蛋白质知识点整理

合集下载

高一蛋白质功能知识点总结

高一蛋白质功能知识点总结

高一蛋白质功能知识点总结一、蛋白质的结构和功能1. 蛋白质的结构特点蛋白质是由氨基酸经脱水缩合作用而成的,其结构特点包括:(1)氨基酸残基的肽键连接;(2)多肽链折叠形成的二级结构;(3)多肽链在空间上的折叠和组装形成三级结构;(4)由多个多肽链组装成的蛋白质具有四级结构。

2. 蛋白质的功能蛋白质在生物体内发挥的功能主要包括以下几个方面:(1)细胞结构和支持:细胞的骨架、细胞膜的受体和通道蛋白均由蛋白质构成,为细胞的结构和功能提供支持;(2)代谢调节:代谢酶和激素是蛋白质的重要功能,能够催化生物体内各种代谢活动;(3)免疫防御:抗体和抗原等免疫球蛋白是重要的免疫调节蛋白质,能够保护生物体免受病原体侵害;(4)运输调节:血红蛋白能够将氧气从肺部输送到身体各个组织细胞,从而维持生命活动;(5)肌肉收缩:肌肉中的肌动蛋白和肌球蛋白是肌肉收缩的重要蛋白质;(6)信号传导:激素和神经递质等信号传导物质也是蛋白质的一种。

二、蛋白质在生物体中的功能1. 细胞结构和支持蛋白质在细胞结构和支持方面的功能主要体现在以下几个方面:(1)细胞骨架:细胞内的骨架蛋白质能够维持细胞的形状和稳定性,同时也参与了细胞的分裂和运动;(2)细胞膜受体和通道蛋白:细胞膜上的受体蛋白和通道蛋白能够接收外界信号和将物质从细胞内外进行运输,是细胞与外界环境交换物质的重要通道。

2. 代谢调节蛋白质在代谢调节方面的功能是最为显著的,代谢酶作为蛋白质的一种,在生物体内催化了各种代谢反应,保持了生物体内各种代谢活动的正常进行。

而激素作为一种调节蛋白质,能够调节生物体内各种代谢活动和生理功能。

3. 免疫防御蛋白质在免疫防御方面的功能主要体现在两个方面:一是抗体,它是由B细胞产生的一种血液免疫球蛋白,能够识别和结合外来抗原,从而中和毒素和病原体;二是抗原,它是一切能够引起免疫系统产生免疫应答的物质,包括细胞表面的抗原和血清中的抗原。

4. 运输调节血红蛋白是一种蛋白质,它能够将氧气从肺部输送到身体的各个组织细胞,使得细胞能够进行呼吸和代谢活动。

生物必修一蛋白质的知识点

生物必修一蛋白质的知识点

生物必修一蛋白质的知识点蛋白质是生物体内分布最广泛的一类有机化合物,具有非常重要的生物学功能,是细胞内的主要构建材料之一,是生命体系内信息流转、代谢调节和信号转导等基本过程的基础。

本文将从蛋白质的结构、合成、分类、功能、代谢等方面对蛋白质进行深入探讨。

一、蛋白质的结构蛋白质的共同特征在于都是由氨基酸组成的长链聚合物。

氨基酸是蛋白质的基本结构单元,由2种或多种不同的氨基酸分子通过肽键连接而成。

常见的氨基酸有20种,分为两大类:一类是可以由人体自行合成的,称为必需氨基酸;另一类是不能合成但又是生命必需的,称为非必需氨基酸。

蛋白质的结构形式包括一级结构、二级结构、三级结构和四级结构。

一级结构指的是蛋白质中的氨基酸序列,即各个氨基酸之间的线性排列顺序;二级结构指的是蛋白质中氨基酸残基的局部空间排列方式,通常包括α-螺旋、β-折叠、β-转角等;三级结构指链接氨基酸残基的二级结构以及构成活性蛋白质的其他结构元素,是蛋白质折叠的最低阶段;四级结构指的是不同的蛋白质具有不同的空间构型,包括同种蛋白质不同结构形态的多肽链组合成的立体构型,以及不同多肽链组合而成的超级复合物。

二、蛋白质的合成蛋白质的合成过程也称翻译(Translation),是生命活动的基本过程之一。

人体内DNA是作为基因载体的存储核酸,它的信息需要转化成蛋白质的结构和功能。

这种转化的过程主要由RNA介导,RNA根据DNA上的一段基因序列担任的是基因的传递体。

在过程中,DNA的一个基因先经转录形成RNA的复制品,即mRNA,然后mRNA转移至细胞质,并依据其所携带的信息使得氨基酸在RNA链上“逐一”组成蛋白质的氨基酸序列。

三、蛋白质的分类根据蛋白质之间的相似性,蛋白质可以分为同源蛋白、同源超家族蛋白、异源蛋白、复合蛋白等多种类型。

同源蛋白是指来自于同一个基因或者具有相似的序列,结构和功能的蛋白质。

例如,人体中的血红蛋白和肌红蛋白就是同源蛋白。

同源超家族蛋白是指序列或结构相似的蛋白质从进化上有共同的起源,但是它们的功能却具有很大差异。

高中化学蛋白质知识点总结

高中化学蛋白质知识点总结

高中化学蛋白质知识点总结
1. 蛋白质的定义:具有生物活性的大分子有机化合物。

2. 蛋白质的组成:由氨基酸组成,通常包含20种氨基酸,其中9种人体无法自行合成,必须通过食物获得。

3. 蛋白质的分子量:蛋白质分子量巨大,一般在几千至几十万之间,例如肝素分子量可达100万以上。

4. 氨基酸:氨基酸是蛋白质的组成部分,具有一定的酸碱性特性。

5. 氨基酸的分类:氨基酸可以分为极性氨基酸和非极性氨基酸,极性氨基酸可以进一步分为酸性氨基酸和碱性氨基酸。

6. 蛋白质的结构:蛋白质的结构可以分为四级结构,包括一级结构、二级结构、三级结构和四级结构。

7. 蛋白质的功能:蛋白质在生物体中具有非常重要的生物学功能,包括酶、激素、抗体、运输蛋白、结构蛋白等。

8. 蛋白质的合成:蛋白质是通过氨基酸的连接而形成,有三个重要的步骤,包括转录、翻译和折叠。

9. 蛋白质质量分析:常用的方法包括质谱法、光谱法、凝胶电泳、DNA测序等。

10. 蛋白质的应用:在食品工业、制药工业、医学、能源等领域都有广泛的应用。

例如乳清蛋白可以用于制作奶制品和蛋白质饮料,胰岛素可以用于治疗糖尿病等。

高中化学蛋白质的十个知识点

高中化学蛋白质的十个知识点

1.蛋白质是生命的存在形式。

没有蛋白质就没有生命。

2.蛋白质的组成元素必然有C.H.O.N,可能有S、P 等元素。

蛋白质含量高的物质蛋白质含量高的物质3.蛋白质通产含有羧基或者氨基残基,能与酸或者碱作用,是 两性 化合物。

4.蛋白质的形态差异很大,有易溶于水的,也有不溶于水的。

蛋白质形成的溶液不是真溶液,属于胶体。

5.蛋白质 水解 为肽,进一步最终水解为氨基酸。

6.蛋白质加入浓的无机盐(硫酸钠、硫酸铵等),可降低蛋白质的溶解度而析出,可用于分离和提纯蛋白质,一定条件下可逆的。

豆腐的点卤,豆浆加入酱油变成糊状等就与 盐析 有关。

7.蛋白质的 变性 ,在热、酸、碱、重金属盐、紫外线等作作用下,蛋白质会发生性质上的改变而凝结起来。

这种凝结是不可逆的,不能再使它们恢复成原来的蛋白质。

蛋白质的这种变化叫做变性。

典型的盐类有硫酸铜和硝酸铅等,乙醇等有机物也可以使蛋白质变性。

8.蛋白质可以跟许多试剂发生 颜色反应 .例如在鸡蛋白溶液中滴入浓硝酸,则鸡蛋白溶液呈黄色。

这是由于蛋白质(含苯环结构)与浓硝酸发生了颜色反应的缘故.还可以用双缩脲试剂对其进行检验,该试剂遇蛋白质变紫。

9.蛋白质在灼烧分解时,可以产生一种烧焦羽毛的特殊气味,利用这一性质可以鉴别蛋白质。

蛋白质的定量检测沿用凯氏定氮法。

10.有些蛋白质也是 酶 。

如猪肝(人血里面也有)里的过氧化氢酶,能高效催化分解过氧化氢。

小时候经常听到小孩子的丁丁被蚯蚓(蛐蟮)吹肿了,其实是小孩玩蚯蚓后,没有洗手去小便时,蚯蚓表面的一种蛋白质被带到丁丁表面引起了过敏,乡下的老人的做法是利用鸭子的唾液涂抹,丁丁立马好了。

鸭子的唾液里面就有一种分解蚯蚓蛋白质的蛋白质,这种蛋白质效率很高,其实就是一种酶。

蛋白质知识点整理

蛋白质知识点整理

1 非极性氨基酸(疏水氨基酸)8种:丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)脯氨酸(Pro)苯丙氨酸(Phe)色氨酸(Trp)蛋氨酸(Met)极性氨基酸(亲水氨基酸)2 极性不带电荷7种:甘氨酸(Gly)丝氨酸(Ser)苏氨酸(Thr)半胱氨酸(Cys)酪氨酸(Tyr)天冬酰胺(Asn)谷氨酰胺(Gln)3 极性带正电(碱性氨基酸)3种:赖氨酸(Lys)精氨酸(Arg)组氨酸(His)4极性带负电(酸性氨基酸)2种:天冬氨酸(Asp)谷氨酸(Glu)5 脂肪族氨基酸:丙、缬、亮、异亮、蛋、天冬、谷、赖、精、甘、丝、苏、半胱、天冬酰胺、谷氨酰胺6 芳香族氨基酸:苯丙氨酸、酪氨酸7 杂环族氨基酸:组氨酸、色氨酸8 杂环亚氨基酸:脯氨酸9 由于一个晶体中分子的有序排列通常只有在分子单元相同的情况下才能形成,许多蛋白质都能结晶这一事实,强有力地证明,即使是非常大的蛋白质,也是有特定结构的不连续的化学实体。

10 稳定一个特定蛋白质结构的最重要的作用力是非共价相互作用。

蛋白质行使功能经常伴有两种或更多结构形式的相互转变。

11 蛋白质中原子的空间排列叫做蛋白质的构象。

蛋白质的可能构象包括任何无须破坏共价键而达成的结构状态。

具有功能和折叠构象的任何一种蛋白质称为天然蛋白质。

12 弱相互作用力是稳定蛋白质构象的主要作用力,因为它们数目众多。

自由能最低的蛋白质构象(即最稳定的构象)就是弱相互作用力数目最多的一种构象。

13 蛋白质中基团是协同形成氢键的,一个氢键的形成有利于其他氢键的形成。

14 蛋白质结构模式规则:疏水残基主要包埋在蛋白质内部,远离水;蛋白质内氢键的数目达到最大值。

肽键是刚性的平面。

15 蛋白质是以氨基酸为基本单位构成的生物高分子,蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。

蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。

一级结构:蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。

生物化学第二章蛋白质知识点归纳

生物化学第二章蛋白质知识点归纳

一、概述
结合蛋白:由简单蛋白与其它非蛋白成分结合而成。按辅基种类分为: 1 核蛋白(nucleoprotein ) 核酸 2 脂蛋白(lipoprotein ) 脂质 3 糖蛋白(glycoprotein) 糖 4 磷蛋白(phosphoprotein) 磷酸基 5 血红素蛋白(hemoprotein ) 血红素 6 黄素蛋白(flavoprotein ) FAD 7 金属蛋白(metallaprotein ) 金属
据R基团 极性分类
例外:
COO+α
H3N C H
R
Gly —— 没有手性
构型与旋光方向没有直接对应关系,L-α-氨基酸有的为左旋,有的为右旋, 即使同一种L-α-氨基酸,在不同溶剂也会有不同的旋光度或不同的旋光方向。
二十种常见蛋白质氨基酸的分类、结构及三字符号
据R基团化学 结构分类
脂肪族AA(烃链、含羟基或巯基、羧基、碱性基团) 杂环AA(His、Pro) 芳香族AA(Phe、Tyr、Trp)
6 结构蛋白(structural protein)
7 防御蛋白(defense protein) 8 异常蛋白 (exotic protein)

氨基酸
1.蛋白质的水解 2.氨基酸的结构与分类 3.氨基酸的理化性质
一、蛋白质水解
完全水解得到各种氨基酸的混合物; 部分水解通常得到肽片段及氨基酸的混合物。 氨基酸是蛋白质的基本结构单元。 大多数的蛋白质都是由20种氨基酸组成,这20种
一、概述
按生物功能分:
1 酶(enzyme)
2 调节蛋白(regulatory protein)
3 转运蛋白(transport protein) 4 储存蛋白(nutrient and storage

高中生物蛋白质知识点

高中生物蛋白质知识点

高中生物蛋白质知识点
高中生物蛋白质知识点如下:
一、化学元素组成
蛋白质主要由C、H、O、N四种化学元素组成。

很多重要的蛋白质还含有P、S两种元素,有的也含微量的Fe、Cu、Mn、I、Zn等元素。

二、相对分子质量
蛋白质是一种高分子化合物,相对分子质量从几千到100万以上不等。

三、基本组成单位——氨基酸
蛋白质的基本组成单位是氨基酸。

每种氨基酸分子至少都含有一个氨基和一个羧基,并且连在同一个碳原子上。

R基不同导致种类不同,组成蛋白质的氨基酸约20种。

四、分子结构的形成
多个氨基酸分子经过脱水缩合形成含多个肽键的化合物,
多肽呈链状。

氨基酸种类、数目、排列顺序的各不相同以及肽链空间结构的千差万别决定了蛋白质分子结构的多样性。

五、功能多样性
蛋白质分子结构的多样性,决定了功能的多样性。

六、有关蛋白质的计算
1、蛋白质形成过程中肽健、水分子的计算
由氨基酸分子脱水缩合可知,蛋白质形成过程中每形成一个肽键,同时失去一分子水,即形成的肽键数=失去的水分子数。

2、形成的蛋白质分子的相对分子质量
蛋白质分子的相对分子质量=氨基酸相对分子质量的总和-失去水分子的相对分子质量的总和。

高一生物蛋白质知识点

高一生物蛋白质知识点
-肽键数 (2)羧基数=肽链数+R基上的羧基数=各氨基酸中羧基的总数
-肽键数 3.氨基酸平均相对分子质量与蛋白质相对分子质量关系 蛋白质相对分子质量=氨基酸相对分子质量×氨基酸数目
-失去水分子数×水的相对分子质量。
思考:1、蛋白质分子多样性的直接原因、根本原因是什么? 2、如何鉴定蛋白质? 3、蛋白质合成、加工的场所在哪里?肽键如何表示?
2.下面是某蛋白质的肽链结构示意图(图1,其中数字为氨基酸 序号)及部分肽链的放大图(图2)。请据图判断,叙述中不正确 的是
A.该蛋白质中含有两条肽链49个肽键 B.图2中含有的R基是①②④⑥⑧
B
C.从图2可推知该蛋白质至少含有4个游离的羧基
D.控制该蛋白质合成的mRNA中至少含有51个密码子
❖二、核酸
❖一、蛋白质
结构通式
氨基酸:约 20 种 R基不同 例:丙氨酸


脱水缩合(场所:核糖体 )一个氨基酸分子的羧基和另
一个氨基酸分子的氨基相连接,同时失去一分子的水
计算
1.氨基酸数、肽链数、失去水分子数、肽键数之间的关系
形成n条肽链时:肽键数=失去水分子数=氨基酸数-n
形成环肽时:肽键数=水分子数=?氨基酸数 2.氨基、羧基数与肽链、肽键的关系 (1)氨基数=肽链数+R基上的氨基数=各氨基酸中氨基的总数
1.在下列物质中,若将其中能构成人体蛋白质的氨基酸通过脱水 缩合而形成1条肽链,则此肽链分子中所含有的羧基、氨基和肽键 的数目依次是
A.3、3、2 C.3、2、4
×
C B.4、3、3
D.2、2、2
结 ①组成各种蛋白质分子的氨基酸的种类、数 构 目和排列顺序不同 多 ②蛋白质分子的空间结构千差万别,造成蛋 样 白质的多样性 性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 极性不带电荷7种:甘氨酸(Gly)丝氨酸(Ser)苏氨酸(Thr)半胱氨酸(Cys)酪氨酸(Tyr)天冬酰胺(Asn)谷氨酰胺(Gln)
3 极性带正电(碱性氨基酸)3种:赖氨酸(Lys)精氨酸(Arg)组氨酸(His)
4极性带负电(酸性氨基酸)2种:天冬氨酸(Asp)谷氨酸(Glu)
5 脂肪族氨基酸:丙、缬、亮、异亮、蛋、天冬、谷、赖、精、甘、丝、苏、半胱、天冬酰胺、谷氨酰胺
6 芳香族氨基酸:苯丙氨酸、酪氨酸
7 杂环族氨基酸:组氨酸、色氨酸
8 杂环亚氨基酸:脯氨酸
9 由于一个晶体中分子的有序排列通常只有在分子单元相同的情况下才能形成,许多蛋白质都能结晶这一事实,强有力地证明,即使是非常大的蛋白质,也是有特定结构的不连续的化学实体。

10 稳定一个特定蛋白质结构的最重要的作用力是非共价相互作用。

蛋白质行使功能经常伴有两种或更多结构形式的相互转变。

11 蛋白质中原子的空间排列叫做蛋白质的构象。

蛋白质的可能构象包括任何无须破坏共价键而达成的结构状态。

具有功能和折叠构象的任何一种蛋白质称为天然蛋白质。

12 弱相互作用力是稳定蛋白质构象的主要作用力,因为它们数目众多。

自由能最低的蛋白质构象(即最稳定的构象)就是弱相互作用力数目最多的一种构象。

13 蛋白质中基团是协同形成氢键的,一个氢键的形成有利于其
他氢键的形成。

14 蛋白质结构模式规则:疏水残基主要包埋在蛋白质内部,远离水;蛋白质内氢键的数目达到最大值。

肽键是刚性的平面。

15 蛋白质是以氨基酸为基本单位构成的生物高分子,蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。

蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。

一级结构:蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。

二级结构(α-螺旋、β-折叠):蛋白质分子局区域内,多肽链沿一定方向盘绕和折叠的方式。

三级结构:蛋白质的二级结构基础上借助各种次级键卷曲折叠成特定的球状分子结构的空间构象。

四级结构:多亚基蛋白质分子中各个具有三级结构的多肽链,以适当的方式聚合所形成的蛋白质的三维结构。

16 蛋白质中发现的α-螺旋都是右手螺旋,α-螺旋是α角蛋白中最主要的结构,它最佳地利用了内部的氢键。

氨基酸序列影响α螺旋稳定性。

脯氨酸和甘氨酸残基的存在阻碍α-螺旋的形成。

17 影响α-螺旋稳定性的因素:连续性的R基团带电的氨基酸残基之间的静电排斥(或吸引);相邻的基团体积庞大;间隔三个或四个残基的氨基酸侧链之间的相互作用;脯氨酸和甘氨酸残基的存在;螺旋节段末端的氨基酸残基与α-螺旋固有的电偶极的相互作用。

18 β构象使多肽链折叠成片状结构。

锯齿状的多肽链并排排列,形成一系列的片层结构,这种排列叫β-折叠片。

氢键在多肽链的相
对节段间形成。

β转角在蛋白质中普遍存在。

有紧凑折叠结构的球蛋白中,在多肽链转向处的转角或突环上的氨基酸残基数几乎占了1/3,它们是连续出现的α-螺旋或β-构象的连接要素。

特别普遍的是β-转角,它连接反平行β-折叠片的两个相邻节段的末端,这结构是一个包含四个氨基酸残基的180°的转角。

甘氨酸和脯氨酸经常出现在β-转角中,这是因为甘氨酸小而灵活,而脯氨酸的亚氨基氮形成的肽键容易呈弯曲构象,这种形式特别有利于形成稳定的转角,但是,它们却很少出现在α-螺旋中。

常见二级结构都有典型的键角和氨基酸成分。

甘氨酸残基能够参与许多构象的形成。

19 蛋白质中所有原子的整体三维排列方式称为蛋白质的三级结构。

二级结构则是指一级结构中相邻氨基酸残基的空间排列方式,三级结构涉及更大范围的氨基酸序列。

20 蛋白质分成两组:纤维蛋白,多肽链排列成长绳状或片层状,通常主要由一种二级结构组成,组成给脊椎动物提供支持、定形和保护作用的结构,α-角蛋白、胶原蛋白和丝心蛋白,纤维蛋白都不溶于水,这种性质由蛋白质内部和表面的高浓度疏水氨基酸残基所赋予;
球蛋白,多肽链折叠成球形,一条肽链或多条肽链的不同节段相互折叠,通常包含几种类型二级结构,许多酶(细胞色素C、溶菌酶、核糖核酸酶)和调节蛋白、运输蛋白、运动蛋白、免疫球蛋白等。

纤维蛋白适合于结构性功能,α-角蛋白中稳定四级结构的是二硫键。

胶原蛋白中超螺旋是向右手方向扭曲的,而每条α-链却是左
手螺旋。

随着年龄增加,胶原纤维共价交联累积,结缔组织的刚性和易脆性不断增加。

胶原蛋白带来独特螺旋结构的甘氨酸-X-脯氨酸的重复结构。

丝心蛋白多肽链主要是β-构象,其整个结构是由每个β-折叠片中多肽链的所有肽键广泛参与形成的氢键和片层之间范德华力的最大化来稳定的。

肌红蛋白是一条序列已知的由153个氨基酸残基组成的肽链和一个铁原卟啉或血红素基团组成的。

21 超二级结构也叫模体,或简单地称为折叠。

由几百个以上氨基酸残基组成的多肽链通常折叠成两个或两个以上稳定的球状单元,称为结构域。

22 一系列的β-α-β环这样的排列使得β链排布形成一个桶状结构,产生了一个特别稳定、常见的模体,叫做α/β桶。

蛋白质模体是蛋白质结构分类的基础。

23 四类蛋白质结构:全α、全β、α/β(α和β节段分散或交替出现)、α﹢β(α和β有某些程度的分离)。

24 一级结构序列极其相似或/和在结构和功能上也表现出相似的蛋白质,被认为属于同一个蛋白质家族。

一个蛋白质家族通常存在明显的强的进化关系。

珠蛋白家族中有许多不同的蛋白质,其结构和序列都与肌红蛋白相似。

多亚基蛋白质也称多聚体。

只有几个亚基的多聚体通常也叫寡聚体。

大多数多聚体有相同的亚基或由不同的亚基组成的重复性的亚组
织,通常对称排列,此种多聚体蛋白中的重复结构单元,无论是单个亚基还是一组亚基,都叫做原体。

血红蛋白有四条多肽链和四个血红素辅基,血红素辅基中的铁原子处于二价状态,其蛋白质部分叫做珠蛋白。

寡聚体有旋转对称和螺旋对称。

单个亚基可以绕着一个或多个旋转轴旋转从而与其他亚基重叠。

螺旋对称的蛋白质趋向于形成更具开放末端的结构。

所有蛋白质在核糖体上都是以线性排列的氨基酸残基开始出现的。

蛋白质的结构已经进化到能在特定的细胞环境中行使其功能。

环境条件的改变会引起蛋白质结构或大或小的变化,三级结构改变到一定程度,就会导致其功能的丧失,此即为变性。

变性的状态并不一定等同于蛋白质完全解折叠和构象的完全随机化。

加热变性—氢键;有机溶剂、尿素、去污剂主要是通过破坏构成球蛋白稳定核心的疏水相互作用来起作用的;极端pH改变蛋白质的静电荷,造成静电排斥和一些氢键的破坏。

氨基酸序列决定蛋白质的三级结构。

有些蛋白质的变性是可逆的,某些经过加热、极端pH或变性试剂变性的球蛋白,如果回到使其天然构象保持稳定的条件下,可以恢复其天然构象和生物活性,这个过程叫复性。

多肽链的迅速折叠是一个渐进的过程。

由多肽链自发塌陷形成密实状态引发的折叠,并由非极性残基之间的疏水相互作用介导,此“疏水塌陷”产生的这种状态,可能有大量的二级结构,但是许多氨
基酸侧链并没有完全固定,这种塌陷状态被称为熔球。

并非所有蛋白质都是自发折叠,有的需要特异蛋白质的促进。

分子分子伴侣是与部分折叠或不正确折叠的多肽链相互作用的蛋白质。

它有助于纠正折叠途径或提供正确折叠发生的微环境。

分子伴侣包括两类型:第一是称为Hsp70的蛋白质家族第二是伴侣素。

许多蛋白质的折叠路径中都需要两个催化异构化反应的酶的参与:蛋白二硫键异构酶(PDI),催化二硫键的变换或位置的改变,直到天然构象的二硫键的形成。

PDI的功能之一就是催化去除具有不合适的二硫键的折叠中间物。

肽脯氨酰顺反异构酶(PPI)催化脯氨酸肽键的顺反异构体的相互转换,这在某些含有顺式构象的肽键的蛋白质的折叠中是一个缓慢的步骤。

蛋白质的结构是由多种弱相互作用所稳定的,疏水相互作用对稳定大多数可溶性球蛋白结构起主要作用;氢键和离子相互作用在热力学上最稳定形式的特异结构中达到最优化。

肽键表现出部分双键性质使得整个肽基团保持刚性的平面构型。

如果多肽链节段中所有氨基酸残基的Ψ和ψ都已知,则二级结构就完全确定了。

二级结构:α-螺旋、β-构象、β-转角。

相关文档
最新文档