数字电子技术第四章

合集下载

《数字电子技术基础》第四章习题答案

《数字电子技术基础》第四章习题答案

第四章 集 成 触 发 器 4.1R d S d Q Q不定4.2 (1CP=1时如下表)(2) 特性方程Q n+1=D(3)该电路为锁存器(时钟型D 触发器)。

CP=0时,不接收D 的数据;CP=1时,把数据锁存。

(但该电路有空翻)4.3 (1)、C=0时该电路属于组合电路;C=1时是时序电路。

(2)、C=0时Q=A B +; C=1时Q n+1=B Q BQ nn+= (3)、输出Q 的波形如下图。

A B C Q4.4CP D Q 1Q 2图4.54.5 DQ QCPT4.6 Q 1n 1+=1 Q 2n 1+=Q 2n Q n 13+=Q n 3 Q Q 4n 14n+=Q1CP Q2Q3Q44.7 1、CP 作用下的输出Q 1 Q 2和Z 的波形如下图; 2、Z 对CP 三分频。

DQ QCPQ1DQ QQ2ZRd CP Q1Q2Z14.8由Q D J Q KQ J Q KQ n 1n n n n +==+=⋅得D 触发器转换为J-K 触发器的逻辑图如下面的左图;而将J-K 触发器转换为D 触发器的逻辑图如下面的右图CPD Q QJKQ QDQ QJ KCP4.9CP B CA4.10CP X Q1Q2Z4.11 1、555定时器构成多谐振荡器 2、u c, u o 1, u o 2的波形u c u o 1u o 2t t t 1.67V3.33V3、u o 1的频率f 1=1074501316..H z ⨯⨯≈ u o 2的频率f 2=158H z4、如果在555定时器的第5脚接入4V 的电压源,则u o 1的频率变为1113001071501232....H z ⨯⨯+⨯⨯≈4.12 图(a)是由555定时器构成的单稳态触发电路。

1、工作原理(略);2、暂稳态维持时间t w =1.1RC=10ms(C 改为1μF);3、u c 和u o 的波形如下图:u ou ct t tu i (ms)(ms)(ms)5 10 25 30 45 503.33V4、若u i 的低电平维持时间为15m s ,要求暂稳态维持时间t w 不变,可加入微分电路4.13由555定时器构成的施密特触发器如图(a)所示 1、电路的电压传输特性曲线如左下图; 2、u o 的波形如右下图;3、为使电路能识别出u i 中的第二个尖峰,应降低555定时器5脚的电压至3V 左右。

数字电子技术基础-第4章--

数字电子技术基础-第4章--

& Q4 G4 &
Q
Q
L2
CP Q5 & G5 Q6 G6 &
C1 R 1D ∧ S RD SD
RD 和SD 不受CP和D信号的影 响,具有最高的优先级。
RD
D
SD
二、CMOS主从结构的触发器
1.电路结构:由CMOS逻辑门和CMOS传输门组成主从D触发器。
CP G1 D T G1
1
Q' G2
1
CP Q' T G3
Q 从 触 发 器
Q
G1
&
&
G2
G3
&
&
G4
Q' 主 触 发 器 G5 & &
Q' G6 1 G9
G7
&
&
G8
R
CP
S
主从RS触发器的缺点 R、S不能同时为1,即有效的输入电平 主从JK触发器可解决此问题
(二)主从JK触发器
主从RS触发器的缺点: 使用时有约束条件 RS=0。
CP G1 D T G1
1
Q' G2
1
CP Q' T G3
Q G3
1
Q G4
1
CP CP T G2 主触发器 CP 从触发器 CP
CP T G4
CP
3 .具有直接置0端RD和直接置1端SD的CMOS边沿D触发器
集成触发器
一、集成触发器举例
1.TTL主从JK触发器74LS72
Q ┌ Q Vcc S D CP K3 K2 K1 ┌
CP J K
t CPH
t CPL

数字电子技术基础-第四章-触发器

数字电子技术基础-第四章-触发器
Q Q
SD——直接置1端,低电平有效。
G2
G1 & Q3 & G3
& Q4 G4 &
Q
Q
L2
CP Q5 & G5 Q6 G6 &
C1 R 1D ∧ S RD SD
RD和SD不受CP和D信
SD
RD
D
号的影响,具有最高的 优先级。
3.集成D触发器74HC74
2Q 2Q 1Q 1Q Vcc 2RD 2D 2CP 2SD 2Q 2Q

2.特性方程
KQn J 0 1 00 01 11 10
0 0
0 0 1 1
0 0
1 1 0 0
0 1
0 1 0 1
0 1
0 0 1 1
0 1
1 1
0 0
0 1
Qn1 JQn KQn
1 1
1 1
0 1
1 0
3.状态转换图
J=1 K=× J=0 K=× 0 J=× K=1 1 J=× K=0
CP=1时, Q2=0,则Q=1, 封锁G1和G3 使得Q2=0,维持置1 同时Q3=1,阻塞置0
Q3
R
&
Q
G6
& Q4
D
G4
置1阻塞、置0维持线
Q3=0,则Q=0, 封锁G4,使得Q4=1, 阻塞D=1进入触发器, 阻塞置1 同时保证Q3=0,维持置0
触发器的直接置0端和置1端
RD——直接置0端,低电平有效;
JK触发器→T(T ′)触发器
Qn+ 1 = TQn + TQn
令J = K = T

D触发器→JK触发器

数字电子技术课件第4章触发器

数字电子技术课件第4章触发器
②R=1、S=0时:由于S=0,不论原来Q为0还是1,都有Q=1; 再由R=1、Q=1可得Q=0。即不论触发器原来处于什么状态都 将变成1状态,这种情况称将触发器置1或置位。S端称为触发 器的置1端或置位端。
③R=1、S=1时:根据与非门的逻辑功能不难推知,触发器保 持原有状态不变,即原来的状态被触发器存储起来,这体现了 触发器具有记忆能力。
Qn1 S RQn
JQ n KQnQn JQ n KQn CP下降沿到来时有效
主从JK触发器没有约束。
4.4.2 主从JK触发器
特 性 表
J
K
Qn
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Q n+1 0 1 0 0 1 1 1 0
功能
Q n1 Q n
保持
Q n1 0
置0
Q n1 1
置1
Q n1 Q n 翻转
时 CP 序J 图
K
Q
4.4.2 主从JK触发器 逻辑符号
Q
Q
Q
Q
J CP K
J CP K 曾用符号
Q
Q
1J C1 1K
J CP K 国标符号
电路特点
①主从JK触发器采用主从 控制结构,从根本上解决 了输入信号直接控制的问 题,具有 CP=1期间接 收输入信号,CP下降沿 到来时触发翻转的特点。
随 CP 的到来而翻转,而 T 触发器能解决这个问题。
4.5.1 T触发器电路结构
T 触发器只有一个控制端, 只要将主从 JK 触发器的两个输入端 J 和 K 连接起来作为一个输入端 T,就构成了 T 触发器

数字电子技术基础教材第四章答案

数字电子技术基础教材第四章答案

习题44-1 分析图P4-1所示得各组合电路,写出输出函数表达式,列出真值表,说明电路得逻辑功能。

解:图(a):;;真值表如下表所示:其功能为一位比较器。

A>B时,;A=B时,;A<B时,图(b):真值表如下表所示:功能:一位半加器,为本位与,为进位。

图(c):真值表如下表所示:功能:一位全加器,为本位与,为本位向高位得进位。

图(d):;;功能:为一位比较器,A<B时,=1;A=B时,=1;A>B时,=14-2 分析图P4-2所示得组合电路,写出输出函数表达式,列出真值表,指出该电路完成得逻辑功能。

解:该电路得输出逻辑函数表达式为:因此该电路就是一个四选一数据选择器,其真值表如下表所示:,当M=1时,完成4为二进制码至格雷码得转换;当M=0时,完成4为格雷码至二进制得转换。

试分别写出,,,得逻辑函数得表达式,并列出真值表,说明该电路得工作原理。

解:该电路得输入为,输出为。

真值表如下:由此可得:完成二进制至格雷码得转换。

完成格雷码至二进制得转换。

4-4 图P4-4就是一个多功能逻辑运算电路,图中,,,为控制输入端。

试列表说明电路在,,,得各种取值组合下F与A,B得逻辑关系。

解:,功能如下表所示,两个变量有四个最小项,最多可构造种不同得组合,因此该电路就是一个能产生十六种函数得多功能逻辑运算器电路。

4-5 已知某组合电路得输出波形如图P4-5所示,试用最少得或非门实现之。

解:电路图如下:4-6 用逻辑门设计一个受光,声与触摸控制得电灯开关逻辑电路,分别用A,B,C表示光,声与触摸信号,用F表示电灯。

灯亮得条件就是:无论有无光,声信号,只要有人触摸开关,灯就亮;当无人触摸开关时,只有当无关,有声音时灯才亮。

试列出真值表,写出输出函数表达式,并画出最简逻辑电路图。

解:根据题意,列出真值表如下:由真值表可以作出卡诺图,如下图:C AB 00 10 11 100 1由卡诺图得到它得逻辑表达式为: 由此得到逻辑电路为:4-7 用逻辑门设计一个多输出逻辑电路,输入为8421BCD 码,输出为3个检测信号。

《数字电子技术》 第4章

《数字电子技术》 第4章
国家级精品资源共享课程《数字电子技术》
第4章 时序逻辑电路
江西现代职业技术学院 万皓
课件编辑制作:程豪 徐芳
第4章 学习目标及重点与难点
学习目标及重点与难点
学习目标
掌握时序逻辑电路的概念、特点、功能描述和分 析方法。 熟悉常用的寄存器、移位寄存器、计数器集成电 路。 掌握常用时序逻辑集成电路典型电路的应用和设 计方法。 了解同步时序逻辑电路的一般设计方法。
Y=F(X,Qn) W=G(X,Qn) Qn+1=H(W,Qn)
第4章 时序逻辑电路
时序逻辑电路概述
4.1.2 常用的集成时序逻辑电路
熟悉、利用常用的集成时序逻辑电路组成具有基本功能的时序逻 辑电路模块,再组合成较大规模和功能更复杂的时序逻辑数字系统, 是系统模块化设计的基本思路,也是培养能胜任大规模、复杂数字系 统设计、调试、安装工作的高端技能型专门人才的必由之路。
第4章 时序逻辑电路
时序逻辑电路概述
4.1 时序逻辑电路概述
4.1.1 时序逻辑电路的基本概念
时序逻辑电路具有记忆功能,电路在任一时刻的输出状态(次 态Qn+1)不仅取决于该时刻的输入,还取决于电路原来的工作状态 (现态Qn),即还与此前时刻电路的输入及输出状态有关。
时序逻辑电路通常由组合逻辑电路和存储电路组成,其组成框 图如图所示。
第4章 时序逻辑电路
时序逻辑电路概述
(4) 电路逻辑功能说明 由表所示电路的状态转换真值表,或图所示电路的状态转换图
或时序图,可以看出,图所示电路是一个具有自启动能力的同步六 进制计数器(六分频电路)。
第4章 时序逻辑电路
时序逻辑电路概述
[例4.1.2] 试分析图所示电路的逻辑功能。要求步骤齐全,要列出相 应函数式和状态转换真值表,画出状态转换图和时序图。

数字电子技术基础第四章重点最新版

触 CP 上升沿(或下降沿)时刻翻转。

这种触发方式称为边沿触发式。

EXIT
集成触发器
主从触发器和边沿触发器有何异同?
空翻可导致电路工作失控。
EXIT
集成触发器
4.3 无空翻触发器
主要要求:
了解无空翻触发器的类型,掌握其工作特点。 能根据触发器符号识别其逻辑功能和触发方式, 并进行波形分析。
EXIT
集成触发器
一、无空翻触发器的类型和工作特点

工作特点:CP = 1 期间,主触发器接收
从 输入信号;CP = 0 期间,主触发器保持 CP
EXIT
集成触发器
2. 工作原理及逻辑功能 Q 0 触发器被工置作0原1理Q
G1 11
1 SD
输入 RD SD 00 01 10 11
输出 QQ
01
G2
RD 0 功能说明
触发器置 0
EXIT
2. 工作原理及逻辑功能
集成触发器
Q 1 触发器被置 1 0 Q
G1
0 SD
输入 RD SD 00 01 10 11
触发器置 0 触发器置 1 触发器保持原状态不变
EXIT
2. 工作原理及逻辑功能
Q 1
G1
0 SD
输入 RD SD 00 01 10 11
输出
QQ 不定
01 10 不变
集成触发器
Q
输出既非 0 状态,
1 也非 1 状态。当 RD 和 SD 同时由 0 变 1 时, 输出状态可能为 0,也
G2 可能为 1,即输出状态 不定。因此,这种情况
EXIT
四、一些约定
集成触发器
1态: Qn=1,Qn=0 0态: Qn=0,Qn=1

(数字电子技术)第4章触发器


2
触发器逻辑功能的转换可以通过组合逻辑门电路 实现,也可以通过查找表的方式实现。
3
在转换过程中,需要考虑触发器的特性、输入和 输出信号的逻辑关系以及时序关系等因素。
触发器的参数设计
触发器的参数设计包括工作频 率、功耗、延迟时间等,需要 根据实际需求进行选择和优化。
工作频率决定了触发器的响 应速度,功耗决定了触发器 的能耗大小,延迟时间决定
锁存器
触发器可以组成锁存器,用于暂时存储数据。在控制信号 的作用下,锁存器可以将输入的数据存储在相应的触发器 中,并在需要时将数据输出。
寄存器阵列
触发器可以组成寄存器阵列,用于实现多位数据的存储和 操作。通过控制时钟信号和控制信号的逻辑关系,可以实 现多位数据的并行输入、输出和操作。
04
触发器的设计
实际应用中的问题与解决方案
延迟时间
触发器的输出信号在时钟边沿发生后会有一定的延迟时间,这是由于电路中元件的物理特 性和信号传播速度所限。为了减小延迟时间,可以采用更快的硬件材料和优化电路设计。
功耗问题
触发器在工作中会产生一定的功耗,特别是在大规模集成电路中,功耗问题更加突出。可 以通过优化电路设计和采用低功耗元件来降低功耗。
基本逻辑门电路的设计
01
逻辑门电路是构成触发器的基本单元,常见的有与门、或门、 非门等。
02
设计基本逻辑门电路时,需要考虑输入和输出的逻辑关系、门
的延迟时间以及门的功耗等参数。
逻辑门电路的设计需要遵循一定的设计规则和标准,以确保其
03
正确性和可靠性。
触发器逻辑功能的转换
1
触发器有多种逻辑功能,如RS、D、JK等,可以 根据实际需求选择合适的逻辑功能。
(数字电子技术)第4章 触发器

数字电子技术_第四章课后习题答案_(江晓安等编)

第四章组合逻辑电路1. 解: (a)(b)是相同的电路,均为同或电路。

2. 解:分析结果表明图(a)、(b)是相同的电路,均为同或电路。

同或电路的功能:输入相同输出为“1”;输入相异输出为“0”。

因此,输出为“0”(低电平)时,输入状态为AB=01或103. 由真值表可看出,该电路是一位二进制数的全加电路,A为被加数,B为加数,C为低位向本位的进位,F1为本位向高位的进位,F2为本位的和位。

4. 解:函数关系如下:ABSF+⊕=++ABSSSABB将具体的S值代入,求得F 312值,填入表中。

A A FB A B A B A A F B A B A A F A A F AB AB F B B A AB F AB B A B A B A AB F B A A AB F B A B A B A F B A AB AB B A B A F B B A B A B A B A B A B A F AB BA A A B A A B A F F B A B A F B A B A F A A F S S S S =⊕==+==+⊕===+⊕===⊕===⊕===+⊕===+=+⊕===⊕==+==⊕==Θ=+=+⊕===+++=+⊕===+=⊕===⊕==+=+⊕==+=+⊕===⊕==01111111011010110001011101010011000001110110)(01010100101001110010100011000001235. (1)用异或门实现,电路图如图(a)所示。

(2) 用与或门实现,电路图如图(b)所示。

6. 解因为一天24小时,所以需要5个变量。

P变量表示上午或下午,P=0为上午,P=1为下午;ABCD表示时间数值。

真值表如表所示。

利用卡诺图化简如图(a)所示。

化简后的函数表达式为D C A P D B A P C B A P A P DC A PD B A P C B A P A P F =+++=用与非门实现的逻辑图如图(b)所示。

数字电子技术基础第四章


&
G3
&
S=0,R=1:Qn+1=0
R
S=1,R=1:Qn+1=1(×),
CP
S
CP回到0后状态不定 输入端R、S通过与非门
作用于基精本品PPRT S触发器。
1R C1 1S R CP S
(三)同步RS触发器
2. 特征(tèzhēng)表
RS
00 01 10 11
Qn+1
Qn 1 0 1(×)
3. 特征方程
CP
电路连接的特点:第一个触发器的CP1端作为计数脉冲CP输入 端,Q1与第二个触发器的CP2端相连,依次有Qi与CPi+1相连,触发 器的输出Q4Q3Q2Q1代表四位二进制数。
精品PPT
4. 应用(yìngyòng)
二、主从(zhǔcóng)触发 器
每一个CP下降沿,都会使Q的状态变化,Q4Q3Q2Q1代表四位二进 制数,故称该电路为四位二进制计数器。
1. 逻辑(luójí)符号
输入信号:R、S(高有效) 时钟输入:CP 异步置0、置1:RD、SD
(不受CP限制,低有效) 输出信号:Q、Q
精品PPT
Q
Q
R 1R C1 1S S RD R CP S SD
2. 组成(zǔ chénɡ)及工作原理
组成:由两个同步RS触发器级联而成。
工作原理:
按照C同P步为高RS电触平发:器主的触功发能器翻输从转出触,A发、从B器 触发器时的钟状C态P不直变接,作Q用状于态主保触持。
精品PPT
3. 状态(zhuàngtài)转换图
特征表
D
Qn+1
0
0
1
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
0 0 1 1 1 0 0 1
1
1 1 1 1 1 0 1 0
0
1 1 0 1 0 1 1 0
0
0 1 0 1 0 1 0 0
1
1 1 0 1 1 0 0 1
1
1 1 0 1 1 1 1 1
13
14 15
1
1 1
1
1 1
0
1 1
1
0 1
1
0 0
0
0 0
0
0 0
1
1 0
0
1 0
1
1 0
1
1 0
真值表
Ye ( A2 A1' A0 )'
' ' ' Y f ( A3 A2 A0 A2 A1 A1 A0 )' ' ' Yg ( A3 A2 A1' A2 A1 A0 )'
《数字电子技术基础》第六版
7448的附加控制信号:(1)
• 灯测试输入 LT
'
当 LT ' 0时,Ya ~ Yg全部置为1
1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0
《数字电子技术基础》第六版
附加输出信号的状态及含意
YS'
' YEX
状态
不工作 工作,但无 输入 工作,且有 输入 不可能出现
1 0 1 0
1 1 0 0
《数字电子技术基础》第六版
三、二-十进制优先编码器
' ' I ~ I • 将 9 1
《数字电子技术基础》第六版
7448的附加控制信号:(2)
• 灭零输入 RBI '
A3 A2 A1 A0 0000 时, 当 RBI ' 0时,则灭灯
《数字电子技术基础》第六版
7448的附加控制信号:(3)
• 灭灯输入/灭零输出
BI ' RBO'
输入信号,称灭灯输入控制端: BI ' 0 无论输入状态是什么,数码管熄灭 输出信号,称灭零输出端: 只有当输入 A3 A2 A1 A0 0 ,且灭零输入信号 RBI ' 0 时,RBO' 才给出低电平 因此 RBO ' 0 表示译码器将本来应该显示的零熄灭了
编成0110 ~ 1110

' I9
' I0 的优先权最高,
最低
• 输入的低电平信号变成一个对应的十进制的编码
《数字电子技术基础》第六版
' YEX
《数字电子技术基础》第六版
4.4.2 译码器
• 译码:将每个输入的二进制代码译成对应的输出高、低 电平信号。 • 常用的有:二进制译码器,二-十进制译码器,显示译码 器等 输 入 输 出 一、二进制译码器 例:3线—8线译码器
用二极管与门阵 列组成的3线-8 线译码器
《数字电子技术基础》第六版
集成译码器实例:74HC138
附加 控制端
S S3 S2 S1
低电平 输出
Yi' ( S mi )'
《数字电子技术基础》第六版
74HC138的功能表:
输 入 输 出
S1
0 X 1 1 1 1 1 1 1 1
' ' A2 A1 A0 Y ' Y ' Y ' Y ' Y ' Y ' Y ' Y ' S2 S3 7 6 5 4 3 2 1 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
《数字电子技术基础》第六版
真值表 ' ' ' Y0 A2 A1 A0 m0
' ' Y1 A2 A1 A0 m1
逻辑表达式: 用电路进行实现
Y2 A A1 A m2
' 2 ' 0
... Y7 A2 A1 A0 m7
卡诺图
《数字电子技术基础》第六版
BCD-七段显示译码器7448的逻 辑图
《数字电子技术基础》第六版
' ' ' ' Ya ( A3 A2 A1' A0 A3 A1 A2 A0 ) ' Yb ( A3 A1 A2 A1 A0 A2 A1' A0 )' ' ' ' Yc ( A3 A2 A2 A1 A0 ) ' ' Yd ( A2 A1 A0 A2 A1' A0 A2 A1' A0 )'
4.4 若干常用组合逻辑电路 4.4.1 编码器 • 编码:将输入的每个高/低电平信号变成一 个对应的二进制代码 • 普通编码器 • 优先编码器
《数字电子技术基础》第六版
一、普通编码器
• 特点:任何时刻 只允许输入一个 编码信号。 • 例:3位二进制 普通编码器
I0 I1 I2

I3

I4 I5 I6 I7
《数字电子技术基础》第六版
《数字电子技术基础》第六版
《数字电子技术基础》第六版
A0
0
1 0 1
Ya
1
0 1 1
Yb
1
1 1 1
Yc
1
1 0 1
Ye
1
0 1 0
Yf
1
0 0 0
Yg
0
0 1 1
字形
0
0 1 1
4
5 6 7 8 9 10 11 12
0
0 0 0 1 1 1 1 1
1
1 1 1 0 0 0 0 1
0
0 1 1 0 0 1 1 0
0
1 0 1 0 1 0 1 0
0
1 0 1 1 1 0 0 0
《数字电子技术基础》第六版
《数字电子技术基础》(第六版)教学课件
清华大学 电子学教学组
联系地址:清华大学 自动化系 邮政编码:100084 电子信箱:wang_hong@
《数字电子技术基础》第六版
第四章 组合逻辑电路
《数字电子技术基础》第六版
4.1概述
一、组合逻辑电路的特点 1. 从功能上 2. 从电路结构上
为0时,电路工作 有编码输入
《数字电子技术基础》第六版
输 入
' I3 ' I4 ' I5 ' I6 ' ' I7 Y2
输 出
S
1 0 0 0 0 0 0 0 0 0
' I0
' I1
' I2
Y1'
1 1 0 0 1 1 0 0 1 1
Y0' YS
1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1
输入变量 输 出 R A G Z
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 0 0 1 0 1 1 1
《数字电子技术基础》第六版
设计举例:
3. 选用小规模SSI器件 4. 化简 Z R' A' G' RA RG AG
5. 画出逻辑图
《数字电子技术基础》第六版
' ' ' ' Y1' [( I 7 I 6 I 5 I 4 I3 I 2 I 4 I 5 ) S ]' ' ' ' ' ' Y0' [( I 7 I 6 I5 I3 I 4 I 6 I1 I 2 I 4 I 6 ) S ]'
选 通 信 号
《数字电子技术基础》第六版 附 为0时,电路工作 无编码输入
X 1 0 0 0 0 0 0 0 0
X X 0 0 0 0 1 1 1 1
X X 0 0 1 1 0 0 1 1
X X 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1 1 1
'
' YEX
X 1 X X X X X X X 0
X 1 X X X X X X 0 1
X 1 X X X X X 0 1 1
X 1 X X X X 0 1 1 1
X 1 X X X 0 1 1 1 1
X 1 X X 0 1 1 1 1 1
X 1 X 0 1 1 1 1 1 1
X 1 0 1 1 1 1 1 1 1

I0 X X X X X I1 X X X X X I2 X X X X X I3 I4 X X X X 1 X X X 1 0

I5 X X 1 0ቤተ መጻሕፍቲ ባይዱ0 I6 X 1 0 0 0 I7 1 0 0 0 0 1 1 1 1 0
输 出
Y2 Y1 1 1 0 0 1 Y0 1 0 1 0 1
X
X
X
1
1
任意时刻的输出仅 取决于该时刻的输入
不含记忆(存储) 元件
《数字电子技术基础》第六版
二、逻辑功能的描述
a1 a2
组合逻辑 电路
y1
y2
an
ym
组合逻辑电路的框图
y1 f1(a1a 2 a n ) y2 f 2(a1a 2 a n ) ym f m (a1a 2 a n)
Y F ( A)
《数字电子技术基础》第六版
相关文档
最新文档