高中数学第二章随机变量及其分布2-1离散型随机变量及其分布列学案含解析新人教A版选修2_3
高中数学《2.1 离散型随机变量及其分布列》学案 新人教A版选修2

§2.1离散型随机变量及其分布列学习目标 :1.理解随机变量的定义;2.掌握离散型随机变量的分布列 学习重点:离散型随机变量的分布列 学习难点:随机变量的定义【自主探究】 1.随机变量的定义我们确定一种 关系,使得试验的每一个可能的结果都用一个 表示,在这种 关系下,数字随着试验结果的变化而变化,像这种随着试验结果变化而变化的变量称为 常用字母 、 、 …表示.思考:随机变量与函数有类似的地方吗? 随机变量与函数都是一种 ,试验结果的范围相当于函数的 , 随机变量的范围相当于函数的2.离散型随机变量的分布列:所有取值可以 的随机变量,称为离散型随机变量.若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,21 ,X 取每一个值),,2,1(n i x i =的概率p x X P ==)(.这个式子用表格表示为:称上面这个式子或这个表格为离散的概率。
它具有以下性质:(1) ; (2) 【合作探究】1、在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个 ,其值域是 . 表示 ; 表示 ;表示 ; “抽出3件以上次品”可用集合 表示. 思考:①电灯泡的寿命X 是离散型随机变量吗?②随机变量⎩⎨⎧≥<=小时寿命小时寿命1000,11000,0Y 是一个离散型随机变量吗?2、抛掷一枚质地均匀的硬币3次,写出正面向上次数X 的分布列.{}0=X {}4=X {}3<X3、一袋中装有5只同样大小的白球,编号为1,2,3,4,5,现从该袋内随机取出3只球,被取出的球的最大号码数为X(1)写出下列随机变量可能取的值,说明随机变量所取的值表示的随机试验的结果(2)写出X的分布列。
【巩固提高】1、设随机变量的概率分布为,则()A.B.C.D.2、随机变量的概率分布列如下:则c等于()A.0.1 B.0.2 C.0.3 D.0.43、由经验得知,在商场付款处排队等候付款的人数及其概率如下:(1)求至多两个人排队的概率;(2)求至少3个人排队的概率.4、袋中有1个白球和4个黑球,每次从中任取一个球,每次取出的黑球不再放回,直到取出白球为止.求取球次数X的概率分布.。
高中数学选修2-3 第二章随机变量及其分布 2-1-1离散型随机变量

一区间内的一切值,无法一一列出,故不是离散型随机变
量.
答案: B
2.某人练习射击,共有5发子弹,击中目标或子弹打完 则停止射击,射击次数为X,则“X=5”表示的试验结果为 ()
A.第5次击中目标 B.第5次未击中目标 C.前4次均未击中目标 D.前5次均未击中目标 解析: 射击次数X是一随机变量,“X=5”表示试验 结果“前4次均未击中目标”. 答案: C
(4)体积为64 cm3的正方体的棱长. [思路点拨] 要根据随机变量的定义考虑所有情况.
(1)接到咨询电话的个数可能是0,1,2,…出现 哪一个结果都是随机的,因此是随机变量.
(2)该运动员在某场比赛的上场时间在[0,48]内,是随机 的,故是随机变量.
(3)获得的奖次可能是1,2,3,出现哪一个结果都是随机 的,因此是随机变量.
人教版高中数学选修2-3 第二章 随机变量及其分布
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量
课前预习
1.在一块地里种下10颗树苗,成活的树苗棵树为X. [问题1] X取什么数字? [提示] X=0,1,2…10.
2.掷一枚硬币,可能出现正面向上,反面向上两种结 果.
3.一个袋中装有5个白球和5个红球,从中任取3个.其 中所含白球的个数记为ξ,则随机变量ξ的值域为________.
解析: 依题意知,ξ的所有可能取值为0,1,2,3,故ξ的 值域为{0,1,2,3}.
答案: {0,1,2,3}
4.写出下列随机变量ξ可能取的值,并说明随机变量ξ =4所表示的随机试验的结果.
[问题2] 这种试验的结果能用数字表示吗? [提示] 可以,用数1和0分别表示正面向上和反面向 上. [问题3] 10件产品中有3件次品,从中任取2件,所含次 品个数为x,试写出x的值. [提示] x=0,1,2.
2.1.1离散型随机变量(学生学案)

2.1.1离散型随机变量(学生学案)例1 判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由。
(1)昨天我校办公室接到的电话的个数.(2)标准大气压下,水沸腾的温度.(3)在一次比赛中,设一二三等奖,你的作品获得的奖次.(4)体积64立方米的正方体的棱长.(5)抛掷两次骰子,两次结果的和.(6)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数.函数与随机变量的异同点:例2:下列变量中是离散型随机变量的________.(1)下期《星光大道》节目中冠军的人数;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差;(3)在泉州至福州的高速铁路线上,每隔50 m有一电线铁塔,从泉州至福州的高速铁路线上将电线铁塔进行编号,其中某一电线铁塔的编号;(4)福州市闽江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位.课堂练习1:(课本P45练习NO:1)课堂练习2:1、袋中有大小相同的5个小球,分别标有1、2、3、4、5五个号码,现在在有放回的条件下取出两个小球,设两个小球号码之和为ξ,则ξ所有可能值的个数是____ 个;{ }表示.2、抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:(1) {ξ>4}表示的试验结果是什么? (2) P (ξ>4)=?3、写出下列各随机变量可能的取值.(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数ξ.(2)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球数ξ.(3)抛掷两个骰子,所得点数之和ξ.(4)接连不断地射击,首次命中目标需要的射击次数ξ.4、写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;5、(1)某座大桥一天经过的中华轿车的辆数为ξ;(2)某网站中歌曲《爱我中华》一天内被点击的次数为ξ;(3)一天内的温度为ξ;(4)射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分。
最新人教版高中数学选修2-3《离散型随机变量及其分布》示范教案

第二章随机变量及其分布本章概览课标要求1.离散型随机变量及其分布列(1)在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性.(2)通过实例(如彩票抽奖),理解超几何分布及其导出过程,并能进行简单的应用.2.二项分布及其应用在具体情境中,了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.3.离散型随机变量的均值与方差通过实例,理解取有限值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.4.正态分布通过实际问题,借助直观(如实际问题的直观图),认识正态分布、正态密度曲线的特点及曲线所表示的意义.内容概述教学建议1.在教学过程中要交代引入随机变量的原因(章引言中);2.通过与函数的比较加深对随机变量的理解;3.在介绍有关随机变量的概念过程中,重点在于概念的理解及应用,不宜引入过于复杂的计算,以免喧宾夺主;4.注意产生超几何分布与二项分布的背景差别,以帮助学生更好地理解两个模型以及两个事件间独立性的概念.超几何分布:从a个红球和b个黑球中,不放回摸出m个球中的红球个数,结果导致“第i次摸出红球”与“第j次摸出红球”不相互独立(i≠j);二项分布:从a个红球和b个黑球中,有放回摸出m个球中的红球个数,结果导致“第i次摸出红球”与“第j次摸出红球”相互独立(i≠j).5.注意解释随机变量与样本均值(方差)的关系:两者都表示各自的平均位置(变化剧烈程度);样本均值(方差)是随机变量,具有随机性,而随机变量的均值(方差)是实数,没有随机性;样本均值(方差)的极限是总体均值(方差).6.在高尔顿钉板试验中,课文中说“随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线”的含义为:随着试验次数的增加,这个频率直方图的形状会越来越接近于钟形曲线的离散化.课时安排全章共安排了4个小节,教学约需9课时,具体内容和课时分配如下(仅供参考):2.1离散型随机变量及其分布列约2课时2.2二项分布及其应用约3课时2.3离散型随机变量的均值与方差约2课时2.4正态分布约1课时习题课约1课时2.1离散型随机变量及其分布列2.1.1离散型随机变量整体设计教材分析本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和分布列的一些知识.学习这些知识后,学生将能解决类似引言中的一些实际问题.随机变量在概率统计研究中起着极其重要的作用,随机变量是用来描述随机现象的结果的一类特殊的变量,随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中.随机变量就是建立了一个从随机试验结果的集合到实数集合的映射,这与函数概念在本质上(一种对应关系)是一致的.随机试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.离散型随机变量是最简单的随机变量,随机变量和离散型随机变量是上、下位概念的关系.本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法.重点是怎样用数学的方法来研究随机事件(即先把随机事件映射成随机变量,建立随机变量X与随机事件发生的概率P之间的函数关系,用研究函数的方法来研究随机变量),并在此过程中深刻体会和领悟随机变量在研究随机现象中的工具和桥梁作用.课时分配1课时教学目标知识与技能1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散型随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.过程与方法发展抽象、概括能力,提高解决实际问题的能力.情感、态度与价值观使学生感悟数学与生活的和谐之美,体现数学的文化功能与人文价值.重点难点教学重点:随机变量、离散型随机变量、连续型随机变量的意义.教学难点:随机变量、离散型随机变量、连续型随机变量的意义.教学过程引入新课统计表明:商场内的促销活动可获得经济效益2万元;商场外的促销活动,如果不遇雨天则带来经济效益10万元,如果遇到雨天则带来经济损失4万元.假设国庆节有雨的概率是40%,请问商场应该选择哪种促销方式较好?为了解决类似问题,从今天开始学习本章内容——随机变量及其分布列.设计意图:设置悬念,营造一种神秘气氛,容易吸引学生注意力,调动学生学习兴趣,揭示随机变量的分布列的客观存在性和研究它的必要性,点出了本章内容.活动设计:复习回顾概率有关知识.概率是描述在一次随机试验中的某个随机事件发生可能性大小的度量.随机试验是指满足下列三个条件的试验:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.(本部分可由教师提示、学生完成)提出问题:同学们能举出一些随机试验的例子吗?并说明该随机试验的所有可能结果.学情预测:学生容易举出抛硬币、掷骰子等试验,然后教师可根据例子实施引导、启发.活动结果:(以下为可能出现的例子)掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示;某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可以由0,1,…,10这11个数表示;从装有4个黑球,3个红球的篮子中任意拿出2个球,可能出现哪些情况?提出问题:这些随机试验,有哪些共同点?活动结果:随机试验中可能出现的每种结果都可以用一个数来表示.(由学生完成)探究新知提出问题:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?学情预测:此时有的学生会产生疑虑,不敢作答,教师根据学情引导.活动结果:抛一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上.(也可用另外两个数如1、2分别表示正面向上和反面向上,通过准确、恰当的抽象,可使问题简单化,这正是数学的魅力所在)教师指出:在前面掷骰子和抛硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.(给出定义)定义1:随着试验结果变化而变化的变量称为随机变量.随机变量常用字母X,Y,ξ,η,…表示.随机变量ξ或η的特点:(1)可以用数表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不可能确定取何值.提出问题:随机变量和高一学习的什么概念有类似的地方吗?(函数或映射)活动结果:随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.(学生为主,教师完善)教师:例如,从含有4个黑球3个红球的篮子中,任意抽取两个球,可能含有的红球数X将随着抽取结果的变化而变化,是一个随机变量,其取值范围是{0,1,2}.提出问题:利用随机变量可以表达一些事件.例如{X=0}表示“抽出两个黑球”,{X=2}表示“抽出2个红球”等.你能说出{X<1}在这里表示什么事件吗?“抽出1个以上黑球”又如何用X表示呢?(学生基本能顺利完成)教师指出:红球数X是一个随机变量,其取值是0、1、2,可以一一列举(给出定义).定义2:所有取值可以一一列出的随机变量,称为离散型随机变量.提出问题:离散型随机变量的例子很多.例如某人一分钟内眨眼次数X是一个离散型随机变量,它的所有可能取值为0,1,2…;同学们还能举出哪些例子?学情分析:有的学生在举例时会错举出一个连续型随机变量来,借机发问,例如:提出问题:灯泡的使用寿命X是离散型随机变量吗?活动结果:灯泡的使用寿命X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以X 不是离散型随机变量.定义3:连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.提出问题:同学们还能举出哪些例子?活动结果:如某林场树木最高达30米,则林场树木的高度是一个随机变量,它可以取(0,30]内的一切值(或者其他).教师指出:在研究随机现象时,有时可根据需要恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否不少于1 000小时,那么就可以定义如下的随机变量:Y =⎩⎪⎨⎪⎧0,寿命<1 000小时;1,寿命≥1 000小时. 与电灯泡的寿命X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.提出问题:同学们还能举出哪些离散型或连续型随机变量的例子?你能否总结出二者的区别与联系?活动结果:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出(由学生完成).理解新知教师进一步指出:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达,如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上.(2)若ξ是随机变量,η=aξ+b ,a ,b 是常数,则η也是随机变量.(可通过拓展练习来说明)运用新知例1一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ;写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果.解:(1)ξ可取3,4,5.ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或3,4,5.例2抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?解:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”.所以,“ξ>4”表示第一枚为6点,第二枚为1点.【变练演编】写出某用户的电话在单位时间内收到的呼叫次数η的可能值.解:η可取0,1,…,n ,….η=i ,表示被呼叫i 次,其中i =0,1,2,….变式:一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X ,写出随机变量X 的可能值.解:X 可取1,2,3, (24)【达标检测】1.有下列问题:①某路口一天经过的车辆数为ξ;②某地半年内下雨的次数为ξ;③一天之内的温度为ξ;④某人一生中的身高为ξ;⑤射击运动员对某目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示运动员在射击中的得分.上述问题中的ξ是离散型随机变量的是( )A .①②③⑤B .①②④C .①D .①②⑤2.随机变量ξ的所有可能取值为1,2,…,n ,若P(ξ<4)=0.3,则( )A .n =3B .n =4C .n =10D .不能确定3.抛掷两次骰子,两次点数的和不等于8的概率为( )A.1112B.3136C.536D.112答案:1.D 2.C 3.B课堂小结1.离散型随机变量、连续型随机变量的概念;2.随机变量ξ是关于试验结果的映射,即每一个试验结果对应着一个实数;3.随机变量ξ的线性组合η=aξ+b(其中a 、b 是常数)也是随机变量.补充练习【基础练习】1.写出下列各随机变量可能的取值:(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数X.解:X =1,2,3, (10)(2)某一自动装置无故障运转的时间ξ.解:ξ取(0,+∞)内的一切值.【拓展练习】某城市出租汽车的起步价为10元,行驶路程不超出4 km ,则按10元的标准收租车费.若行驶路程超出4 km ,则按每超出1 km 加收2元计费(超出不足1 km 的部分按1 km 计).从这个城市的民航机场到某宾馆的路程为15 km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按1 km 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费η也是一个随机变量.(1)求租车费η关于行车路程ξ的关系式;(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15 km ,问出租车在途中因故停车累计最多几分钟?解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2.(2)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.设计说明本节主要采用教师提出问题引导,学生思考归纳的形式,让学生经历概念的形成过程,避免了以往由老师叙述概念条文,然后讲解例题的教学模式,以实际问题为向导,引导学生分析问题、归纳问题的共性,提炼出随机变量的概念.备课资料备选例题:1.把一枚硬币先后抛掷两次,如果出现两个正面得5分,出现两个反面得-3分,其他结果得0分,用X表示得分的分值,列表写出可能出现的结果与对应的X值.解:2.写出下列各随机变量可能取的值,并说明随机变量所取的值所表示的随机试验的结果:(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,被取出的球的编号为X;解:ξ可取1,2, (10)(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;解:X可取0,1,2,3,4.(3)投掷两枚骰子,所得点数之和为X,所得点数之和是偶数为Y.解:X可取2,3,4,5,6,7,8,9,10,11,12.Y可取2,4,6,8,10,12.(设计者:王宏东李王梅)。
高二数学(选修-人教A版)-离散型随机变量及其分布列(2)-1教案

通过回顾反思引领学生总结本节课所学习的基本知识和解决问题的方法,整体把握本节内容结构,
提升学生反思的意识和能力
作业
1.学校要从30名候选人中选10名同学组成学生会,其中某班有4名候选人。假设每名候选人都有相同的机会被选到,求该班恰有2名同学被选到的概率.
2.通过具体实例,理解两点分布和超几何分布,能初步识别这两种概率模型;
教学重点:认识离散型随机变量分布列能完全描述由这个离散型随机变量所刻画的随机现象;理解超几何分布的概率模型及其应用。
教学难点:超几何分布及应用
教学过程(表格描述)
教学环节
主要教学活动
设置意图
引入
在上一课我们学习了离散型随机变量及其分布列的有关概念和性质。本课我们再学习几个离散型随机变量分布列的实例,希望同学们通过一些实例的学习,进一步理解离散型随机变量分布列及其应用。
教 案
教学基本信息
课题
离散型随机变量及其分布列(2)
学科
数学
学段:高中
年级
高二
教材
书名:普通高中课程标准实验教科书·数学·选修2-3(A版)
出版社:人民教育出版社出版日期:2009年4月
教学设计参与人员
姓名
单位
设计者
实施者
指导者
课件制作者
其他参与者
教学目标及教学重点、难点
教学目标
1.通过具体实例,进一步理解离散型随机变量分布列,会求一些简单的离散型随机变量分布列;
ξ
4
5
6
7
8
9
10
P
0.02
高中数学 第二章 随机变量及其分布 2.1.1 离散型随机

2.1.1 离散型随机变量[学习目标]1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系.3.会用离散型随机变量描述随机现象.[知识链接]1.掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢?答掷一枚硬币,可能出现正面向上、正面向下两种结果,我们可以分别用1和0表示,这样就可以用数字来表示试验结果,数字随试验结果的变化而变化,这就是随机变量.2.非离散型随机变量和离散型随机变量有什么区别?答非离散型随机变量是指可以取某一区间的一切值的随机变量,又称为连续型随机变量.它们的区别在于:离散型随机变量可能取的值为有限个或者说能将它的可能取值按一定次序一一列出,而连续型随机变量可取某一区间的一切值,无法对其中的值一一列举.[预习导引]1.随机试验一般地,一个试验如果满足下列条件:(1)试验可以在相同的情形下重复进行;(2)试验所有可能的结果是明确的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验.2.随机变量在随机试验中,随着试验结果变化而变化的变量称为随机变量.3.离散型随机变量所有取值可以一一列出的随机变量,称为离散型随机变量.要点一随机变量的概念例1 指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)任意掷一枚均匀硬币5次,出现正面向上的次数;(2)投一颗质地均匀的骰子出现的点数(最上面的数字);(3)某个人的属相随年龄的变化;(4)在标准状况下,水在0 ℃时结冰.解(1)任意掷一枚硬币1次,可能出现正面向上也可能出现反面向上,因此投掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪种结果是随机的,是随机变量.(2)投一颗骰子出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪个结果是随机的,因此是随机变量.(3)属相是出生时便定的,不随年龄的变化而变化,不是随机变量.(4)标准状况下,在0 ℃时水结冰是必然事件,不是随机变量.规律方法解答此类题目的关键在于分析变量是否满足随机试验的结果,随机变量从本质上讲就是以随机试验的每一个可能结果为一个映射,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能取的值,而不知道在一次试验中哪一个结果发生,随机变量取哪一个值.跟踪演练1 下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由.(1)上海国际机场候机室中2015年10月1日的旅客数量;(2)2015年某天济南至北京的D36次列车到北京站的时间;(3)2015年某天收看齐鲁电视台《拉呱》节目的人数;(4)体积为1 000 cm3的球的半径长.解(1)候机室中的旅客数量可能是0,1,2,…,出现哪一个结果都是随机的,因此是随机变量.(2)D36次济南至北京的列车,到达终点的时间每次都是随机的,可能提前,可能准时,亦可能晚点,故是随机变量.(3)在《拉呱》节目播放的时刻,收看人数的变化是随机的,可能多,也可能少,因此是随机变量.(4)体积为1 000 cm3的球半径长为定值,故不是随机变量.要点二离散型随机变量的判定例2 指出下列随机变量是否是离散型随机变量,并说明理由.(1)从10张已编好号码的卡片(从1号到10号)中任取一张,被取出的卡片的号数;(2)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数;(3)某林场树木最高达30 m,则此林场中树木的高度;(4)某加工厂加工的某种铜管的外径与规定的外径尺寸之差.解(1)只要取出一张,便有一个号码,因此被取出的卡片号数可以一一列出,符合离散型随机变量的定义.(2)从10个球中取3个球,所得的结果有以下几种:3个白球;2个白球和1个黑球;1个白球和2个黑球;3个黑球,即其结果可以一一列出,符合离散型随机变量的定义.(3)林场树木的高度是一个随机变量,它可以取(0,30]内的一切值,无法一一列举,不是离散型随机变量.(4)实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量.规律方法离散型随机变量的判定方法判断一个随机变量X是否为离散型随机变量的关键是判断随机变量X的所有取值是否可以一一列出,其具体方法如下:(1)明确随机试验的所有可能结果;(2)将随机试验的试验结果数量化;(3)确定试验结果所对应的实数是否可按一定次序一一列出,如果能一一列出,则该随机变量是离散型随机变量,否则不是.跟踪演练2 ①某座大桥一天经过的中华牌轿车的辆数为X;②某网站中歌曲《爱我中华》一天内被点击的次数为X;③射手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射手在一次射击中的得分.上述问题中的X是离散型随机变量的是( )A.①②③ B.①② C.①③ D.②③答案 A解析①②③中的变量取值均可一一列出.要点三随机变量的应用例3 写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果.(1)抛掷甲、乙两枚骰子,所得点数之和Y.(2)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η.(3)一个袋中装有5个同样大小的球,编号为1,2,3,4,5.现从该袋内随机取出3个球,被取出的球的最大号码数为ξ.解(1)Y的可能取值为2,3,4,…12,若以(i,j)表示抛掷甲、乙两枚骰子后骰子甲得i点且骰子乙得j点,则{Y=2}表示(1,1);{Y=3}表示(1,2),(2,1);{Y=4}表示(1,3),(2,2),(3,1);…;{Y=12}表示(6,6).(2)ξ可取1,2,3.{ξ=i}表示取出i支白粉笔,3-i支红粉笔,其中i=1,2,3.η可取0,1,2.{η=i}表示取出i支红粉笔,3-i支白粉笔,其中i=0,1,2.(3)ξ可取3,4,5.{ξ=3}表示取出的3个球的编号为1,2,3;{ξ=4}表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;{ξ=5}表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5或3,4,5.规律方法随机变量从本质上讲就是以随机试验的每个结果为自变量的一个函数,即随机变量的取值本质上是试验结果对应的数,起到了描述随机事件的作用.这些数是预先知道的所有可能的值,而不知道究竟是哪一个值,这便是“随机”的本源.跟踪演练3 写出下列随机变量可能的取值,并说明随机变量的取值所表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,被取出的球的编号为X;(2)在含有10件次品的100件产品中,任意抽取4件,可能含有的次品的件数X是一个随机变量.(3)一袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数ξ是一个随机变量.解(1)X的可能取值为1,2,3,…,10,{X=k}(k=1,2,…,10)表示取出编号为k号的球.(2)随机变量X可能的取值为0,1,2,3,4.{X=0},表示“抽出0件次品”;{X=1},表示“抽出1件次品”;{X=2},表示“抽出2件次品”;{X=3},表示“抽出3件次品”;{X=4},表示“抽出4件次品”.(3)随机变量ξ可能的取值为0,1,2,3.{ξ=0},表示“取出0个白球,3个黑球”;{ξ=1},表示“取出1个白球,2个黑球”;{ξ=2},表示“取出2个白球,1个黑球”;{ξ=3},表示“取出3个白球,0个黑球”.1.抛掷质地均匀的硬币一次,下列能称为随机变量的是( )A.出现正面的次数B.出现正面或反面的次数C.掷硬币的次数D.出现正、反面次数之和答案 A解析掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上次数来描述一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1,故选A.而B中标准模糊不清,C中掷硬币次数是1,不是随机变量,D中对应的事件是必然事件.故选A. 2.10件产品中有3件次品,从中任取2件,可作为随机变量的是( )A.取到产品的件数 B.取到正品的概率C.取到次品的件数 D.取到次品的概率答案 C解析对于A中取到产品的件数是一个常量不是变量,B、D也是一个定值,而C中取到次品的件数可能是0,1,2,是随机变量.3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是( )A .2枚都是4点B .1枚是1点,另1枚是3点C .2枚都是2点D .1枚是1点,另1枚是3点,或者2枚都是2点答案 D解析 抛掷2枚骰子,其中1枚是x 点,另1枚是y 点,其中x ,y =1,2,…,6. 而ξ=x +y ,ξ=4⇔⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =2,y =2. 4.写出下列随机变量ξ可能取的值,并说明随机变量ξ=4所表示的随机试验的结果.(1)从10张已编号的卡片(编号从1号到10号)中任取2张(一次性取出),被取出的卡片的较大编号为ξ;(2)某足球队在点球大战中5次点球射进的球数为ξ.解 (1)ξ的所有可能取值为2,3,4,…,10.其中“ξ=4”表示的试验结果为“取出的两张卡片中的较大号码为4”.基本事件有如下三种:取出的两张卡片编号分别为1和4,2和4,3和4.(2)ξ的所有可能取值为0,1,2,3,4,5.其中“ξ=4”表示的试验结果为“5次点球射进4个球”.1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.2.写随机变量表示的结果,要看三个特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值.一、基础达标1.袋中有2个黑球和6个红球,从中任取两个,可以作为随机变量的是( )A.取到的球的个数B.取到红球的个数C.至少取到一个红球D.至少取到一个红球的概率答案 B解析袋中有2个黑球和6个红球,从中任取两个,取到球的个数是一个固定的数字,不是随机变量,故不选A,取到红球的个数是一个随机变量,它的可能取值是0,1,2,故B正确;至少取到一个红球表示取到一个红球,或取到两个红球,表示一个事件,故C不正确;至少取到一个红球的概率是一个古典概型的概率问题,不是随机变量,故D不正确,故选B.2.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,在950 Ω~1 200 Ω之间的阻值记为X;④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机变量的是( ) A.①②B.①③C.①④D.①②④答案 A3.一个袋子中有质量相等的红、黄、绿、白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是( )A.小球滚出的最大距离B.倒出小球所需的时间C.倒出的三个小球的质量之和D.倒出的三个小球的颜色的种数答案 D解析A.小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B.倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C.三个小球的质量之和是一个定值,不是随机变量,就更不是离散型随机变量;D.颜色的种数是一个离散型随机变量.4.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( )A.第5次击中目标B.第5次未击中目标C .前4次均未击中目标D .第4次击中目标答案 C 解析 ξ=5表示射击5次,即前4次均未击中,否则不可能射击第5次,但第5次是否击中目标,就不一定,因为他只有5发子弹.5.袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是________.答案 9解析 两个球号码之和可能为2,3,4,5,6,7,8,9,10,共9个.6.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种. 答案 21解析 ξ=8表示3个篮球中一个编号是8,另外两个从剩余7个号中选2个,有C 27种方法,即21种.7.某篮球运动员在罚球时,罚中1球得2分,罚不中得0分,则该队员在5次罚球中命中的次数ξ是一个随机变量.(1)写出ξ的所有取值及每一个取值所表示的结果;(2)若记该队员在5次罚球后的得分为η,写出所有η的取值及每一个取值所表示的结果. 解 (1)ξ可取0,1,2,3,4,5.表示在5次罚球中分别罚中0次,1次,2次,3次,4次,5次.(2)η可取0,2,4,6,8,10.表示5次罚球后分别得0分,2分,4分,6分,8分,10分.二、能力提升8.设实数x ∈R ,记随机变量ξ=⎩⎪⎨⎪⎧1,x ∈(0,+∞),0,x =0,-1,x ∈(-∞,0).则不等式1x ≥1的解集所对应的ξ的值为( ) A .1B .0C .-1D .1或0答案 A解析 解1x≥1得其解集为{x |0<x ≤1},∴ξ=1. 9.袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个球上的数字之积为X ,则X 所有可能值的个数是( ) A .6B .7C .10D .25 答案 C 解析 X 的所有可能值有1×2,1×3,1×4,1×5,2×3,2×4,2×5,3×4,3×5,4×5,共计10个.10.一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X ,随机变量X 的可能值有________个.答案 24解析 后3个数是从6,7,8,9四个数中取3个组成的,共有A 34=24(个).11.设一汽车在开往目的地的道路上需经过5盏信号灯,ξ表示汽车首次停下时已通过的信号灯的盏数,写出ξ所有可能取值并说明这些值所表示的试验结果.解 ξ=0,1,2,3,4,5.ξ=k (k =0,1,2,3,4)表示在遇到第k +1盏信号灯时首次停下.ξ=5表示在途中没有停下,直达目的地.12.某车间两天内每天生产10件某产品,其中第一天、第二天分别生产了1件、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内总得分为ξ,写出ξ的可能取值. 解 ξ的可能取值为0,1,2. ξ=0表示在两天检查中均发现了次品.ξ=1表示在两天检查中有1天没有检查到次品,1天检查到了次品.ξ=2表示在两天检查中都没有发现次品.三、探究与创新13. 某次演唱比赛,需要加试文化科学素质,每位参赛选手需回答3个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有5道文史类题目,3道科技类题目,2道体育类题目,测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.某选手抽到科技类题目ξ道.(1)试求出随机变量ξ的值域;(2){ξ=1}表示的事件是什么?可能出现多少种结果?解(1)由题意得ξ的值域是{0,1,2,3}.(2){ξ=1}表示的事件是“恰抽到一道科技题”.考虑顺序,三类题目各抽取一道有C15·C13·C12·A33=180种结果.1道科技题,2道文史题有C13·C25·A33=180种结果.1道科技题2道体育题有C13·C22·A33=18种结果.由分类加法计数原理知可能出现180+180+18=378种结果.。
高中数学 第二章 随机变量及其分布 2.1.1 离散型随机变量教案 新人教A版选修2-3
2.1.1 离散型随机变量教学内容分析:教科书以学生熟悉的掷骰子实验和掷硬币实验为例引入随机变量的概念学情分析:学生第一次接触随机变量,学生中会有一定的困难教学目标:知识与技能:1、理解随机变量的意义;2、学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3、理解随机变量所表示试验结果的含义,并恰当地定义随机变量;过程与方法:培养观察发现,抽象概括及分析解决问题的能力。
情感、态度与价值观:学会合作探讨,体验成功,提高学习数学的兴趣教学重点与难点重点:随机变量、离散型随机变量、连续型随机变量的意义;难点:随机变量、离散型随机变量、连续型随机变量的意义;教具准备:与教材内容相关的资料。
教学方法:分析法,讨论法,归纳法教学过程:一、复习引入:展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?观察,概括出它们的共同特点二、讲解新课:思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y,ξ,η,…表示.思考2:随机变量和函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y也是一个离散型随机变量,它的所有可能取值为0, 1,2,….思考3:电灯的寿命X是离散型随机变量吗?电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值4、离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上(2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量5、例题赏析:例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η解:(1) ξ可取3,4,5ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5(2)η可取0,1,…,n ,… η=i ,表示被呼叫i 次,其中i=0,1,2,…例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点6、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是( )A .①;B .②;C .③;D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( )A .3n =;B .4n =;C .10n =;D .不能确定3.抛掷两次骰子,两个点的和不等于8的概率为( )A .1112;B .3136;C .536;D .1124.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和三、课堂小结:师生共同回忆本节的学习内容.四、作业布置:。
高中数学选修2-3 第二章随机变量及其分布 2-1-2离散型随机变量的分布列
所以随机变量ξ的分布列为:
ξ3
4
5
6
P
1 20
3 20
3 10
1 2
[规律方法] 1.确定离散型随机变量ξ的分布列的关键是 要搞清ξ取每一个值对应的随机事件,进一步利用排列、组 合知识求出ξ取每一个值的概率.对于随机变量ξ取值较多或 无穷多时,应由简单情况先导出一般的通式,从而简化过 程.
2.一般分布列的求法分三步:(1)首先确定随机变量ξ的 取值有哪些;(2)求出每种取值下的随机事件的概率;(3)列 表对应,即为分布列.
人教版高中数学选修2-3 第二章 随机变量及其分布
2.1.2 离散型随机变量的分布列
课前预习
1.抛掷一个骰子,用X表示骰子向上一面的点数. [问题1] X的可能取值是什么? [提示] X=1、2、3、4、5、6. [问题2] X取不同值时,其概率分别是多少? [提示] 都等于16.
2.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3 只,以ξ表示取出的3只球中的最小号码.
特别提醒: 两点分布的试验结果只有两个可能性,且 其概率之和为1.
2.解决超几何分布问题的关注点 (1)超几何分布是概率分布的一种形式,一定要注意公 式中字母的范围及其意义,解决问题时可以直接利用公式求 解,但不能机械地记忆; (2)超几何分布中,只要知道M,N,n就可以利用公式 求出X取不同m的概率P(X=m),从而求出X的分布列.
课堂练习
1.下列表中能成为随机变量X的分布列的是( )
A. X -1
0
1
P -0.1 0.5 0.6
B. X -1
0
1
P 0.3 0.7 -0.1
C. X
-1
0
高中数学第二章随机变量及其分布2.1离散型随机变量及其分布列2.1.1离散型随机变量学案新人教A版选修2_3
2.1.1 离散型随机变量1.随机变量(1)定义:随着________变化而变化的变量称为随机变量.(2)表示法:随机变量常用字母____________表示.预习交流1随机变量与函数有何区别与联系?2.离散型随机变量所有取值可以________的随机变量,称为离散型随机变量.预习交流2(1)离散型随机变量有什么特点?(2)下列不是离散型随机变量的是( ).A .某水站观察到一天中长江的水位B .某立交桥一天经过的车辆数C .110报警中心一天内接到的报警电话个数D .从编号为1,2,3,4的卡片中任取一张,取出的卡号答案:1.(1)试验结果 (2)X ,Y,ξ,η,…预习交流1:提示:联系:两者均是特殊的映射.区别:随机变量把试验的结果映射为实数,而函数是把一个非空数集映射到另一个非空数集上.2.一一列出预习交流2:(1)提示:①随机变量的取值能一一列出,这是判定随机变量是否为离散型随机变量的关键.②离散型随机变量的取值可以是有限个,如取值1,2,3,…,n ;也可以是无限个,如取值为1,2,…,n ,….(2)提示:A一、随机变量的概念判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2013年5月1日的旅客数量;(2)2013年5月1日到10月1日期间所查酒驾的人数;(3)2013年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球半径长.思路分析:判断所给的量是否随试验结果的变化而变化,发生变化的是随机变量.将一枚均匀骰子掷两次,随机变量为( ).A.第一次出现的点数B.第二次出现的点数C.两次出现的点数之和D.两次出现相同点的种数在一次随机试验中,随机变量的取值实质是随机试验的结果所对应的数,且这个数所有可能的取值是预先知道的,但不知道究竟会出现哪一个值,这便是“随机”的本源.二、离散型随机变量的判定指出下列随机变量是否是离散型随机变量,并说明理由.(1)湖南矮寨大桥桥面一侧每隔30米有一路灯,将所有路灯进行编号,其中某一路灯的编号X;(2)在一次数学竞赛中,设一、二、三等奖,小明同学参加竞赛获得的奖次X;(3)一天内气温的变化值X;(4)丁俊辉在2012世锦赛中每局所得的分数X.思路分析:看一个变量是否为离散型随机变量时,首先明确是否是随机变量,再看变量的取值是否一一列出.下列随机变量中不是离散型随机变量的是__________.①某地车展中,预订各类汽车的总人数X;②北京故宫某周内每天接待的游客人数;③正弦曲线上的点P到x轴的距离X;④小麦的亩产量X;⑤王老师在一次英语课上提问的学生人数X.判断一个变量是否为离散型随机变量,首先看它是不是随机变量,其次看可能取值是否能一一列出,也就是说变量的取值若是有限的,或者是可以列举出来的,就可以视为离散型随机变量,否则就不是离散型随机变量.三、离散型随机变量的取值写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果:(1)在2013年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数X;(3)一袋中装有5只同样大小的球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数X.思路分析:明确随机变量X的意义,写出X的所有取值及每个值对应的试验结果,要列举全面.抛掷两枚骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是( ).A.一枚是3点,一枚是1点B.两枚都是2点C.两枚都是4点D.一枚是3点,一枚是1点或两枚都是2点解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.答案:活动与探究1:解:(1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.迁移与应用:C 解析:A,B,D中出现的点数虽然是随机的,但是其取值所反映的结果,都不能整体反映本试验,C整体反映两次投掷的结果,可以预见两次出现的点数的和是2,3,4,5,6,7,8,9,10,11,12这十一种结果,但每掷一次之前都无法确定是哪一个,因此是随机变量.活动与探究2:解:(1)桥面上的路灯是可数的,编号X可以一一列出,是离散型随机变量.(2)小明获奖等次X可以一一列出,是离散型随机变量.(3)一天内的气温变化值X,可以在某区间内连续取值,不能一一列出,不是离散型随机变量.(4)每局所得的分数X可以一一列举出来,是离散型随机变量.迁移与应用:③④解析:③中X的值在[-1,1]内取值,不能一一列出,不是离散型随机变量;④中X的值可在某一区间内取值,不能一一列出,不是离散型随机变量.①②⑤是离散型随机变量.活动与探究3:解:(1)X可能取0,1,2,3,4,5.X=i,表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)X可取0,1,2.X=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2.(3)X可取3,4,5.X=3,表示取出的3个球的编号为1,2,3;X=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;X=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5或3,4,5.迁移与应用:D1.给出下列四个命题:①某次数学期中考试中,其中一个考场30名考生中做对选择题第12题的人数是随机变量;②黄河每年的最大流量是随机变量;③某体育馆共有6个出口,散场后从某一出口退场的人数是随机变量;④方程x2-2x-3=0根的个数是随机变量.其中正确的是( ).A.1 B.2 C.3 D.42.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是( ).A.5 B.9 C.10 D.253.某人进行射击,共有5发子弹,击中目标或子弹打完停止射击,射击次数为X,则“X=5”表示的试验结果为( ).A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.前4次均击中目标4.某班有学生45人,其中O型血的有10人,A型血的有12人,B型血的有8人,AB 型血的有15人,用0,1,2,3分别表示O型,A型,B型,AB型,现任抽一人,其血型是随机变量ξ,则ξ的可能取值为__________.5.下列随机变量中是离散型随机变量的有__________.①某鱼塘所养的鲤鱼中,重量在2.5公斤以上的条数X;②直线y=x上的整点个数X;③放学后,小明同学离开学校大门的距离X;④网站中,歌曲《爱我中华》一天内被点击的次数X.答案:1.C 解析:①②③是正确的,④中方程x2-2x-3=0的根有2个是确定的,不是随机变量.2.B 解析:X的可能取值是2,3,4,5,6,7,8,9,10,共9个.故选B.3.C4.0,1,2,35.①②④解析:③中距离X可取某区间内的任意值,∴③中X不是离散型随机变量.①②④的X可以一一列举,且②中的X是无限的.。
高中数学第二章概率2.1离散型随机变量及其分布列课件新人教B版选修2308292102
答案:B
第四页,共26页。
1
2
3
4
2.分布列
(1)将离散型随机变量X所有可能取的不同值x1,x2,…,xn和X取每
一个值xi(i=1,2,…,n)的概率p1,p2,…,pn列成下面的表:
X
P
x1
p1
x2
p2
…
…
xi
pi
…
…
xn
pn
称这个表为离散型随机变量X的概率分布,或称为离散型随机变
量X的分布列.
解析:X=0表示取到一个合格品,其概率为0.95,这是一个二点分布问题.
答案:0.95 0.05
第二十五页,共26页。
1
2
3
4
5
5.一个袋子里装有大小相同(xiānɡ tónɡ)的3个红球和2个黄球,从中同时取
出2个,则其中含红球个数X的可能取值
为
,P(X=2)=
.
C23 ·C02
解析:P(X=2)=
X
0
1
P
4a-1
3a2+a
则 a 等于(
1
A. 2
)
1
B. 3
2
3
C. 3
D. 4
解析:由二点分布的性质,得(4a-1)+(3a2+a)=1,即 3a2+5a-2=0,
解得
1
a1= ,a2=-2,又由概率值非负得
3
1
a= .
3
答案(dáàn):B
第九页,共26页。
1
2
3
4
【做一做3-2】 一个盒子中装有3个红球和2个绿球,从中随机(suí jī)摸出
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第二章随机变量及其分布2-1离散型随机变量及其分布列学案含解析新人教A版选修2_3问题1两种结果.这种试验结果能用数字表示吗?提示:可以,可用数字1和0分别表示正面向上和反面向上.问题2:在一块地里种10棵树苗,设成活的树苗棵数为X,则X 可取哪些数字?提示:X=0,1,2,3, (10)1.随机变量(1)定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.(2)表示法:随机变量常用字母X,Y,ξ,η,…表示.2.离散型随机变量所有取值可以一一列出的随机变量,称为离散型随机变量.1.随机变量是将随机试验的结果数量化,有些随机试验的结果不具有数量性质,但我们仍可以用数量表示它们.例如,掷一枚硬币,X =1表示正面向上,X=0表示反面向上.2.并不是所有的随机变量的取值都能一一列出,有些随机变量可以取某一区间内的一切值,这样的随机变量不是离散型随机变量.问题1:X可取哪些数字?提示:X=1,2,3,4,5,6.问题2:X取不同的值时,其概率分别是多少?提示:都等于.问题3:你能用表格表示X与p的对应关系吗?提示:列表如下:1若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,以表格的形式表示如下:X的分布列.2.分布列的性质(1)pi≥0,i=1,2,3,…,n;(2)i=1.1.离散型随机变量的分布列不仅能清楚地反映其所取的一切可能的值,而且还能清楚地看到每一个值的概率大小,从而反映了随机变量在随机试验中取值的分布情况,是进一步研究随机试验数量特征的基础.2.离散型随机变量可以用分布列、解析式、图象表示.问题1一方面共有几种情况?提示:两种.问题2:在含有5名男生的100名学生中,任选3人,求恰有2名男生的概率表达式.提示:.1.两点分布称分布列X服从两点分布,并称p=P(X=1)为成功概率.2.超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列称随机变量X服从超几何分布.1.一般地,在只有两个结果的随机试验中,用0表示事件不成功,1表示事件成功,即随机变量的取值只有0,1两个,故又称为0-1分布.2.超几何分布的公式给出了求解这一类问题的方法.运用公式直接求解时重在理解实质:运用排列组合知识求出X所有可能取值的概率,即有条件的排列组合数与无条件的排列组合数的比值.的随机试验的结果.(1)在含有10件次品的100件产品中,任意抽取4件,可能含有的次品的件数X是随机变量;(2)一袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数X是一个随机变量.(1)随机变量X可能的取值为:0,1,2,3,4.{X=0},表示抽出0件次品;{X=1},表示抽出1件次品;{X=2},表示抽出2件次品;{X=3},表示抽出3件次品;{X=4},表示抽出的全是次品.(2)随机变量X可能的取值为:0,1,2,3.{X=0},表示取出0个白球,3个黑球;{X=1},表示取出1个白球,2个黑球;{X=2},表示取出2个白球,1个黑球;{X=3},表示取出3个白球,0个黑球.这类问题主要考查随机变量的概念,解答过程中要明确随机变量满足的四个特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取何值;(4)试验结果能一一列出.判断下列各个变量是否是随机变量,若是,是否是离散型随机变量?(1)某公司信息台一天接到的咨询电话个数;(2)从10张已编好号码的卡片(从1号到10号)中任取一张,被抽出卡片的号数;(3)某林场的树木最高达30 m,在此林场中任取一棵树木的高度;(4)体积为27 cm3的正方体的棱长.解:(1)接到的咨询电话的个数可能是0,1,2,3,…,出现哪一个结果是随机的,因此是随机变量,并且是离散型随机变量.(2)被抽取的卡片号数可以一一列出,符合离散型随机变量的定义,是离散型随机变量.(3)林场树木的高度是一个随机变量,它可以取(0,30]内的一切值,无法一一列出,不是离散型随机变量.(4)体积为27 cm3的正方体的棱长为3 cm,为定值,不是随机变量.ak(k=1,2,3,4,5).(1)求常数a 的值; (2)求P ; (3)求P.(1)由P =ak(k =1,2,3,4,5),可知=k =a +2a +3a +4a +5a =1,解得a =.(2)由(1)可知P =(k =1,2,3,4,5),所以P =P +P +P(X =1)=++=.(3)P =P +P +P =++=.在求解有关离散型随机变量性质的题目时,记准以下两条即可 (1)pi≥0,i =1,2,…,n ; (2)i =1.若离散型随机变量X 的分布列为:试求出常数C.解:由离散型随机变量的分布列性质可知:P(X =0)+P(X =1)=1,即9C2-9C +3=1,得C =或C =.又因为⎩⎪⎨⎪⎧9C2-C≥0,3-8C≥0,解得≤C≤, 所以C =.(参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列.(1)由已知,有P(A)==.所以事件A发生的概率为.(2)随机变量X的所有可能取值为0,1,2.P(X=0)==,P(X=1)==,P(X=2)==.所以随机变量X的分布列为某班有学生45A型血的有12人,B 型血的有8人,AB型血的有15人.现从中抽1人,其血型为随机变量X,求X的分布列.解:将O,A,B,AB四种血型分别编号为1,2,3,4,则X的可能取值为1,2,3,4.P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.故其分布列为1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X的分布列.(2)顾客乙从10张奖券中任意抽取2张.①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值为Y元,求Y的分布列.(1)抽奖一次,只有中奖和不中奖两种情况,故X的取值只有0和1两种情况.P(X=1)===,则P(X=0)=1-P(X=1)=1-=.因此X的分布列为2张奖券中有1张中奖或2张都中奖.故所求概率P===.②Y的所有可能取值为0,10,20,50,60,且P(Y=0)===,P(Y=10)===,P(Y=20)===,P(Y=50)===,P(Y=60)===.因此随机变量Y的分布列为1以从以下两个方面判断:一是超几何分布描述的是不放回抽样问题;二是随机变量为抽到的某类个体的个数.2.若随机变量X服从超几何分布,则可直接代入超几何分布的概率公式求解.从一批含有13件正品、2件次品的产品中,不放回地任取3件,求取得次品数为X的分布列.解:设随机变量X表示取出次品的个数,则X服从超几何分布,其中N=15,M=2,n=3,X可能的取值为0,1,2.相应的概率依次为P(X=0)==,P(X=1)==,P(X=2)==.所以随机变量X的分布列为(12分)1,2,3,4,5,6,现从中随机取出3个球,用X表示取出的最大号码,求X的分布列.随机变量X的可能取值为3,4,5,6. (2分)所以,P(X=3)==,(4分)P(X=4)==,(6分)P(X=5)==,(8分)P(X=6)==.(10分)因此随机变量X的分布列为从袋中随机地取3个球,包含的基本事件总数为C\o\al(3,6).事件“X=4”包含的基本事件总数为C\o\取出的3个球恰含有4号球和1,2,3号球中的2个口袋中装有大小相同的红球、黑球各3个,现从中随机取出3个球,记X表示取出的红球个数,求X的分布列.解:随机变量X的可能取值为0,1,2,3.且P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,因此随机变量X的分布列为1五个号码,任意抽取2个球,设2个球号码之和为y,则y所有可能值的个数是( )A.25 B.10C.7 D.6解析:选C y的可能取值为3,4,5,6,7,8,9,共7个.2.一批产品共10件,次品率为20%,从中任取2件,则恰好取到1件次品的概率为( )A. B.1645C. D.1745解析:选 B 由题意知10件产品中有2件次品,故所求概率为P(X=1)==.3.某篮球运动员在一次投篮训练中的得分X的分布列如下表,其中a,b,c成等差数列,且c=ab,则这名运动员得3解析:由题中条件,知2b=a+c,c=ab,再由分布列的性质,知a+b+c=1,且a,b,c都是非负数,由三个方程联立成方程组,可解得a=,b=,c=,所以得3分的概率是.答案:164.在掷一枚图钉的随机试验中,令X=如果针尖向上的概率为0.8,随机变量X的分布列为________________________.解析:随机变量X服从两点分布,且P(X=0)+P(X=1)=1,由P(X=1)=0.8,可得P(X=0)=1-0.8=0.2,故可写出X的分布列.答案:5.一个袋中有形状、大小完全相同的3个白球和4个红球.(1)从中任意摸出一个球,用0表示摸出白球,用1表示摸出红球,即X=求X的分布列.(2)从中任意摸出两个球,用“η=0”表示两个球全是白球,用“η=1”表示两个球不全是白球,求η的分布列.解:(1)由题意知P(X=0)=,P(X=1)=.所以X的分布列如下表:(2)由题意知P(η=0)P(η=1)=1-P(η=0)=.所以η的分布列如下表:一、选择题1.下列不是离散型随机变量的是( )①某机场候车室中一天的游客量为X;②某寻呼台一天内收到的寻呼次数为X;③某水文站观察到一天中长江的水位为X;④某立交桥一天经过的车辆数为X.A.①中的X B.②中的XC.③中的X D.④中的X解析:选C ①②④中随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量;③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故其不是离散型随机变量.2.抛掷两枚骰子一次,X为第一枚骰子掷出的点数与第二枚掷出的点数之差,则X的所有可能的取值为( )A.0≤X≤5,X∈NB.-5≤X≤0,X∈ZC.1≤X≤6,X∈ND.-5≤X≤5,X∈Z解析:选D 两次掷出点数均可取1~6所有整数,∴X∈,X∈Z.3.若随机变量X的分布列为P(X=i)=(i=1,2,3),则P(X=2)等于( )A. B.16C. D.13解析:选D 由分布列的性质,可得++=1,解得a=3,则P(X =2)==.4.某10人组成兴趣小组,其中有5名团员.从这10人中任选4人参加某项活动,用X表示4人中的团员人数,则P(X=3)等于( )A. B.921C. D.521解析:选D P(X=3)==5215.一个盒子里装有相同大小的10个黑球、12个红球、4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于的是( ) A.P(0<X≤2) B.P(X≤1)C.P(X=1) D.P(X=2)解析:选B 本题相当于最多取出1个白球的概率,也就是取到1个白球或没有取到白球.二、填空题6.抛掷两枚骰子,设所得点数之和为X,那么X=4表示的随机试验结果是____________________.解析:抛掷一枚骰子,可能出现的点数是1,2,3,4,5,6,而X表示抛掷两枚骰子所得到的点数之和,所以X=4=1+3=3+1=2+2表示的随机试验结果是一枚是1点、另一枚是3点,或者两枚都是2点.答案:一枚是1点、另一枚是3点,或者两枚都是2点7.某班有50名学生,其中15人选修A课程,另外35人选修B 课程,从班级中任选两名学生,他们是选修不同课程的学生的概率是________.解析:设X表示选修A课程的学生数,由题意知,X服从超几何分布,其中N=50,M=15,n=2.依题意所求概率为P(X=1)==.答案:378.从装有除颜色外其余均相同的3个红球、2个白球的袋中随机取出2个球,设其中有ξ个红球,随机变量ξ的概率分布列如下:则x1,x2,x3解析:ξ的可能取值为0,1,2.P(ξ=0)==0.1,P(ξ=1)==0.6,P(ξ=2)==0.3.答案:0.1,0.6,0.3三、解答题9.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ,若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.解:由题意可得η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},∴η对应的各值是:5×0+6,5×1+6,5×2+6,5×3+6.故η的可能取值为{6,11,16,21}.显然,η为离散型随机变量.10.某商店试销某种商品20天,获得如下数据:试销结束后(营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率.(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=+=.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)==;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=++=.故X的分布列为。