杂环族氨基酸:组氨酸、色氨酸
8 杂环亚氨基酸:脯氨酸
9 由于一个晶体中分子的有序排列通常只有在分子单元相同的情况下才能形成,许多蛋白质都能结晶这一事实,强有力地证明,即使是非常大的蛋白质,也是有特定结构的不连续的化学实体。
10 稳定一个特定蛋白质结构的最重要的作用力是非共价相互作用。
蛋白质行使功能经常伴有两种或更多结构形式的相互转变。
11 蛋白质中原子的空间排列叫做蛋白质的构象。
蛋白质的可能构象包括任何无须破坏共价键而达成的结构状态。
具有功能和折叠构象的任何一种蛋白质称为天然蛋白质。
12 弱相互作用力是稳定蛋白质构象的主要作用力,因为它们数
目众多。
自由能最低的蛋白质构象(即最稳定的构象)就是弱相互作用力数目最多的一种构象。
13 蛋白质中基团是协同形成氢键的,一个氢键的形成有利于其他氢键的形成。
14 蛋白质结构模式规则:疏水残基主要包埋在蛋白质内部,远离水;蛋白质内氢键的数目达到最大值。
肽键是刚性的平面。
15 蛋白质是以氨基酸为基本单位构成的生物高分子,蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。
蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。
一级结构:蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。
二级结构(α-螺旋、β-折叠):蛋白质分子局区域内,多肽链沿一定方向盘绕和折叠的方式。
三级结构:蛋白质的二级结构基础上借助各种次级键卷曲折叠成特定的球状分子结构的空间构象。
四级结构:多亚基蛋白质分子中各个具有三级结构的多肽链,以适当的方式聚合所形成的蛋白质的三维结构。
16 蛋白质中发现的α-螺旋都是右手螺旋,α-螺旋是α角蛋白中最主要的结构,它最佳地利用了内部的氢键。
氨基酸序列影响α螺旋稳定性。
脯氨酸和甘氨酸残基的存在阻碍α-螺旋的形成。
17 影响α-螺旋稳定性的因素:连续性的R基团带电的氨基酸残基之间的静电排斥(或吸引);相邻的基团体积庞大;间隔三个或四个残基的氨基酸侧链之间的相互作用;脯氨酸和甘氨酸残基的存在;
螺旋节段末端的氨基酸残基与α-螺旋固有的电偶极的相互作用。
18 β构象使多肽链折叠成片状结构。
锯齿状的多肽链并排排列,形成一系列的片层结构,这种排列叫β-折叠片。
氢键在多肽链的相对节段间形成。
β转角在蛋白质中普遍存在。
有紧凑折叠结构的球蛋白中,在多肽链转向处的转角或突环上的氨基酸残基数几乎占了1/3,它们是连续出现的α-螺旋或β-构象的连接要素。
特别普遍的是β-转角,它连接反平行β-折叠片的两个相邻节段的末端,这结构是一个包含四个氨基酸残基的180°的转角。
甘氨酸和脯氨酸经常出现在β-转角中,这是因为甘氨酸小而灵活,而脯氨酸的亚氨基氮形成的肽键容易呈弯曲构象,这种形式特别有利于形成稳定的转角,但是,它们却很少出现在α-螺旋中。
常见二级结构都有典型的键角和氨基酸成分。
甘氨酸残基能够参与许多构象的形成。
19 蛋白质中所有原子的整体三维排列方式称为蛋白质的三级结构。
二级结构则是指一级结构中相邻氨基酸残基的空间排列方式,三级结构涉及更大范围的氨基酸序列。
20 蛋白质分成两组:纤维蛋白,多肽链排列成长绳状或片层状,通常主要由一种二级结构组成,组成给脊椎动物提供支持、定形和保护作用的结构,α-角蛋白、胶原蛋白和丝心蛋白,纤维蛋白都不溶于水,这种性质由蛋白质内部和表面的高浓度疏水氨基酸残基所赋予;
球蛋白,多肽链折叠成球形,一条肽链或多条肽链的不同节段相互折叠,通常包含几种类型二级结构,许多酶(细胞色素C、溶菌酶、核糖核酸酶)和调节蛋白、运输蛋白、运动蛋白、免疫球蛋白等。
纤维蛋白适合于结构性功能,α-角蛋白中稳定四级结构的是二硫键。
胶原蛋白中超螺旋是向右手方向扭曲的,而每条α-链却是左手螺旋。
随着年龄增加,胶原纤维共价交联累积,结缔组织的刚性和易脆性不断增加。
胶原蛋白带来独特螺旋结构的甘氨酸-X-脯氨酸的重复结构。
丝心蛋白多肽链主要是β-构象,其整个结构是由每个β-折叠片中多肽链的所有肽键广泛参与形成的氢键和片层之间范德华力的最大化来稳定的。
肌红蛋白是一条序列已知的由153个氨基酸残基组成的肽链和一个铁原卟啉或血红素基团组成的。
21 超二级结构也叫模体,或简单地称为折叠。
由几百个以上氨基酸残基组成的多肽链通常折叠成两个或两个以上稳定的球状单元,称为结构域。
22 一系列的β-α-β环这样的排列使得β链排布形成一个桶状结构,产生了一个特别稳定、常见的模体,叫做α/β桶。
蛋白质模体是蛋白质结构分类的基础。
23 四类蛋白质结构:全α、全β、α/β(α和β节段分散或交替出现)、α﹢β(α和β有某些程度的分离)。
24 一级结构序列极其相似或/和在结构和功能上也表现出相似的蛋白质,被认为属于同一个蛋白质家族。
一个蛋白质家族通常存在明显的强的进化关系。
珠蛋白家族中有许多不同的蛋白质,其结构和序列都与肌红蛋白相似。
多亚基蛋白质也称多聚体。
只有几个亚基的多聚体通常也叫寡聚体。
大多数多聚体有相同的亚基或由不同的亚基组成的重复性的亚组织,通常对称排列,此种多聚体蛋白中的重复结构单元,无论是单个亚基还是一组亚基,都叫做原体。
血红蛋白有四条多肽链和四个血红素辅基,血红素辅基中的铁原子处于二价状态,其蛋白质部分叫做珠蛋白。
寡聚体有旋转对称和螺旋对称。
单个亚基可以绕着一个或多个旋转轴旋转从而与其他亚基重叠。
螺旋对称的蛋白质趋向于形成更具开放末端的结构。
所有蛋白质在核糖体上都是以线性排列的氨基酸残基开始出现的。
蛋白质的结构已经进化到能在特定的细胞环境中行使其功能。
环境条件的改变会引起蛋白质结构或大或小的变化,三级结构改变到一定程度,就会导致其功能的丧失,此即为变性。
变性的状态并不一定等同于蛋白质完全解折叠和构象的完全随机化。
加热变性—氢键;有机溶剂、尿素、去污剂主要是通过破坏构成球蛋白稳定核心的疏水相互作用来起作用的;极端pH改变蛋白质的静电荷,造成静电排斥和一些氢键的破坏。
氨基酸序列决定蛋白质的三级结构。
有些蛋白质的变性是可逆的,某些经过加热、极端pH或变性试剂变性的球蛋白,如果回到使其天然构象保持稳定的条件下,可以恢复其天然构象和生物活性,这个过程叫复性。
多肽链的迅速折叠是一个渐进的过程。
由多肽链自发塌陷形成密
实状态引发的折叠,并由非极性残基之间的疏水相互作用介导,此“疏水塌陷”产生的这种状态,可能有大量的二级结构,但是许多氨基酸侧链并没有完全固定,这种塌陷状态被称为熔球。
并非所有蛋白质都是自发折叠,有的需要特异蛋白质的促进。
分子分子伴侣是与部分折叠或不正确折叠的多肽链相互作用的蛋白质。
它有助于纠正折叠途径或提供正确折叠发生的微环境。
分子伴侣包括两类型:第一是称为Hsp70的蛋白质家族第二是伴侣素。
许多蛋白质的折叠路径中都需要两个催化异构化反应的酶的参与:蛋白二硫键异构酶(PDI),催化二硫键的变换或位置的改变,直到天然构象的二硫键的形成。
PDI的功能之一就是催化去除具有不合适的二硫键的折叠中间物。
肽脯氨酰顺反异构酶(PPI)催化脯氨酸肽键的顺反异构体的相互转换,这在某些含有顺式构象的肽键的蛋白质的折叠中是一个缓慢的步骤。
蛋白质的结构是由多种弱相互作用所稳定的,疏水相互作用对稳定大多数可溶性球蛋白结构起主要作用;氢键和离子相互作用在热力学上最稳定形式的特异结构中达到最优化。
肽键表现出部分双键性质使得整个肽基团保持刚性的平面构型。
如果多肽链节段中所有氨基酸残基的Ψ和ψ都已知,则二级结构就完全确定了。
二级结构:α-螺旋、β-构象、β-转角。