33512_《空间几何体的结构及其三视图和直观图》同步练习2(人教A版必修2)
高中数学11212空间几何体的三视图和直观图同步练习新必修2

(新课标人教版A)数学必修二:1-1-2-1~2空间几何体的三视图和直观图同步练习双基达标限时20分钟1.一条直线在平面上的正投影是( ).A.直线 B.点 C.线段 D.直线或点解析当直线与平面垂直时,其正投影为点,其他位置关系时的正投影均为直线.答案 D2.如图所示图形中,是四棱锥的三视图的是( ).解析A中俯视图为圆不正确;C中正侧视图不是三角形,也不正确;而D中俯视图为三角形,显然不是四棱锥.答案 B3.针对柱、锥、台、球,给出下列命题①如果一个几何体的三视图是完全相同的,则这个几何体是正方体;②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体;③如果一个几何体的三视图都是矩形,则这个几何体是长方体;④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台其中正确的是( ).A.①② B.③ C.③④ D.①③解析①不正确,因为球也是三视图完全相同的几何体;②不正确,因为一个横放在水平位置的圆柱,其正视图和俯视图都是矩形;③正确;④不正确,因为有些四棱台的正视图和侧视图也都是等腰梯形.答案 B4.一个图形的投影是一条线段,这个图形不可能是下列图形中的________(填序号).①线段;②直线;③圆;④梯形;⑤长方体.解析②的投影是直线或点,对于③④,当图形所在面与投影面垂直时,其投影为线段,而⑤的投影显然不可能是平面图形.答案②⑤5.如图所示为一个简单组合体的三视图,它的上部是一个________,下部是一个________.解析这是一个组合体,上部为圆锥.下部为圆柱.答案圆锥圆柱6.画出如图所示的空间图形的三视图(阴影部分为正面).解该几何体是在一正方体上面放一个圆台,其三视图如图所示.综合提高限时25分钟7.下列几何体各自的三视图中,有且仅有两个视图相同的是( ).A.①② B.①③ C.①④ D.②④解析①的三个三视图都是正方形;②的正视图与侧视图都是等腰三角形,俯视图是圆及圆心;③的三个视图都不相同;④的正视图与侧视图相同,都是等腰三角形,俯视图为正方形.答案 D8.(2012·泰安高一检测)若某几何体的三视图如图所示,则这个几何体可以是( ).解析 A 中正视图、俯视图不对,故A 错.B 中正视图、侧视图不对,故B 错.C 中侧视图、俯视图不对,故C 错,故选D. 答案 D9.在棱长为1的正方体ABCD-A 1B 1C 1D 1中,对角线AC 1在六个面上的投影长度总和是________. 解析 正方体的体对角线在各个面上的投影是正方体各个面上的对角线,因而其长度都是2,所以其和为6 2. 答案 6 210.设某几何体的三视图如下(尺寸的长度单位为m).则该几何体的高为________m ,底面面积为________m 2.解析 由三视图可知,该几何体为三棱锥(如图),AC =4,BD =3,高为2.S △ABC =12AC ·BD =12×4×3=6.答案 2 611.说出下列三视图表示的几何体,并画出该几何体.解该三视图表示的几何体是截去一角的正方体.如图所示.12.(创新拓展)如图所示,图(2)是图(1)中实物的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出它的侧视图.解图(1)是由两个长方体组合而成的,正视图正确,俯视图错误.俯视图应该画出不可见轮廓(用虚线表示),侧视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如下图所示.。
高一数学人教A版必修2同步课时作业1.2 空间几何体的三视图和直观图(有答案)

高一数学人教A 版必修2同步课时作业1.2 空间几何体的三视图和直观图一、选择题1.如图正方形OABC 的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A.8 cmB.6 cmC.()21+3cmD.()212cm +2.如图,矩形O A B C ''''是水平放置的一个平面图形的直观图,其中6cm,2cm O A O C ='=''',则原图形是( )A.正方形B.矩形C.菱形D.一般的平行四边形3.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是( )43 B. 1π2 3 3 4.将正方体(如图(1)所示)截去两个三棱锥,得到图(2)所示的几何体,则该几何体的左视图为( )A. B. C. D.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )A. B. C. D.6.某三棱锥的三视图如图所示,已知它的体积为43,则图中x 的值为( )A . 2 2 C. 1D .127.如图,ABC △的斜二测直观图为等腰''Rt A B C △,其中''2A B ,则原ABC △的面积为( )A .2B .4C .2D .28.下图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H二、填空题9.某四棱锥的三视图如图所示,则该四棱锥的侧面积是__________.10.半径为R的球O放置在水平平面α上,点P位于球O的正上方,且到球O表面的最小距离为R,则从点P发出的光线在平面α上形成的球O的中心投影的面积等于__________.11.已知某几何体的三视图如图所示,则该几何体的表面积为_________体积为_________.三、解答题12.某几何体的三视图如图所示:1.求该几何体的表面积;2.求该几何体的体积.参考答案1.答案:A解析:由直观图得,原图形是如图所示的平行四边形O ′A ′B ′C ′,其中A ′O ′⊥O ′B ′,可得O ′A ′=1,222O B OB ''==,故()222213A B ''=+=,∴原图形的周长为:()2318⨯+=.2.答案:C解析:本题考查斜二测画法的逆用根据斜二测的画法可得45D O A D O C ''''''∠=∠=,还原出的图如下,其中2,4,6CD C D BD B D OA O A ====='''''=' (平行于x '轴的长度不变).242OD O D '='= (平行于y '轴的长度扩为2倍).由于CB OA ,且6CB OA ==, 所以OABC 为平行四边形,又224+32=6OC CD OD =+=,所以OABC 为菱形.故答案为C.3.答案:D解析:由三视图,可知给定的几何体是一个圆锥的一半,故所求的体积为2113π1323⨯⨯⨯=. 4.答案:B解析:由几何体知左视图为正方形且对角线1AD 为可视线, 1CB 为不可视线,在左视图中应画为虚线,故选B.5.答案:D解析:,A B 的正视图不符合要求, C 的俯视图不符合要求6.答案:C解析:根据几何体的三视图转换为几何体为:该几何体为底面为直角三角形高为2x 的三棱锥体.如图所示:所以114222323V x x x =⨯⋅⋅⋅=, 解得:1x =.故选:C.7.答案:D解析:∵'''O A B Rt △是一平面图形的直观图,直角边长为''2A B =,222⨯=,因为平面图形与直观图的面积的比为∴原平面图形的面积是2⨯=.8.答案:A解析:由三视图知,该几何体是由两个长方体组合而成的,其直观图如图所示,由图知该端点在侧视图中对应的点为E ,故选A.9.答案:4+解析:由四棱锥的三视图得到该四棱锥是P ABCD -,其中,底面ABCD 是边长为2的正方形,PC ABCD ⊥平面,如图,PB PD ==,∴四菱锥的侧面积是:+PBC PDC PAB PCD S S S S S ∆∆∆∆=++11112222222222=⨯⨯+⨯⨯+⨯⨯⨯⨯4=+10.答案:23R π解析:轴截面如图所示,分析题意可知3MN NT TP R ===,所以中心投影的面积为23R π.11.答案:5π2+;3π2解析:由三视图还原该几何体的直观图如图所示.可看作是由一个底面半径为1,高为1的圆柱和一个底面半径为1,高为1的半圆柱组合而成的,故该几何体的表面积为212π12π112π11215π22⨯+⨯⨯+⨯⨯⨯+⨯=+,体积为2213π11π11π22⨯⨯+⨯⨯⨯=12.答案:1.由三视图知,此几何体由上下两部分组成,其中上边是一个半径为1的半球,下边是一个棱长为2的正方体。
人教版高中数学必修二同步练习,空间几何体的直观图

人教版高中数学同步练习1.2.3 空间几何体的直观图一、基础过关 1.下列结论:①角的水平放置的直观图一定是角; ②相等的角在直观图中仍然相等; ③相等的线段在直观图中仍然相等;④两条平行线段在直观图中对应的两条线段仍然平行. 其中正确的有( )A .①②B .①④C .③④D .①③④ 2.在用斜二测画法画水平放置的△ABC 时,若∠A 的两边分别平行于x 轴、y 轴,则在直观图中∠A ′等于( ) A .45°B .135°C .90°D .45°或135°3.下面每个选项的2个边长为1的正△ABC 的直观图不是全等三角形的一组是( )4.如图甲所示为一个平面图形的直观图,则此平面图形可能是图乙中的( )5.利用斜二测画法得到: ①三角形的直观图是三角形; ②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形; ④菱形的直观图是菱形.以上结论中,正确的是______________.(填序号)6.水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度为____________.7.如图是一梯形OABC的直观图,其直观图面积为S.求梯形OABC的面积.8.如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.二、能力提升9.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图的周长是()A.8 cm B.6 cmC.2(1+3) cm D.2(1+2) cm10.如图所示的是水平放置的△ABC在直角坐标系的直观图,其中D′是A′C′的中点,且∠A′C′B′≠30°,则原图形中与线段BD的长相等的线段有________条.11.如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.12.如图所示,梯形ABCD中,AB∥CD,AB=4 cm,CD=2 cm,∠DAB=30°,AD=3 cm,试画出它的直观图.三、探究与拓展13.在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.答案1.B 2.D 3.C 4.C 5.①② 6.2.57.解 设O ′C ′=h ,则原梯形是一个直角梯形且高为2h .过C ′作C ′D ′⊥O ′A ′于D ′,则C ′D ′=22h . 由题意知12C ′D ′(C ′B ′+O ′A ′)=S .即24h (C ′B ′+O ′A ′)=S . 又原直角梯形面积为S ′=12·2h (C ′B ′+O ′A ′)=h (C ′B ′+O ′A ′)=4S2=22S .所以梯形OABC 的面积为22S .8.解 (1)作出长方体的直观图ABCD -A 1B 1C 1D 1,如图a 所示;(2)再以上底面A 1B 1C 1D 1的对角线交点为原点建立x ′,y ′,z ′轴,如图b 所示,在z ′上取点V ′,使得V ′O ′的长度为棱锥的高,连接V ′A 1,V ′B 1,V ′C 1,V ′D 1,得到四棱锥的直观图,如图b ;(3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c.9.A 10.2 11.2212.解 画法:步骤:(1)如图a 所示,在梯形ABCD 中, 以边AB 所在的直线为x 轴,点A 为原点, 建立平面直角坐标系xOy .如图b 所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°. (2)在图a 中,过D 点作DE ⊥x 轴,垂足为E .在图b 中, 在x ′轴上取A ′B ′=AB =4 cm ,A ′E ′=AE =323≈2.598 cm ;过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED =12×32=0.75 cm ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连接A ′D ′、B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图c 所示,则四边形A ′B ′C ′D ′就是所求作的直观图.13.解 四边形ABCD 的真实图形如图所示,∵A ′C ′在水平位置,A ′B ′C ′D ′为正方形,∴∠D ′A ′C ′=∠A ′C ′B ′ =45°,∴在原四边形ABCD 中, DA ⊥AC ,AC ⊥BC , ∵DA =2D ′A ′=2, AC =A ′C ′=2, ∴S 四边形ABCD =AC ·AD =2 2.。
高中数学1.2.1-1.2.2空间几何体的三视图和直观图练习新人教A版必修2

【成才之路】2015-2016学年高中数学 1.2.1-1.2.2空间几何体的三视图和直观图练习新人教A版必修2基础巩固一、选择题1.下列投影是平行投影的是( )A.俯视图B.路灯底下一个变长的身影C.将书法家的真迹用电灯光投影到墙壁上D.以一只白炽灯为光源的皮影[答案] A[解析] 三视图是由平行投影形成的,而B、C、D中由电灯发出的光得到的投影是中心投影.2.对几何体的三视图,下列说法正确的是( )A.正视图反映物体的长和宽B.俯视图反映物体的长和高C.侧视图反映物体的高和宽D.正视图反映物体的高和宽[答案] C3.(2014·福建高考数学试题)某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱[答案] A4.小周过生日,公司为她预订的生日蛋糕(示意图)如下图所示,则它的正视图应该是( )[答案] B[解析] A为俯视图,注意到封闭的线段情形,正视图应该是B.5.(2013·四川)一个几何体的三视图如图所示,则该几何体可以是( )A.棱柱B.棱台C.圆柱D.圆台[答案] D[分析]利用三视图逐个排除错误选项即可.[解析] 由俯视图可排除A,B,由正视图可排除C,故选D.6.若一个几何体的三视图如下图所示,则这个几何体是( )A.三棱锥B.四棱锥C.三棱柱D.四棱柱[答案] B[解析] 由俯视图可知底面为四边形,由正视图和侧视图知侧面为三角形,故几何体为四棱锥.二、填空题7.(2010·新课标全国)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.[答案] ①②③⑤[解析] 三棱锥、四棱锥和圆锥的正视图都是三角形,当三棱柱的一个侧面平行于水平面,底面对着观测者时其正视图是三角形,四棱柱、圆柱无论怎样放置,其正视图都不可能是三角形.8.下图中三视图表示的几何体是________.[答案] 四棱柱三、解答题9.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.[解析] 所给四棱锥的三视图如下图.[点评](1)画三视图时,务必做到正视图与侧视图的高度一致(即所谓的高平齐)、正视图与俯视图的长度一致(即所谓的“长对正”)、侧视图与俯视图的宽度一致(即所谓的“宽相等”).(2)习惯上将侧视图放在正视图的右侧,将俯视图放在正视图的下方.[拓展提高](1)三视图中各种数据的对应关系:①正视图中AB的长对应原四棱锥底面多边形的左右方向的长度,AC、BC的长则不对应侧棱的长,它们对应四棱锥的顶点到底面左、右两边的距离.②侧视图中,EF的长度对应原四棱锥底面的前后长度,GE、GF的长度则是四棱锥顶点与底面前后两边的距离.③俯视图中HIJK的大小与四棱锥底面的大小形状完全一致,而OK,OI,OJ,OH的大小,则为四棱锥的顶点在底面上的投影到底面各顶点的距离.(2)误区警示:正视图、侧视图中三角形的腰长有的学生会误认为是棱锥的侧棱长,实则不然.弄清一些数据的对应关系,是后面进行相关计算的前提.10.依所给实物图的形状,画出所给组合体的三视图.[解析] 图中所给几何体是一个圆柱和一个正六棱柱的组合体,在中心以中心轴为轴线挖去一个小圆柱,故其三视图如下:能力提升一、选择题1.(2015·安徽淮南高三模拟)下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①②B.①③C.①④D.②④[答案] D[解析] ①正方体,三视图均相同;②圆锥,正视图和侧视图相同;③三棱台,三视图各不相同;④圆台,正视图和侧视图相同.[点评]熟悉常见几何体的三视图特征,对于画几何体的直观图是基本的要求.下图是最基本的常见几何体的三视图.某几何体的正视图和侧视图均如左图所示,则该几何体的俯视图不可能是( )[答案] C[分析]本题是组合体的三视图问题,由几何体的正视图和侧视图均如左图所示知,几何体下面为圆柱或直四棱柱,上面是圆柱或直四棱柱或底面是直角三角形的直三棱柱.[解析] A,B,D都可能是该几何体的俯视图,C不可能是该几何体的俯视图,因为它的正视图上面应为如右图所示的矩形.3.(2013·新课标全国Ⅱ改编)如图所示,画出四面体AB1CD1三视图中的正视图,以面AA1D1D为投影面,则得到的正视图可以为( )[答案] A[分析]依次确定四面体AB1CD1的每一条棱在面AA1D1D上的投影即可.[解析] 显然AB1,AC,B1D1,CD1分别投影得到正视图的外轮廓,B1C为可见实线,AD1为不可见虚线.故A正确.4.若某几何体的三视图如图所示,那么这个几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台[答案] B[解析] 根据三视图的特征可以断定是四棱锥,由正视图和侧视图可知,该四棱锥底面中,必定有一组对边平行,另一组对边不平行.二、填空题5.下列图形:①三角形;②直线;③平行四边形;④四面体;⑤球.其中投影不可能是线段的是________.[答案] ②④⑤[解析] 三角形的投影是线段或三角形;直线的投影是点或直线;平行四边形的投影是线段或平行四边形;四面体的投影是三角形或四边形;球的投影是圆.6.(2015·烟台高一检测)已知某一几何体的正视图与侧视图如图所示,则下列图形中,可以是该几何体的俯视图的图形有________.[答案] ①②③④三、解答题7.说出下列三视图表示的几何体:[解析]8.根据下列图中所给出的一个物体的三视图,试画出它的形状.[答案] 所对应的空间几何体的图形为:。
高中数学1.2.1空间几何体的三视图练习新人教版A版必修2【含答案】

空间几何体的三视图1.直线的平行投影可能是( )A .点B .线段C .射线D .曲线2.如图所示,空心圆柱体的正视图是( )3.如图,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④4.三棱柱111C B A ABC ,如图所示,以11B BCC 的前面为正前方画出的三视图正确的是()5.如图所示是一个几何体,则其几何体俯视图是( )6.下列物体的正视图和俯视图中有错误的一项是( )7.下列各图,是正六棱柱的三视图,其中画法正确的是( )8.根据图中的三视图想象物体原形,并分别画出物体的实物图。
10.如图,E 、F 分别是正方体1AC 的面11A ADD 和面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的正投影(投射线垂直于投影面的投影)可能是图中 (把所有可能图形的序号都填上)。
空间几何体的直观图1.利用斜二测画法叙述正确的是( )A .正三角形的直观图是正三角形B .平行四边形的直观图是平行四边形C .矩形的直观图是矩形D .圆的直观图一定是圆2.下列结论正确的是( )A .相等的线段在直观图中仍然相等B .若两条线段平行,则在直观图中对应的两条线段仍然平行C .两个全等三角形的直观图一定也全等D .两个图形的直观图是全等的三角形,则这两个图形是全等三角形3.直角坐标系中一个平面图形上的一条线段AB 的实际长度为4cm ,若AB//x 轴,则画出直观图后对应的线段=''B A ,若y AB //轴,则画出直观图后对应的线段B A ''= 。
4.水平放置的ABC ∆的斜二测直观图如图所示,已知2,3=''=''C B C A ,则AB 边上的中线的实际长度为 。
四、典例剖析1.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( )A .16B .64C .16或64D .都不对分析:根据直观图的画法,平行于x 轴的线段长度不变,平行于y 轴的线段变为原来的一半,于是长为4的边如果平行于x 轴,则正方形边长为4,面积为16,边长为4的边如果平行于y 轴,则正方形边长为8,面积是64。
高中数学 第一章 第二节《空间几何体的三视图和直观图》(2)同步练习 新人教A版必修2

第一章第二节《空间几何体的三视图和直观图》(2)一、选择题:1.如图,正方形O′A′B′C′的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图的周长是( )A .8 cmB .6 cmC .2(1+3) cmD .2(1+2) cm2.下面每个选项的2个边长为1的正△ABC 的直观图不是全等三角形的一组是( )3.如图甲所示为一个平面图形的直观图,则此平面图形可能是图乙中的( )4.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( )A .12+22B .1+22C .1+ 2D .2+ 2二、填空题5.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论,正确的是______________.6.水平放置的△ABC 的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB 边上的中线的实际长度为____________.7.如图所示,为一个水平放置的正方形ABCO ,它在直角坐标系xOy 中,点B 的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.参考答案1.A [根据直观图的画法,原几何图形如图所示,四边形OABC 为平行四边形,OB =22,OA =1,AB =3,从而原图周长为8 cm .]2.C [可分别画出各组图形的直观图,观察可得结论.]3.C4.D [如图1所示,等腰梯形A′B′C′D′为水平放置的原平面图形的直观图,作D′E′∥A′B′交B′C′于E′,由斜二测直观图画法规则,直观图是等腰梯形A′B′C′D′的原平面图形为如图2所示的直角梯形ABCD ,且AB =2,BC =1+2,AD =1,所以S ABCD =2+2.]图1 图2 5.①②解析 斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.6.2.5解析 由直观图知,原平面图形为直角三角形,且AC =A′C′=3,BC =2B′C′=4,计算得AB =5,所求中线长为2.5.7.22解析画出直观图,则B′到x′轴的距离为22·12OA =24OA =22. 第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
高一人教版必修二空间几何体的结构、三视图和直观图
1.多面体的结构特征2.旋转体的形成题型一 空间几何体的结构特征【练习1.】给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③存在每个面都是直角三角形的四面体; ④棱台的侧棱延长后交于一点. 其中正确命题的序号是________.3.空间几何体的三视图命题点1已知几何体,识别三视图【练习2.】(2016·大连一模)如图,在长方体ABCD-A1B1C1D1中,点P是棱CD上一点,则三棱锥P-A1B1A 的侧视图是()【练习3.】(2016·济南模拟)如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如图所示,则其正视图和侧视图正确的是()命题点2已知三视图中的两个视图,判断第三个视图【练习4.】(2016·天津)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为()【练习5.】(2015·北京改编)某三棱锥的三视图如图所示,则该三棱锥的表面积是________.4.空间几何体的直观图【练习6.】(教材改编)下列说法正确的是()A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行【练习7.】(教材改编)如图,直观图所表示的平面图形是()A.正三角形B.锐角三角形C.钝角三角形D.直角三角形【练习8.】用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是________.(填序号)【练习9.】如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形参考答案【练习1.】答案②③④解析①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;③正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;④正确,由棱台的概念可知.【练习2.】答案 D解析在长方体ABCD-A1B1C1D1中,从左侧看三棱锥P-A1B1A,B1、A1、A的投影分别是C1、D1、D;AB1的投影为C1D,且为实线,P A1的投影为PD1,且为虚线.故选D.【练习3.】答案 D解析正视图的轮廓线是矩形DCFG,点E在平面DCFG上的投影为DG的中点,且边界BE,BG可视,故正视图为选项B或D中的正视图,侧视图的轮廓线为直角梯形ADGE,且边界BF不可视,故侧视图为选项D中的侧视图,故选D.【练习4.】答案 B解析 由正视图和俯视图可知该几何体的直观图如图所示,故该几何体的侧视图为选项B.【练习5.】答案 2+2 5解析 由三视图可得该三棱锥的直观图如图所示,其中P A =1,BC =2,取BC 的中点M ,连接AM ,MP ,则AM =2,AM ⊥BC ,故AC =AB =BM 2+AM 2=1+4=5,由正视图和侧视图可知P A ⊥平面ABC ,因此可得PC =PB =P A 2+AB 2=1+5=6,PM =P A 2+AM 2=1+4=5,所以三棱锥的表面积为S △ABC +S △P AB +S △P AC +S △PBC =12×2×2+12×5×1+12×5×1+12×2×5=2+2 5.【练习6.】答案 D解析 由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变. 【练习7.】答案 D解析 由直观图中,A ′C ′∥y ′轴,B ′C ′∥x ′轴,还原后原图AC ∥y 轴,BC ∥x 轴.直观图还原为平面图形是直角三角形.故选D.【练习8.】答案 ①解析 由题意知,平面图形的直观图为正方形,且边长为1,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2. 【练习9.】答案 C解析 如图,在原图形OABC 中,应有OD =2O ′D ′=2×22=42(cm),CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=(42)2+22=6(cm),∴OA =OC ,故四边形OABC 是菱形.故选C. 思维升华 用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.。
新课标人教A版必修2《第一章空间几何体》《第2节空间几何体的三视图和直观图》(《空间.doc
【试卷名:第2课时空间几何体的直观图同步练习二】【供稿人:东田教育】【题目】关于直观图画法的说法中,不正确的是()A.原图中平行于x轴的线段,其对应线段平行于x轴,其长度不变B.原图中平行于〉轴的线段,其对应线段平行于}4虬长度不变C.画与坐标系xQy对应的坐标系xvy^i^xvy^等于135°D.作直观图时,由于选轴不同,所画直观图可能不同【答案】B【解释】B错误.因为平行于*轴的线段,其对应的线段平行于V轴,长度变为原来的一半.【题目】已知正三角形的边长为1,那么它的平而直观图的而积为()A.亟B.吏C.匝D.亟4 8 8 16【答案】D【解释】正三角形刀8C的边长为1,故面积为吏,而原图和直观图面积之间的关系钏也亚,4 s原图 4 故直观图△A'B'C'的面积为巫.16故答案为D.【题目】边长为4的正三角形直观图的面积是()A. 4x/6B. 3灰C. 2^6D. ^6【答案】D【解释】s B原图和直观图面积之间的关系4^=—.s原图 4【题目】下列几种说法正确的个数是()%1相等的角在直观图中对应的角仍然相等;%1相等的线段在直观图中对应的线段仍然相等;%1平行的线段在直观图中对应的线段仍然平行;%1线段的中点在直观图中仍然是线段的中点.A. 1B. 2C. 3D. 4【答案】B【解释】对于①,例如一个等腰直角三角形,画出直观图后不是等腰直角三角形,故①错;对于②③④,由于斜二测画法的法则是平行于x的轴的线平行性与长度都不变;但平行于y轴的线平行性不变,但长度变为原长度的一半,故②错③④对.故选B.【题目】利用斜二测画法得到的:①三角形的直观图是三角形;②正方形的宜观图是正方形;③平行四边形的直观图是平行四边形;④菱形的直观图是菱形,其中正确的是()A.①②B.③④C.①③D.①③④【答案】C【解释】根据斜二测画法的规则可知,平行于坐标轴的直线平行性不变,平行x轴的线段长度不变,平行于y轴的长度减半.%1三角形的直观图中,三佑形的高减少为原来的一半,任然是三角形,正确;%1正方形中的直角,在直观图中变为45。
高中数学 1.2 空间几何体的三视图和直观图练习 新人教版A版必修2
【1.2空间几何体的三视图和直观图】【选择题】:1. 一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的______(填入所有可能的几何体的编号)○1三棱锥○2四棱锥○3三棱柱○4四棱柱○5圆锥○6圆柱2.当图形中的直线或线段不平行于投射线时,关于平行投影的性质,下列说法中不正确的是( )A 直线或线段的平行投影仍是直线或线段B 平行直线的平行投影仍是平行的直线C 与投射面平行的平面图形,它的投影与这个图形全等D 在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比3.下列说法正确的是( )A 任何物体的三视图都与物体摆放位置有关B 任何物体的三视图都与物体的摆放位置无关C 有的物体的三视图与物体的摆放位置无关D 长方体的三视图一定是三个全等的矩形4.沿一个正方体三个面的对角线截得的几何体如图,则该几何体的左视图为( )5.在用斜二测画法画水平放置的平面图形的直观图时,与轴不平行的线段的长度( )A 变大B 变小C 一定改变D 可能改变6.如图的正方形OABC 的边长为1cm ,它的水平放置的一个平面图形的直观图,则原图形的周长( )A 6cmB 8cmC (2+3√2)cmD (2+2√3)cmA B C D7.如图是水平放置的三角形的直观图,D ’是△A ’B ’C ’中B ’C ’边的中点,那么A ’B ’、A ’D ’、A ’C ’三条线段对应原图形中的线段AB 、AD 、AC 中( ) A 最长的是AB 最短的是ACB 最长的是AC 最短的是ABC 最长的是AB 最短的是AD D 最长的是AD 最短的是AC8.一个水平放置的平面图形的斜二测直观图是直角梯形,如图∠ABC=45°,AB=AD=1,DC ⊥BC ,则这个平面图形的面积为( ) A 1/4+2/4 B 2+2/2 C 1/4+2/2 D 1/2+2【填空题】9.用斜二测画法画一个水平放置的正五角星的直观图,则正五角星的各个角__________(填 相等、不相等或不全相等)10.用单位正方体搭一个几何体,使得它的正视图和俯视图如图,则它的体积的最大值______,最小值________11.已知△ABC 的平面直观图△A ’B ’C ’是边长为a 的正三角形,那么原△的面积为_______【计算题】12.如图,A ’B ’C ’D ’是一个水平放置的平面图形的斜二测直观图,已知A ’B ’C ’D ’ 是一个直角梯形,A ’B ’//C ’D ’,A ’D ’⊥C ’D ’且B ’C ’与Y ’轴平行,又A ’B ’=6 ,D ’C ’=4,A ’D ’=2,试求梯形A ’B ’C ’D ’的原图形ABCD 的面积。
高中数学人教课标实验A版必修2第一章《空间几何体的结构》同步练习(附答案)
《空间几何体的结构》同步练习一、考点分析三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视.在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中.这部分知识主要考查学生的空间想象能力与计算求解能力.二、典型例题知识点一:柱、锥、台、球的结构特征例1.下列叙述正确的是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱.②两个底面平行且相似,其余各面都是梯形的多面体是棱台.③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.④直角三角形绕其一条边旋转得到的旋转体是圆锥.⑤直角梯形以它的一条垂直于两底边的腰所在的直线为旋转轴,其余三边旋转形成的面围成的旋转体叫圆台.⑥用一个平面去截圆锥,底面和截面之间的部分是圆台.⑦通过圆锥侧面上一点,有无数条母线.⑧以半圆的直径所在直线为旋转轴,半圆面旋转一周形成球体.A.①②③④⑤⑥⑧B.①③④⑦⑧C.①②⑤⑧D.⑤思路分析:遇到概念判断问题,一定要在理解透彻相关概念的基础上,仔细分析,如果判断它是正确的,必须能紧扣定义,而不是模棱两可地去作判断;如果判断它是错误的,只需找到一个反例即可.解答过程:如图所示,由图(1)可知①是错误的;由图(2)可知②③是错误的;由图(3)可知④是错误的;由图(4)可知⑥是错误的.因为通过圆锥侧面上一点和圆锥的顶点只能连一条射线,所以“通过圆锥侧面上一点,有无数条母线.”是错误的,即⑦是不正确的.以半圆的直径所在直线为旋转轴,半圆旋转一周形成的应该是球面,半圆面旋转一周形成的才是球体.所以⑧是错误的.所以只有⑤是正确的.故应选D.解题后的思考:在作判断的时候没有严格的根据定义进行多角度分析,而是只抓住定义中的某一点就作出判断,容易导致错误.知识点二:组合体例2.如图,下列组合体是由哪几种简单几何体组成的?解答过程:(1)由一个三棱锥和一个四棱锥组成,为左右结构(2)由两个三棱锥组成,为上下结构(3)由圆锥和圆台组成,为上下结构知识点三:柱、锥的侧面展开图例3.小明在一个正方体盒子的每个面都写有一个字母,分别是:A、B、C、D、E、F,其平面展开图如图所示,那么在该正方体盒子中,和“A”相对的面所写的字母是哪一个?思路分析:在每个格子中标明你所想象的面的位置,如将A 格标明“上”,将B格标明“前”等等.解答过程:为字母“E”解题后的思考:本题突出考查了学生将正方体各面展开图复原为正方体的空间想象能力.例4.如图所示,为一个封闭的立方体,在它的六个面上标出A ,B ,C ,D ,E ,F 这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已标明,则字母A ,B ,C 对面的字母分别是( )A .D ,E ,FB .F ,D ,EC .E ,F ,D D .E ,D ,F思路分析:本题处理方法比较灵活,要将几个图结合起来一起分析.解答过程:由(1)(2)两个图知,A 与B ,C ,D 相邻,结合第(3)个图知,B ,C 与F 共顶点,所以A 的对面为F ,同理B ,C 的对面分别为D ,E ,故选择B .解题后的思考:本题考查推理能力以及空间想象能力.也可先结合图(1)(3)进行判断.例5.用长和宽分别是π3和π的矩形硬纸卷成圆柱的侧面,求圆柱的底面半径?思路分析:要注意哪条边是圆柱的母线,哪条边是圆柱底面的圆周.解答过程:设圆柱底面圆的半径为r ,由题意可知矩形长为底面圆的周长时,r ππ23=,解得23=r .矩形宽为底面圆的周长时,r ππ2=,解得21=r .故圆柱的底面半径为23或21.解题后的思考:本题学生经常会丢解,即主观认为只有图中所示的情况,即以π3作为底面周长,而忽视了它也可作为母线这种情况.知识点四 旋转体中的有关计算例6. 一个圆台的母线长cm 12,两底面面积分别为24cm π和225cm π,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.思路分析:通过作截得此圆台的圆锥的轴截面,构造直角三角形与相似三角形求解.解答过程:(1)作OA H A ⊥1242=∴=r r ππΘ 5252=∴=R R ππΘ3=∴AH153312221=-=∴H A(2)11O VA ∆Θ与O VA ∆相似 AO O A VA VA 111=∴20=∴VA解题后的思考:通过构造旋转体的轴截面,将立体问题转化为平面问题.例7.已知球的两个平行截面的面积分别为π5和π8,且距离为3,求这个球的半径.思路分析:两截面的相互位置可能出现两种情况,一种是在球心O 的同侧,另一种是在球心O 的异侧.解答过程:(1)当两截面在球心O 的同侧时,如图所示,设这两个截面的半径分别为21,r r ,球心O 到截面的距离分别为21,d d ,球的半径为R .8,5,8,522212221==∴=⋅=⋅r r r r ππππΘ.又222221212d r d r R +=+=Θ,321222221=-=-∴r r d d ,即3))((2121=+-d d d d .又321=-d d Θ,⎩⎨⎧=+=-∴,1,32121d d d d 解得⎩⎨⎧-==.1,221d d又∴>,02d Θ这种情况不成立.(2)当两截面在球心O 的异侧时,321=+d d , 由上述解法可知3))((2121=+-d d d d ,⎩⎨⎧=-=+∴,1,32121d d d d 解得⎩⎨⎧==.1,221d d 3452121=+=+=∴d r R .综上所述,这个球的半径为3.解题后的思考:同学们要注意不要只对同侧的情况进行讨论,而忽略对另一种位置关系的讨论.知识点五:画几何体的三视图例8.画出如图所示的三棱柱的三视图.思路分析:在正视图中,中间的竖线看不到,应画成虚线;侧视图是从左侧看三棱柱投射到竖直的正对着的平面上的正投影,所以不是三棱柱的一个侧面,而应该是过底面正三角形的一条高线的矩形.解答过程:解题后的思考:画三视图的时候要做到“长对正、宽相等、高平齐”,还要注意实线与虚线的区别.知识点六:三视图中的推测问题例9.根据下列三视图,说出各立体图形的形状.思路分析:三视图是从三个不同的方向看同一物体得到的三个视图.正视图反映物体的主要形状特征,主要体现物体的长和高,不反映物体的宽.而俯视图和正视图共同反映物体的长相等.侧视图和俯视图共同反映物体的宽相等.据此就不难得出该几何体的形状.解答过程:(1)圆台;(2)正四棱锥;(3)螺帽.解题后的思考:三视图的画法里要注意“长对正”,“高平齐”,“宽相等”,另外,还要熟悉基本空间几何体的三视图.知识点七:直观图的还原与计算问题例10.已知△A′B′C′是水平放置的边长为a 的正三角形ABC 的斜二测水平直观图,那么△A′B′C′的面积为_________.思路分析:先根据题意,画出直观图,然后根据△A′B′C′直观图的边长及夹角求解.解答过程:如图甲、乙所示的实际图与直观图.a OC C O a AB B A 4321,==''==''.在图乙中作C′D′⊥A′B′于D′,则a C O D C 8622=''=''.所以2166862121a a a D C B A S C B A =⨯⨯=''⋅''='''∆.故填2166a . 解题后的思考:该题求直观图的面积,因此应在直观图中求解,需先求出直观图的底和高,然后用三角形面积公式求解.本题旨在考查同学们对直观图画法的掌握情况.例11.如图所示,正方形O′A′B′C′的边长为cm 1,它是水平放置的一个平面图形的直观图,则原图形的周长是____________.思路分析:先根据题意,由直观图画出原图形解答过程:逆用斜二测画法的规则画出原图如下图所示,由BC//OA 且BC=OA ,易知OABC 为平行四边形.在上图中,易求O′B′=2,所以OB =22.又OA =1,所以在Rt △BOA 中,31)22(22=+=AB . 故原图形的周长是)cm (8)13(2=+⨯,应填cm 8.解题后的思考:该题考查的是直观图与原图形之间的关系,及逆用斜二测画法的规则.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体的结构特征以及三视图和直观图
课下练兵场
1.已知一个几何体的三视图如图所示,则此几何体的组成为(
) A.上面为棱台,下面为棱柱
B.上面为圆台,下面为棱柱
C.上面为圆台,下面为圆柱
D.上面为棱台,下面为圆柱
解析:结合图形分析知上为圆台,下为圆柱.
答案:C
2.(2009·上海高考)如图,已知三棱锥的底面是直角三角形,
直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于
底面,该三棱锥的正视图是()
答案:B
3.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是()
A.3
B.
C.2
D.
解析:由三视图得空间几何体为倒放着的直三棱柱,底面为直角三角形,两直角边长分别等于1和,棱柱高等于,故几何体的体积V =×1××=.
答案:D
4.如图△A′B′C′是△ABC的直观图,那么△ABC是()
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.钝角三角形
解析:由斜二测画法知△ABC为直角三角形.
答案:B
5.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方
形,俯视图是一个直径为1的圆,那么这个几何体的侧面积为()
A.π
B.π
C.π
D.
解析:由三视图知该几何体为圆柱,其底面半径为r=,高h=1,∴S侧=2πrh=π.
答案:C
6.(2009·全国卷Ⅱ)纸制的正方体的六个面根据其方位分别标记为上、
下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是()
A.南
B.北
C.西
D.下
解析:如图所示.
答案:B
二、填空题
7.(2010·广州模拟)已知一几何体的三视图如下,正视图和侧视图都是
矩形,俯视图为正方形,在该几何体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是(写出所有正确结论的编号).
①矩形;
②不是矩形的平行四边形;
③有三个面为直角三角形,有一个面为等腰三角形的四面体;
④每个面都是等腰三角形的四面体;
⑤每个面都是直角三角形的四面体.
解析:由该几何体的三视图可知该几何体为底面边长为a,高为b 的长方体,这四个顶点的几何形体若是平行四边形,则其一定是矩形.
答案:①③④⑤
8.如图(1),直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图(2)(3)所示,则其侧视图的面积为.
解析:其侧视图是底为×2=,高为2的矩形,
S=2×=2.
答案:2
9.(2009·温州模拟)把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥C-ABD,其正视图与俯视图如图所示,则侧视图的面积为.
解析:根据这两个视图可以推知折起后二面角C-BD-A为直角二面角,其侧视图是一个两直角边长为的直角三角形,其面积为.
答案:
三、解答题
10.已知正三棱锥V-ABC的正视图和俯视图如图所示.
(1)画出该三棱锥的侧视图和直观图.
(2)求出侧视图的面积.
解:(1)如图.
(2)根据三视图间的关系可得BC=2,
侧视图中VA=
==2,
∴S△VBC=×2×2=6.
11.如图是一个几何体的正视图和俯视图.
(1)试判断该几何体是什么几何体;
(2)画出其侧视图,并求该平面图形的面积;
(3)求出该几何体的体积.
解:(1)正六棱锥
(2)其侧视图如图:
其中AB=AC,AD⊥BC,
且BC的长是俯视图中正六边形对边的距离,
即BC=a,
AD的长是正六棱锥的高,即AD=a,
∴该平面图形的面积
S=a·a=a2.
(3)V=·6·a2·a=a3.
12.(2009·广东高考)某高速公路收费站入口处的安全标识墩如图1所示.墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD -EFGH.图2、图3分别是该标识墩的正视图和俯视图.
(1)请画出该安全标识墩的侧视图;
(2)求该安全标识墩的体积.
解:(1)该安全标识墩侧视图如图所示.
(2)该安全标识墩的体积
V=V P-EFGH+V ABCD-EFGH
=×40×40×60+40×40×20
=64000(cm3).。