物理电磁学知识点总结

合集下载

物理知识点总结电磁学和能量转化

物理知识点总结电磁学和能量转化

物理知识点总结电磁学和能量转化物理知识点总结 - 电磁学和能量转化在物理学中,电磁学和能量转化是两个重要的知识点。

电磁学研究电荷与电场、磁场之间的相互作用,而能量转化则涉及能量在不同形式之间的转换。

本文将对电磁学和能量转化的相关知识进行总结。

一、电磁学1. 电荷与电场电荷是物质基本属性之一,可以分为正电荷和负电荷。

正负电荷之间的相互作用形成了电场。

电场是由电荷产生的物理场,具有方向和大小。

2. 静电力和库仑定律静电力是由电荷之间的相互作用而产生的力。

根据库仑定律,静电力的大小与电荷之间的距离和电荷的量成正比,与电荷的正负性有关。

3. 电场强度和电势电场强度描述了电场对单位正电荷的作用力,单位为牛顿/库仑。

电势则是描述电场对电荷的作用能,单位为伏特。

电势与电场强度之间存在着关系,电场强度等于电势的负梯度。

4. 磁场和磁力磁场是由电流形成的物理现象。

电流通过导线时,会形成一个环绕导线的磁场。

磁场对带有电荷的物体会施加磁力,磁力的大小和方向由洛伦兹力定律决定。

5. 法拉第电磁感应定律法拉第电磁感应定律描述了磁场变化引起感应电动势的现象。

当磁场发生变化时,会在导体中产生感应电流。

感应电流的大小与磁场变化率成正比。

6. 法拉第电磁感应定律的应用:电磁感应现象和电磁感应发电机电磁感应现象在电磁感应发电机中得到了广泛应用。

电磁感应发电机通过旋转导线圈与磁场的相互作用,将机械能转化为电能。

二、能量转化1. 功和功率功是描述物体受力移动的量,可以通过力施加的距离和力的大小计算得到。

功率则是单位时间内做功的大小,单位为瓦特。

2. 动能和势能动能是物体由于运动而具有的能量,与物体的质量和速度的平方成正比。

势能则是物体由于位置而具有的能量,包括重力势能和弹性势能等。

3. 能量守恒定律能量守恒定律是物理学中的基本定律之一。

它指出,在一个封闭系统中,能量不会被创造或消失,只会从一种形式转化为另一种形式。

4. 能量的转化和传递能量在不同形式之间可以相互转化和传递。

高中物理电磁学知识点梳理

高中物理电磁学知识点梳理

高中物理电磁学知识点梳理高中物理的电磁学是电学和磁学的综合学科,主要研究电荷间的相互作用以及电磁场的产生和作用。

下面是电磁学的主要知识点梳理。

1.静电学静电学是电磁学的基础,主要研究静止的电荷及其之间的相互作用。

知识点包括:-电荷的性质:电量、电荷守恒定律、电荷的量子化-受力特性:库仑定律、电场强度、电场线、电势能、电场中静电能量的计算-电场的应用:电场与导体的静电平衡、电容器、电场中的运动粒子2.恒定磁场恒定磁场研究磁场中的电流及其受力情况。

知识点包括:-磁场的性质:磁场强度、磁感应强度、磁感线、磁场力-洛伦兹力:洛伦兹力定律、磁场对带电粒子的运动轨迹的影响-磁场的应用:电流的感应磁场、磁场中的运动粒子、电流在磁场中的感应力、直导线在磁场中的力、电动机、电磁铁等3.电磁感应电磁感应研究磁场对电流的产生和电流对磁场的影响。

知识点包括:-法拉第电磁感应定律:感生电动势的大小和方向、感生电动势的计算-楞次定律:电磁感应中的能量守恒、自感系数的计算-互感:互感系数、互感电动势的计算-变压器:构造、工作原理、换电压比4.交流电交流电研究电流的周期性变化和交变电场的特性。

知识点包括:-交变电流的特点:周期、频率、角频率、有效值-阻抗和电感:交流电路中的电阻、电感、电容、有功功率、无功功率和视在功率的计算-交流电路的分析:串、并联电路的电流、电压、功率的计算-高压输电:三相交流电输电线路的设计5.真空电子学与半导体器件真空电子学研究真空中的电子流动和真空管的原理。

知识点包括:-电子的发现和性质:阴极射线、电子的电量和质量-阴极射线管:电子的聚焦、加速和偏转、荧光屏和示波器等半导体器件研究半导体材料中的电流传导和电子器件的工作原理。

知识点包括:-半导体的性质:导电性、P-N结、半导体中的载流子、P-N结的正向和反向特性-二极管:P-N结的整流作用、二极管的工作原理、应用-晶体管:P-N-P和N-P-N型晶体管的工作原理、放大和开关应用以上是高中物理电磁学的主要知识点梳理,学好这些知识点,能够基本掌握电磁学的基本原理和应用。

2024高考物理电磁学知识点总结与题型分析

2024高考物理电磁学知识点总结与题型分析

2024高考物理电磁学知识点总结与题型分析一、电磁学知识点总结1. 静电场- 库仑定律:描述静电力的大小和方向关系。

F = k * |q1 * q2| / r^2- 电场强度:在电场中某点受到的电场力的大小和方向。

E =F / q2. 电场中的电势- 电势能:带电粒子在电场力作用下所具有的能量。

U = q * V- 电势:单位正电荷在电场中所具有的电势能。

V = U / q3. 磁场- 安培环路定理:描述磁场的大小和方向关系。

B = μ * I / (2πd)- 磁感应强度:在磁场中单位定向导线上某点受到的磁场力的大小和方向。

F = B * I * l4. 电磁感应- 法拉第电磁感应定律:描述变化磁场中的感应电动势大小和方向关系。

ε = -Δφ / Δt- 感应电动势:导体中由于磁场变化而产生的电动势。

ε = B * l * v * sinθ5. 交流电- 交流电的特点:频率恒定,电流方向和大小随时间变化。

- 有效值和最大值的关系:I(有效值) = I(最大值) / √2二、题型分析1. 选择题- 静电场题型:根据静电场力的基本公式进行计算。

- 电场与电势题型:根据电场强度和电势能公式进行计算。

- 磁场与电磁感应题型:根据安培环路定理和法拉第电磁感应定律进行计算。

2. 计算题- 计算电势能:给定电荷和电场强度,计算电势能。

- 计算电场强度:给定电荷和距离,计算电场强度。

- 计算磁场强度:给定电流和距离,计算磁场强度。

- 计算感应电动势:给定磁感应强度、导线长度、速度和角度,计算感应电动势。

3. 分析题- 静电场分析:分析电场强度、电势和电势能的变化规律。

- 磁场分析:分析磁场强度和磁感应强度的变化规律。

- 电磁感应分析:分析感应电动势的大小和方向变化规律。

三、总结与展望本文对2024高考物理电磁学的知识点进行了总结,并针对不同类型的题目进行了分析。

希望通过此文章的阅读与学习,能够对物理电磁学有更加深入的理解,并在高考中取得好成绩。

初中物理中的电磁学知识点整理

初中物理中的电磁学知识点整理

初中物理中的电磁学知识点整理电磁学是物理学的一个重要分支,它研究电荷和电流的相互作用,以及电磁场的产生和传播。

初中物理中的电磁学内容主要包括静电学和电磁感应两个方面。

本文将对初中物理中的电磁学知识点进行整理,帮助同学们更好地理解和掌握这些知识。

一、静电学1. 电荷和电场- 电荷的性质:电荷是物质的一种基本属性,分为正电荷和负电荷。

- 电荷守恒定律:孤立系统中的总电荷保持不变,电荷可以通过接触、摩擦、感应等方式转移。

- 电场的概念:电荷周围存在着电场,电场是一种物质的属性,用于描述电荷周围的作用力。

2. 静电场和电势- 静电场的特征:静电场是由静止不动的电荷产生的,具有方向和大小。

- 静电场的性质:静电场内电势能是电荷的函数,电场强度是电势的负梯度。

- 电势的概念:电场中单位正电荷所具有的势能。

3. 静电力和库仑定律- 静电力的概念:电荷之间由于静电场相互作用而产生的力。

- 库仑定律:两个点电荷之间的静电力与它们之间的距离成反比,与它们的电量乘积成正比。

二、电磁感应1. 电磁感应现象- 电磁感应的概念:导体中的电流产生磁场,当磁场发生变化时,会在导体中产生感应电动势。

- 楞次定律:电磁感应过程中,感应电动势的方向总是使得感应电流产生磁场的变化方向与原磁场变化的方向相反。

2. 法拉第电磁感应定律- 法拉第电磁感应定律:感应电动势的大小与磁通量的变化率成正比。

- 磁通量的概念:磁场垂直于导线的面积,是磁感线穿过该面积的数量。

3. 感应电动势与电磁感应定律的应用- 感应电动势的应用:电磁感应广泛应用于变压器、发电机等设备中。

- 变压器的工作原理:利用电磁感应将交流电转换为所需电压。

三、其他电磁学知识点1. 电磁铁和电磁漏斗- 电磁铁的原理:通过通电线圈产生磁场,使铁芯具有磁性,实现吸附物体的功能。

- 电磁漏斗的应用:利用磁场对铁矿石进行吸附,实现矿石的分离。

2. 电磁波的概念- 电磁波的特点:电场和磁场交变产生的波动现象。

高中物理电磁学知识点

高中物理电磁学知识点

高中物理电磁学知识点导言:物理学是自然科学的一个重要分支,涵盖了广泛的知识领域,其中电磁学是其中的一个重要部分。

在高中物理学习中,学生们领会和掌握电磁学的基本概念对于理解电磁学原理和应用非常重要。

本文将介绍高中物理电磁学知识点的大致范围,包括电磁场、电磁感应和电磁波等方面的基础知识。

一、电磁场1. 电荷和电场:电荷的电场以及电场的概念和特征。

2. 静电场和电势:静电场的产生和性质,电势的概念,电势差和电场强度之间的关系。

3. 磁场和磁感应:磁场的特征与表示方法,磁感应的概念和特征。

二、电磁感应和法拉第电磁感应定律1. 电磁感应现象:磁场中导体中的感应电动势。

2. 法拉第电磁感应定律:导体中感应电动势的大小和方向。

3. 感生电动势和自感现象:感生电动势的产生和特征,自感的概念和影响。

三、电磁感应的应用1. 电磁感应的实际应用:发电机、电动机等的基本原理与结构。

2. 互感现象和变压器:互感的概念、互感系数和变压器的基本原理。

3. 皮肤效应和涡流:电磁感应中的皮肤效应和涡流现象及其应用。

四、电磁波1. 电磁波的概念和特征:电磁波的传播特点和电磁谱的大致范围。

2. 光的电磁波理论:光的本质和电磁波的传播速度。

3. 光的反射和折射:光的反射定律、折射定律和光的全反射。

4. 光的色散和光的衍射:光的色散现象和衍射现象。

五、电磁学的实验技术1. 麦克斯韦环路定理的实验验证:使用简单电路和导体线圈验证麦克斯韦环路定理。

2. 安培环路定理的实验验证:使用安培计等仪器验证安培环路定理。

3. 恒定磁场的实验制备:使用恒定电流和线圈制备恒定磁场。

结论:高中物理电磁学的知识点主要包括电磁场、电磁感应和电磁波等方面的基础概念、定律和应用。

通过学习这些知识点,学生们能够深入理解电磁学的原理和应用,为进一步的学习和研究打下坚实的基础。

希望本文对高中物理学习中的电磁学知识点的整理和归纳有所帮助。

高中物理电磁学知识点

高中物理电磁学知识点

高中物理电磁学知识点一)电场1、库仑力:F=kq1q2/r^2(适用条件:真空中点电荷)其中k=9×10^9 N·m^2/C^2为静电力恒量。

电场力:F = Eq(F与电场强度的方向可以相同,也可以相反)2、电场强度:电场强度是表示电场强弱的物理量。

定义式:E=F/q,单位为N/C。

对于点电荷,电场场强E=kq/r^2;对于匀强电场,电场场强E=U/d。

3、电势,电势能:电势:Φ=E·d(顺着电场线方向,电势越来越低)电势能:E电=qΦ4、电势差U,又称电压:U=WAB/q,其中WAB为电场力做功。

5、电场力做功和电势差的关系:WAB=qUAB6、粒子通过加速电场:粒子受到电场力加速,速度增加。

7、粒子通过偏转电场的偏转量:粒子通过偏转电场的偏转角与电场强度、粒子电荷、粒子速度和偏转电场长度有关。

8、电的电容:c=Q/U,其中Q为电的带电量,U为电的电压。

对于平行板电,电容为c=εS/4πkd,其中ε为介电常数,S为平行板面积,d为平行板间距。

二)直流电路1、电流强度的定义:I=ΔQ/Δt,单位为A(安培)。

微观式:I=nev,其中n为单位体积电子个数,e为电子电荷量,v为电子漂移速度。

2、电阻定律:U=IR,其中U为电压,I为电流强度,R为电阻。

电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关,单位为Ω·m。

3、串联电路总电阻:R=R1+R2+R3,电压分配为U1=R1/(R1+R2)·U,U2=R2/(R1+R2)·U,功率分配为P1=R1/(R1+R2)·P,P2=R2/(R1+R2)·P。

4、并联电路总电阻:1/R=1/R1+1/R2+1/R3,两个电阻并联R=R1R2/(R1+R2),电流分配为I1=R2/(R1+R2)·I2,功率分配为P1=R2/(R1+R2)·P,P2=R1/(R1+R2)·P。

高中物理电磁学知识点总结

高中物理电磁学知识点总结一、电场1、库仑定律真空中两个静止点电荷之间的相互作用力,与它们电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在它们的连线上。

公式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为静电力常量,$k = 90×10^9 N·m^2/C^2$ 。

2、电场强度用来描述电场强弱和方向的物理量。

定义式为$E =\frac{F}{q}$,单位是$N/C$。

点电荷形成的电场强度公式为$E =k\frac{Q}{r^2}$。

3、电场线为了形象地描述电场而引入的假想曲线。

电场线从正电荷出发,终止于负电荷或无穷远;电场线的疏密表示电场强度的大小,电场线上某点的切线方向表示该点的电场强度方向。

4、电势能电荷在电场中具有的势能。

电场力做正功,电势能减小;电场力做负功,电势能增加。

5、电势描述电场能的性质的物理量。

某点的电势等于单位正电荷在该点具有的电势能。

定义式为$\varphi =\frac{E_p}{q}$,单位是伏特(V)。

6、等势面电场中电势相等的点构成的面。

等势面与电场线垂直。

7、匀强电场电场强度大小和方向都相同的电场。

其电场线是平行且等间距的直线。

二、电路1、电流电荷的定向移动形成电流。

定义式为$I =\frac{Q}{t}$,单位是安培(A)。

2、电阻导体对电流的阻碍作用。

定义式为$R =\frac{U}{I}$,单位是欧姆(Ω)。

电阻定律为$R =\rho\frac{l}{S}$,其中$\rho$是电阻率,$l$是导体长度,$S$是导体横截面积。

3、欧姆定律导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比。

公式为$I =\frac{U}{R}$。

4、电功电流做功的过程就是电能转化为其他形式能的过程。

公式为$W =UIt$ 。

5、电功率单位时间内电流所做的功。

公式为$P = UI$ 。

6、焦耳定律电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。

物理电磁学高二知识点

物理电磁学高二知识点电磁学是物理学的一个重要分支,主要研究电荷及电流所产生的电场和磁场以及它们之间的相互作用。

在高中物理的学习过程中,我们需要掌握一些基本的电磁学知识,下面将对这些知识点进行详细介绍。

一、电荷和电场1. 电荷的基本性质:电荷的基本单位是电子电荷,正电荷和负电荷相互吸引,同种电荷相互排斥。

2. 电场的概念:电荷周围存在电场,电场是空间中某一点受到电荷作用所受力的特性描述。

二、库仑定律和电场强度1. 库仑定律:两个点电荷间的电场力与电荷间的距离成反比。

2. 电场强度:单位正电荷在电场中所受到的力的大小称为电场强度。

a. 电场强度的计算公式:E = F / q,其中E表示电场强度,F 表示电场力,q表示电荷。

b. 电场强度的方向:由正电荷指向负电荷方向。

三、电势差和电势能1. 电势差:在电场中,如果电荷沿着电场线从位置A移到位置B,电势差等于电场力对电荷做的功除以电荷的大小。

2. 电势能:电荷在电场中具有的能量,电势能可以表示为电荷与电场之间相互作用的结果。

四、电容和电容量1. 电容的概念:导体上存储电荷的能力称为电容。

2. 电容器的组成:电容器由两个导体板和介质组成。

3. 电容量:电容器所能存储的电荷量称为电容量。

a. 电容量的计算公式:C = Q / V,其中C表示电容量,Q表示电荷量,V表示电压。

五、电流和电阻1. 电流的概念:单位时间内通过导体横截面的电荷量称为电流。

2. 电流的计算公式:I = ΔQ / Δt,其中I表示电流,ΔQ表示通过导体横截面的电荷量,Δt表示时间。

3. 电阻的概念:导体对电流流动的阻碍程度称为电阻。

4. 电阻和电导的关系:电阻和电导成反比。

六、欧姆定律1. 欧姆定律的表达式:U = IR,其中U表示电压,I表示电流,R表示电阻。

2. 欧姆定律的应用:可以通过欧姆定律计算电压、电流或电阻中的任意两个量。

七、磁场和磁感应强度1. 磁场的概念:磁场是由磁体所产生的力的特性描述,是空间中某一点受到磁力作用所受力的特性描述。

高中物理电磁学知识点整理

高中物理电磁学知识点整理电磁学是物理学的一个重要分支,研究电荷在空间中的运动和相互作用。

在高中物理课程中,电磁学是一个重点内容,学生需要掌握许多基本的电磁学知识点。

下面将对高中物理电磁学知识点进行整理和归纳。

一、电荷和电场1. 电荷的性质:正电荷和负电荷、它们之间的相互作用。

2. 元电荷:电荷的最小单位,一个质子和一个电子的电荷量。

3. 超导体:电荷自由运动的材料,内部电场强度为零。

4. 电场概念:在空间中某点的场强与电荷之间的相互作用力。

二、电场中的电荷运动1. 静电平衡:电场中的电荷受力平衡的状态。

2. 静电场中的电荷分布:在电场中,电荷会向场强方向移动。

3. 电场力与电场强度:电场力的大小与电荷的大小和电场强度有关。

4. 电场线:用以表示电场强度方向的曲线。

5. 等势面:垂直于电场线的曲面,上面点的电势相同。

三、电场与电势1. 电势差与电势能:电荷在电场中移动时所具有的能量。

2. 电势差与电场强度之间的关系:沿电场线方向,电势降低的速率等于场强。

3. 等电势面上电场强度的性质:等电势面上电场强度与电场力垂直。

4. 电势差的计算:电势差等于电场力沿路径做功的量。

四、电流和电阻1. 电流的概念:单位时间内电荷通过导体横截面的数量。

2. 电流的方向:正电荷流动的方向。

3. 电阻的影响:电阻导致电流受阻,产生热量。

4. 电流的大小与方向:电流大小与导体中电荷的数量成正比,方向由正极到负极。

五、电路中的基本元件1. 电动势:电源供电的原动力。

2. 内阻和外阻:电源内部电阻和外部电路电阻的区别。

3. 电阻、电容和电感的特性:不同元件导致电路特性的差异。

4. 阻抗的计算:交流电路中的阻抗由电阻、电容和电感共同组成。

综上所述,高中物理电磁学知识点包括电荷和电场、电场中的电荷运动、电场与电势、电流和电阻以及电路中的基本元件等内容,通过理解这些知识点,学生能够更好地掌握电磁学的基本理论,为今后的学习和研究打下坚实的基础。

大学物理知识点总结汇总

引言概述:大学物理作为一门重要的理工科学科,涵盖了广泛的知识领域。

在大学物理学习过程中,我们需要掌握各种物理定律、概念和实验技巧。

本文将对大学物理中的一些重要知识点进行总结汇总,旨在帮助读者系统地理解这些知识点,提高物理学习效果。

正文内容:一、电磁学知识点1.库伦定律:阐述了两个电荷之间的静电力与它们之间的距离和电量大小的关系。

2.电场与电势:解释了电荷周围空间存在电场的概念,电势则是描述电场能量状态的重要物理量。

3.电流和电阻:分析了电流的定义和流动规律,以及电阻对电流流动的影响。

4.电磁感应:研究了磁场对导体中的电荷运动产生的电动势,并解释了发电机和变压器的工作原理。

5.电磁波:介绍了电磁波的产生和传播规律,以及电磁波的波长、频率和速度之间的关系。

二、光学知识点1.光的直线传播:讲解了光的传播方式和光的速度。

2.光的干涉和衍射:阐述了光的干涉和衍射现象的原理,并解释了双缝干涉、单缝衍射和菲涅尔衍射等常见现象。

3.几何光学:介绍了光的折射、反射和成像的规律,以及利用透镜和镜片进行光学成像的方法。

4.光的偏振:解释了光的偏振现象和偏振光的特性。

5.光的散射和吸收:探讨了光在物质中的散射和吸收过程,以及光的能量衰减规律。

三、热学知识点1.热力学基本概念:介绍了温度、热量和热平衡的概念。

2.理想气体定律:讨论了理想气体状态方程和气体的压强、体积和温度之间的关系。

3.热传导:解释了热的传导方式、热传导定律和热导率的概念。

4.热力学循环:分析了热力学循环中的能量转化和效率计算,以及常见的卡诺循环和斯特林循环。

5.热力学第一和第二定律:阐述了热力学第一定律(能量守恒定律)和第二定律(熵增原理)的概念和应用。

四、相对论知识点1.狭义相对论:介绍了狭义相对论的基本原理,包括光速不变原理和等效质量增加原理。

2.斜坐标系和洛伦兹变换:解释了相对论中的平时距离、时间间隔和洛伦兹变换的概念。

3.相对论动能和动量:分析了相对论速度和质量增加对动能和动量的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理电磁学知识点总结----WORD文档,下载后可编辑修改----下面是小编收集整理的范本,欢迎您借鉴参考阅读和下载,侵删。

您的努力学习是为了更美好的未来!物理电磁学知识点一、磁现象最早的指南针叫司南。

磁性:磁体能够吸收钢铁一类的物质。

磁极:磁体上磁性最强的部分叫磁极。

磁体两端的磁性最强,中间最弱。

水平面自由转动的磁体,静止时指南的磁极叫南极(S极),指北的磁极叫北极(N 极)。

磁极间的作用规律:同名磁极相互排斥,异名磁极相互吸引。

一个永磁体分成多部分后,每一部分仍存在两个磁极。

磁化:使原来没有磁性的物体获得磁性的过程。

钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。

钢被磁化后,磁性能长期保持,称为硬磁性材料。

所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。

磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。

物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。

②根据磁体的指向性判断。

③根据磁体相互作用规律判断。

④根据磁极的磁性最强判断。

磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。

二、磁场磁场:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。

磁场看不见、摸不着我们可以根据它对其他物体的作用来认识它。

这里使用的是转换法。

(认识电流也运用了这种方法。

)磁场对放入其中的磁体产生力的作用。

磁极间的相互作用是通过磁场而发生的。

磁场的方向规定:在磁场中的某一点,小磁针静止时北极所指的方向,就是该点磁场的方向。

磁感线:在磁场中画一些有方向的曲线。

任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。

磁感线的方向:在用磁感线描述磁场时,磁感线都是从磁体的N极出发,回到磁体的S极。

说明:①磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。

但磁场客观存在.②磁感线是封闭的曲线。

③磁感线的疏密程度表示磁场的强弱。

④磁感线立体的分布在磁体周围,而不是平面的。

⑤磁感线不相交。

地磁场:在地球周围的空间里存在的磁场,磁针指南北是因为受到地磁场的作用。

地磁极:地磁场的北极在地理的南极附近,地磁场的南极在地理的北极附近。

磁偏角:地理的两极和地磁的两极并不不重合,这个现象最先由我国宋代的沈括发现。

三、电生磁电流的磁效应通电导线的周围存在磁场,磁场的方向跟电流的方向有关,这种现象称为电流的磁效应。

该现象在1820年被丹麦的物理学家奥斯特发现。

奥斯特是世界上第一个发现电与磁之间有联系的人。

通电螺线管的磁场通电螺线管的磁场和条形磁铁的磁场一样。

其两端的极性跟电流方向有关,电流方向与磁极间的关系可由安培定则来判断。

安培定则:用右手握螺线管,让四指指向螺线管中电流的方向,则大拇指所指的那端就是螺线管的N极。

四、电磁铁电磁铁在螺线管内插入软铁芯,当有电流通过时有磁性,没有电流时就失去磁性。

这种磁体叫做电磁铁。

工作原理:电流的磁效应。

影响电磁铁磁性强弱的因素:电流越大,电磁铁的磁性越强;线圈匝数越多,电磁铁的磁性越强;插入铁芯,电磁铁的磁性会更强。

特点:其磁性的有无可由通断电流来控制;其磁极方向可以通过改变电流方向来改变;其磁性强弱与电流大小、线圈匝数、有无铁芯有关。

电磁铁的应用:电磁起重机、电磁继电器。

五、电磁继电器、扬声器电磁继电器是利用低电压、弱电流电路的通断,来间接地控制高电压、强电流电路的装置。

电磁继电器:实质是由电磁铁控制的开关。

应用:用低电压弱电流控制高电压强电流,进行远距离操作和自动控制。

扬声器是把电信号转换成声信号的一种装置。

它主要由永久磁体、线圈和锥形纸盆组成。

六、电动机磁场对通电导线的作用通电导线在磁场中要受到力的作用,力的方向跟电流的方向、磁感线的方向都有关系。

当电流的方向或者磁感线的方向变得相反时,通电导线受力的方向也变得相反。

电动机主要由转子和定子组成。

电动机是利用通电线圈在磁场里受力而转动的原理制成的。

电动机在工作时,线圈转到平衡位置的瞬间,线圈中的电流断开,但由于线圈的惯性,线圈还可以继续转动,转过此位置后,线圈中的电流方向靠换向器的作用而发生改变。

电动机工作时,把电能转化为机械能。

电动机构造简单控制方便、体积小、效率高、功率可大可小。

七、磁生电电磁感应由于导体在磁场中运动而产生电流的现象,叫做电磁感应现象,产生的电流叫做感应电流。

英国物理学家法拉第于1831年发现了利用磁场产生电流的条件和规律。

产生感应电流的条件:闭合电路的部分导体在磁场中做切割磁感线的运动。

导体中感应电流的方向:跟导体运动的方向和磁感线的方向有关。

发电机主要由转子和定子组成。

发电机的工作原理:电磁感应现象。

发电机在发电的过程中,把机械能转化为电能。

方向不断变化的电流叫交变电流,简称交流(AC)。

我国电网以交流供电,频率是50Hz,周期0.02s,电流方向1s改变100次。

电磁学物理发展电磁波的发现由于历史上的原因(最早,磁曾被认为是与电独立无关的现象),同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,而磁学在实际上也就作为一门和电学相平行的学科来研究。

麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。

一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。

关于相对论和量子理论对电磁学发展的影响,见相对论电动力学、量子电动力学。

麦克斯韦《电磁论》发表后,由于理论难懂,无实验验证,在相当长的一段时间里并未受到重视和普遍承认。

1879年,柏林科学院设立了有奖征文,要求证明以下三个假设:①如果位移电流存在,必定会产生磁效应;②变化的磁力必定会使绝缘体介质产生位移电流;③在空气或真空中,上述两个假设同样成立。

这次征文成为赫兹进行电磁波实验的先导。

1885年,赫兹利用一个具有初级和次级两个绕组的振荡线圈进行实验,偶然发现:当初级线圈中输入一个脉冲电流时,次级绕组两端的狭缝中间便产生电火花,,赫兹立刻想到,这可能是一种电磁共振现象。

既然初级线圈的振荡电流能够激起次级线圈的电火花,那么它就能在邻近介质中产生振荡的位移电流,这个位移电流又会反过来影响次级绕组的电火花发生的强弱变化。

1886年,赫兹设计了一种直线型开放振荡器留有间隙的环状导线C作为感应器,放在直线振荡器AB附近,当将脉冲电流输入AB并在间隙产生火花时,在C的间隙也产生火花。

实际这就是电磁波的产生、传播和接收。

证明电磁波和光波的一致性:1888年3月赫兹对电磁波的速度进行了测定,并在论文《论空气中的电磁波和它们的反射》介绍了测定方法:赫兹利用电磁波形成的驻波测定相邻两个波节间的距离(半波长),再结合振动器的频率计算出电磁波的速度。

他在一个大屋子的一面墙上钉了一块铅皮,用来反射电磁波以形成驻波。

在相距13米的地方用一个支流振动器作为波源。

用一个感应线圈作为检验器,沿驻波方向前后移动,在波节处检验器不产生火花,在波腹处产生的火花最强。

用这个方法测出两波节之间的长度,从而确定电磁波的速度等于光速。

1887年又设计了“感应平衡器”:即将1886年的装置一侧放置了一块金属板D,然后将C调远使间隙不出现火花,再将金属板D向AB和C方向移动,C的间隙又出现电火花。

这是因为D中感应出来的振荡电流产生一个附加电磁场作用于C,当D靠近时,C的平衡遭到破坏。

这一实验说明:振荡器AB使附近的介质交替极化而形成变化的位移电流,这种位移电流又影响“感应平衡器C”的平衡状态。

使C出现电火花。

当D靠近C时,平衡状态再次被破坏,C再次出现火花。

从而证明了“位移电流”的存在。

赫兹又用金属面使电磁波做45°角的反射;用金属凹面镜使电磁波聚焦;用金属栅使电磁波发生偏振;以及用非金属材料制成的大棱镜使电磁波发生折射等。

从而证明麦克斯韦光的电磁理论的正确性。

至此麦克斯韦电磁场理论才被人们承认。

麦克斯韦因此被人们公认是“自牛顿以后世界上最伟大的数学物理学家”。

至此由法拉第开创,麦克斯韦建立,赫兹验证的电磁场理论向全世界宣告了它的胜利。

电磁学创始任务麦克斯韦是19世纪伟大的英国物理学家,经典电动力学的创始人,统计物理学的奠基人之一。

麦克斯韦1831年6月13日出生于爱丁堡。

16岁时进入爱丁堡大学,三年后转入剑桥大学学习数学,1854年毕业并留校任教,两年后到苏格兰的马里沙耳学院任自然哲学教授,1860年到伦敦国王学院任教,1871年受聘筹建剑桥大学卡文迪什实验室,并任第一任主任。

1879年11月5日在剑桥逝世。

麦克斯韦集成并发展了法拉第关于电磁相互作用的思想,并于1865年发表了著名的《电磁场动力学理论》的论文,将所有电磁现象概括为一组偏微分方程组,预言了电磁波的存在,并确认光也是一种电磁波,从而创立了经典电动力学。

麦克斯韦还在气体运动理论、光学、热力学、弹性理论等方面有重要贡献。

电磁学或称电动力学或经典电动力学。

之所以称为经典,是因为它不包括现代的量子电动力学的内容。

电动力学这样一个术语使用并不是非常严格,有时它也用来指电磁学中去除了静电学、静磁学后剩下的部分,是指电磁学与力学结合的部分。

这个部分处理电磁场对带电粒子的力学影响。

猜你感兴趣的:1.物理电磁学知识点2.高三物理电磁学知识点复习3.电磁学知识总结电磁学重要知识点4.电磁学基础知识电磁学的现象5.高中物理电磁学公式总整理。

相关文档
最新文档