高三数学上学期第一次联考试题 文
陕西省部分学校2024-2025学年高三上学期开学校际联考试题 数学含答案

2025届高三第一次校际联考数学试题(答案在最后)注意事项:1.本试卷共4页,全卷满分150分,答题时间120分钟.2.答卷前,务必将答题卡上密封线内的各项目填写清楚.3.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共58分)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{22}M x x =-<<,集合{1,0,1,2}N =-,则M N = ()A .{1,0,1}-B .{0,1,2}C .{12}x x -<D .{12}x x - 2.若复数1i z =-,则||z z -=()A B .2iC .2D .43.设x ∈R ,则“cos 0x =”是“π2x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.为全面普及无人机知识,激发青少年探索航空未来创造力与想象力,提升青少年科学素养和创新能力,培养航空后备人才.某省于2024年4月中旬举办了第8届全国青少年无人机大赛某校为下一届大赛做准备,在校内进行选拔赛,10名学生成绩依次为:85,105,75,100,90,95,85,90,80,95.则这组数据的60%分位数为()A .90B .92.5C .85D .955.若函数()f x 的图象如图所示,则()f x 的解析式可能是()A .()(||1)f x x =+B .sin ()||1xf x x =+C .()(||1)cos f x x x =+D .cos ()||1x f x x =+6.亚运会火炬传递,假设某段线路由甲、乙等6人传递,每人传递一棒,且甲不从乙手中接棒,乙不从甲手中接棒,则不同的传递方案共有()A .360种B .288种C .504种D .480种7.由直线1y x =+上的一点向圆22680x y x +-+=引切线,则切线段的最小值为()A .3B .C .D 8.已知函数()f x ,若数列()*()n a f n n =∈N 为递增数列,则称函数()f x 为“数列保增函数”.若函数()ln(2)f x x x λ=-+为“数列保增函数”,则实数λ的取值范围为()A .3ln,2⎛⎫+∞ ⎪⎝⎭B .(ln 2,)+∞C .[1,)+∞D .1,2⎡⎫+∞⎪⎢⎣⎭二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.对于函数()sin f x x =和()sin(2)g x x =,下列说法正确的有()A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最值C .()f x 与()g x 有相同的周期D .()f x 的图象与()g x 的图象有相同的对称轴10.已知数列{}n a 满足122n n n a a a ++=+,其中1221,19a a ==,设n S 为数列{}n a 的前n 项和,则下列选项正确的有()A .{}n a 为等差数列B .219n a n =+C .20nS n n=+D .当11n =时,n S 有最大值11.已知圆22:(2)4E x y ++=的圆心为E ,抛物线2:8C x y =的焦点为F ,准线为l ,动点P 满足||||6PE PF +=,则()A .曲线E 与C 仅有一个公共点B .点P 的轨迹为椭圆C .||PE 的最小值为1D .当点P 在l 上时,||2PE =第Ⅱ卷(非选择题共92分)三、填空题(本题共3小题,每小题5分,共15分)12.已知向量(2,5),(,2)a b m ==,若a b ⊥ ,则实数m =_______.13.tan 72tan121tan 72tan12︒-︒=+︒︒_______.14.中国国家馆,以城市发展中的中华智慧为主题,表现出了“东方之冠,鼎盛中华,天下粮仓,富庶百姓”的中国文化精神与气质.如图,现有一个与中国国家馆结构类似的正四棱台1111ABCD A B C D -,上下底面的中心分别为1O 和O ,若11124,60AB A B A AB ==∠=︒,则正四棱台1111ABCD A B C D -的体积为_______.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分13分)在ABC 中,角A B C 、、的对边分别为a b c 、、,已知1,a b c ===(I )求角C 的大小;(Ⅱ)求sin()A C +的值.16.(本小题满分15分)已知函数2()ex x f x =.(I )求函数()f x 的单调区间;(Ⅱ)求函数()f x 在[1,2]-上的值域.17.(本小题满分15分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,四边形ABCD 是正方形,,M N 分别是,PC PD 的中点.(I )求证:MN ∥平面PAB ;(Ⅱ)若2PA AB ==,求直线PB 与平面ABN 所成角的大小.18.(本小题满分17分)已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,左顶点为E ,虚轴的上端点为P ,且||3PF =,||PE =(I )求双曲线C 的标准方程;(Ⅱ)设M N 、是双曲线C 上不同的两点,Q 是线段MN 的中点,O 是原点,直线MN OQ 、的斜率分别为12k k 、,证明:12k k ⋅为定值.19.(本小题满分17分)如图,一质点在大小随机的外力作用下,在x 轴上从原点0出发向右运动,每次移动1个单位或2个单位,其中每次移动1个单位的概率均为p ,移动2个单位的概率均为1p -.(I )记质点移动5次后位于8的位置的概率为()f p ,求()f p 的最大值及最大值点0p ;(Ⅱ)若12p =,记质点从原点0运动到n 的位置的概率为n P .(i )求23,P P ;(ii )证明:{}1n n P P +-是等比数列,并求n P .2025届高三第一次校际联考数学试题参考答案及评分标准一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.A2.C3.B4.B5.D6.D7.C8.B二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.若有两个正确选项,则选对一个得3分,全部选对得6分;若有3个正确选项,则选对一个得2分,选对两个得4分,全部选对得6分;有选错的得0分)9.ABC10.AD11.ABC三、填空题(本题共3小题,每小题5分,共15分)12.5-1314.2823四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.解:(I )1,a b c === ,222cos 22a b c C ab +-∴==-,5π(0,),6C C π∈∴=.……(6分)(Ⅱ)5π1,,6sin sin b c b c C B C==== ,sinsin 14b C Bc ∴==,πA B C ++= ,sin()sin 14A CB ∴+==.……(13分)16.解:(I )函数2()e x x f x =的定义域为R ,222e e (2)()e e x x x xx x x x f x '--==,由()0f x '>,得02x <<;由()0f x '<,得0x <或2x >,故函数()f x 的递增区间为(0,2),递减区间为(,0)-∞和(2,)+∞.…(7分)(Ⅱ)由(I )可得()f x 在(1,0)-上单调递减,在(0,2)上单调递增,()f x ∴在0x =处取得极小值即最小值,min ()(0)0f x f ∴==,又max 24(1)e,(2)e,()(1)e ef f f x f -==<∴=-=,∴函数()f x 在[1,2]-上的值域为[0,e].……(15分)17.解:(I )证明:,M N 分别为,PC PD 的中点,MN CD ∴∥,四边形ABCD 为正方形,AB CD ∴∥,MN AB ∴∥,AB ⊂ 平面,PAB MN ⊂/平面PAB ,MN ∴∥平面PAB .…(7分)(Ⅱ) 四边形ABCD 为正方形,AB AD ∴⊥,PA ⊥ 平面,,ABCD AB AD ⊂平面ABCD ,,,,,PA AB PA AD AB AD PA ∴⊥⊥∴两两垂直,故以A 为原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,AP 所在的直线为z 轴,建立空间直角坐标系A xyz -,则(0,0,2),(2,0,0),(0,0,0),(0,1,1)P B A N ,(2,0,2),(2,0,0),(0,1,1)PB AB AN ∴=-==,设平面ABN 的法向量为()000,,n x y z =,则0,0,n AB n AN ⎧⋅=⎪⎨⋅=⎪⎩ 即00020,0,x y z =⎧⎨+=⎩得0000,,x y z =⎧⎨=-⎩令01y =,则01,(0,1,1)z n =-∴=-,设直线PB 与平面ABN 所成角为θ,||21sin |cos ,|42||||PB n PB n PB n θ⋅∴=<>===,ππ0,,26θθ⎡⎤∈∴=⎢⎥⎣⎦,∴直线PB与平面ABN所成角的大小为π6.…(15分)18.解:(I)不妨设双曲线C的半焦距为(0)c c>,||3,||PF PE==,c===,解得2,b c==,则222541a c b=-=-=,故双曲线C的方程为2214yx-=.……(8分)(Ⅱ)证明:设()()11221212,,,,,0M x y N x y x x x x≠+≠.则1212,22x x y yQ++⎛⎫⎪⎝⎭,,M N为双曲线C上的两点,221122221,41,4yxyx⎧-=⎪⎪∴⎨⎪-=⎪⎩两式相减得()()()()121212124y y y yx x x x-+-+=,整理得()121212124x x y yy y x x+-=+-,则121212121212121212242y yy y y y y yk k x xx x x x x x+--+⋅=⋅=⋅=+--+,故12k k⋅为定值,定值为4.…(17分)19.解:(I)由已知可得,5次移动中,有3次移动2个单位,2次移动1个单位,2235()C(1)f p p p∴=-,2()10(1)(25)f p p p p'∴=--,()f p ∴在20,5⎛⎫ ⎪⎝⎭上单调递增,在2,15⎛⎫⎪⎝⎭上单调递减,max 2216()5625f p f ⎛⎫∴==⎪⎝⎭,此时025p =.……(6分)(Ⅱ)(i )112P =,则21312113115,224228P P P P P =+==+=.…(10分)(ii )证明:由题意,211122n n n P P P ++=+,2()21112n n n n P P P P +++∴-=--,{}1n n P P +∴-是首项为14,公比为12-的等比数列,…(14分)故1112n n n P P ++⎛⎫-=- ⎪⎝⎭,()()()112211n n n n n P P P P P P P P ---∴=-+-++-+ 1211111111112242442422nn n --⎛⎫⎛⎫⎛⎫⎛⎫=-+-+++=+⨯-++⨯-+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111112421212312n n -⎛⎫⎛⎫⎛⎫-- ⎪ ⎪+- ⎪ ⎪⎝⎭⎝⎭⎝⎭=+=⎛⎫-- ⎪⎝⎭.…(17分)。
2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)(解析版)

2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.12.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.686.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°7.若均α,β为锐角,=()A.B.C.D.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.49.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣212.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n}满足a1=1,a n﹣a n+1=2a n a n+1,且n∈N*,则a8=.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于.15.设实数x,y满足,则的取值范围是.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.21.(2分)已知函数f(x)=ax+lnx(a∈R)(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)求f(x)的单调区间和极值;(3)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.1【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.【解答】解:iz=1+2i,∴﹣i•iz=﹣i(1+2i),z=﹣i+2则z的共轭复数=2+i的虚部为1.故选:D.【点评】本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.2.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④【分析】利用命题的否定判断①的正误;命题的否定判断②的正误;充要条件判断③的正误;幂函数的形状判断④的正误;【解答】解:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;满足命题的否定形式,正确;②若p∧q是真命题,p是真命题,则¬p是假命题;所以②不正确;③“a>5且b>﹣5”可得“a+b>0”成立,“a+b>0”得不到“a>5且b>﹣5”所以③不正确;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减,正确,反例:y=,可知:x∈(﹣∞,0)时,函数是增函数,在(0,+∞)上单调递减,所以④正确;故选:A.【点评】本题考查命题的真假的判断与应用,涉及命题的否定,复合命题的真假,充要条件的应用,是基本知识的考查.3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)【分析】当B=∅时,m+1>2m﹣1,当B≠∅时,,由此能求出实数m的取值范围.【解答】解:∵集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},B⊆A,∴当B=∅时,m+1>2m﹣1,解得m<2,成立;当B≠∅时,,解得2≤m≤3.综上,实数m的取值范围是(﹣∞,3].故选:C.【点评】本题考查实数的取值范围的求法,考查子集、不等式的性质等基础知识,考查运算求解能力,是基础题.4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π【分析】由题意利用正弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.【解答】解:对于函数,令2x+=kπ+,求得x=+,k∈Z,故它的图象的对称轴为x=+,k∈Z,故A不正确.令2x+=kπ,求得x=﹣,k∈Z,故它的图象的对称中心为(﹣,0 ),k∈Z,故B正确.令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ﹣,k∈Z,故它增区间[kπ﹣,kπ﹣],k∈Z,故C不正确.该函数的最小正周期为=π,故D错误,故选:B.【点评】本题主要考查正弦函数的图象和性质,属于基础题.5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.68【分析】首先运用a n=求出通项a n,判断正负情况,再运用S10﹣2S2即可得到答案.【解答】解:当n=1时,S1=a1=﹣2,当n≥2时,a n=S n﹣S n﹣1=(n2﹣4n+1)﹣[(n﹣1)2﹣4(n﹣1)+1]=2n﹣5,故a n=,据通项公式得a1<a2<0<a3<a4<…<a10∴|a1|+|a2|+…+|a10|=﹣(a1+a2)+(a3+a4+…+a10)=S10﹣2S2=102﹣4×10+1﹣2(﹣2﹣1)=67.故选:C.【点评】本题主要考查数列的通项与前n项和之间的关系式,注意n=1的情况,是一道基础题.6.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°【分析】利用正弦定理把已知等式转化成角的关系,根据三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式可求cosA的值,结合A的范围即可得解A的值.【解答】解:∵b=acosC+c.∴由正弦定理可得:sinB=sinAcosC+sinC,可得:sinAcosC+sinCcosA=sinAcosC+sinC,可得:sinCcosA=sinC,∵sinC≠0,∴cosA=,∵A∈(0°,180°),∴A=60°.故选:A.【点评】本题主要考查了正弦定理的应用,三角函数恒等变换的应用.注重了对学生基础知识综合考查,属于基础题.7.若均α,β为锐角,=()A.B.C.D.【分析】由题意求出cosα,cos(α+β),利用β=α+β﹣α,通过两角差的余弦函数求出cosβ,即可.【解答】解:α,β为锐角,则cosα===;<sinα,∴,则cos(α+β)=﹣=﹣=﹣,cosβ=cos(α+β﹣α)=cos(α+β)cosα+sin(α+β)sinα==.故选:B.【点评】本题考查两角和与差的三角函数的化简求值,注意角的范围与三角函数值的关系,考查计算能力.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.4【分析】由“等差数列{a n}前9项的和等于前4项的和”可求得公差,再由a k+a4=0可求得结果.【解答】解:∵等差数列{a n}前9项的和等于前4项的和,∴9+36d=4+6d,其中d为等差数列的公差,∴d=﹣,又∵a k+a4=0,∴1+(k﹣1)d+1+3d=0,代入可解得k=10,故选:C.【点评】本题考查等差数列的前n项和公式及其应用,涉及方程思想,属基础题.9.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]【分析】求函数的导数,利用导数的几何意义以及直线垂直的等价条件,转化为e x﹣2m=﹣3有解,即可得到结论.【解答】解:函数的f(x)的导数f′(x)=e x﹣2m,若曲线C存在与直线y=x垂直的切线,则切线斜率k=e x﹣2m,满足(e x﹣2m)=﹣1,即e x﹣2m=﹣3有解,即2m=e x+3有解,∵e x+3>3,∴m>,故选:A.【点评】本题主要考查导数的几何意义的应用,以及直线垂直的关系,结合指数函数的性质是解决本题的关键.10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)【分析】根据已知得出x,y的约束条件,画出满足约束条件的可行域,再用角点法,求出目标函数z=x﹣y的最大值,再根据最值给出λ的求值范围.【解答】解:由题意得x,y的约束条件.画出不等式组表示的可行域如图示:在可行域内平移直线z=x﹣y,当直线经过3x+y﹣2=0与x=3的交点A(3,﹣7)时,目标函数z=x﹣y有最大值z=3+7=10.x﹣y<λ+恒成立,即:λ+≥10,即:.解得:λ∈(0,1]∪[9,+∞)故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣2【分析】利用基本不等式的性质即可得出.【解答】解:∵a,b,c>0且(a+b)(a+c)=4﹣2,则2a+b+c=(a+b)+(a+c)≥=2=2,当且仅当a+b=a+c=﹣1时取等号.故选:D.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.12.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.【分析】根据题意可得函数g(x)=xf(x)=e x﹣ax2在x∈(0,+∞)时是单调增函数,求导,分离参数,构造函数,求出最值即可【解答】解:∵x∈(0,+∞),∴x1f(x1)<x2f(x2).即函数g (x )=xf (x )=e x ﹣ax 2在x ∈(0,+∞)时是单调增函数. 则g′(x )=e x ﹣2ax ≥0恒成立. ∴2a ≤,令,则,x ∈(0,1)时m'(x )<0,m (x )单调递减, x ∈(1,+∞)时m'(x )>0,m (x )单调递增, ∴2a ≤m (x )min =m (1)=e , ∴.故选:D .【点评】本题考查了函数的单调性问题,考查函数恒成立问题,考查转化思想,考查导数的应用,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,且n ∈N*,则a 8=.【分析】直接利用递推关系式求出数列的通项公式,进一步根据通项公式求出结果. 【解答】解:数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,则:(常数),数列{}是以为首项,2为公差的等差数列.则:,所以:,当n=1时,首项a 1=1, 故:.所以:.故答案为:【点评】本题考查的知识要点:数列的通项公式的求法及应用.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于﹣3.【分析】由已知中向量的模为1,且,满足|﹣|=4,|+|=2,我们易求出•的值,进而根据在方向上的投影等于得到答案.【解答】解:∵||=1,|﹣|=4,|+|=2,∴|+|2﹣|﹣|2=4•=﹣12∴•=﹣3=||||cosθ∴||cosθ=﹣3故答案为:﹣3【点评】本题考查的知识点是平面向量数量积的含义与物理意义,其中根据已知条件求出•的值,是解答本题的关键.15.设实数x,y满足,则的取值范围是[﹣,] .【分析】首先画出可行域,利用目标函数的几何意义求z的最值.【解答】解:由实数x,y满足,得到可行域如图:由图象得到的范围为[k OB,k OA],A(1,1),B(,)即∈[,1],∈[1,7],﹣ [﹣1,].所以则的最小值为﹣;m最大值为:;所以的取值范围是:[﹣,]故答案为:[﹣,].【点评】本题考查了简单线性规划问题;关键是正确画出可行域,利用目标函数的几何意义求出其最值,然后根据对勾函数的性质求m的范围.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.【分析】由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.固我们可以根据已知中平面几何中,关于线的性质“正三角形内任意一点到三边距离之和是一个定值”,推断出一个空间几何中一个关于面的性质.【解答】解:类比P是边长为a的正△ABC内的一点,本题可以用一个正四面体来计算一下棱长为a的三棱锥内任一点到各个面的距离之和,如图:由棱长为a可以得到BF=a,BO=AO=,在直角三角形中,根据勾股定理可以得到BO2=BE2+OE2,把数据代入得到OE=a,∴棱长为a的三棱锥内任一点到各个面的距离之和4×a=a,故答案为:a.【点评】本题考查的知识点是类比推理,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.【分析】(1)用向量数量积公式计算后再化成辅助角形式,最后用正弦函数的周期公式和对称轴的结论可求得;(2)将方程有解转化为求函数的值域,然后用正弦函数的性质解决.【解答】解:(1)∵f(x)=•=2sin(+x)•sin(+x)﹣cos2x=2sin2(+x)﹣cos2x=1﹣cos[2(+x)]﹣cos2x=sin2x﹣cos2x+1=2sin(2x﹣)+1,∴最小正周期T=π,由2x﹣=+kπ,得x=+,k∈Z,所以f(x)的对称轴为:x=+,k∈Z,(2)因为f(x)﹣m=2可化为m=2sin(2x﹣)﹣1在x∈[,]上有解,等价于求函数y=2sin(2x﹣)﹣1的值域,∵x∈[,],∴2x﹣∈[,],∴sin(2x﹣)∈[,1]∴y∈[0,1]故实数m的取值范围是[0,1]【点评】本题考查了平面向量数量积的性质及其运算.属基础题.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.【分析】(Ⅰ)由已知及正弦定理,三角形内角和定理,三角函数恒等变换的应用可得,结合sinB≠0,可得,结合A为三角形内角,可求A 的值.(Ⅱ)由余弦定理,基本不等式可得,根据三角形面积公式即可计算得解.【解答】解:(Ⅰ)由正弦定理可得:,从而可得:,即,又B为三角形内角,所以sinB≠0,于是,又A为三角形内角,所以.(Ⅱ)由余弦定理:a2=b2+c2﹣2bccosA,得:,所以,所以≤2+,即△ABC面积的最大值为2+.【点评】本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.【分析】(1)根据等差数列的通项公式和等比数列的性质列出关于公差d的方程,利用方程求得d,然后写出通项公式;(2)根据单调数列的定义推知a n=2n﹣1,然后利用已知条件求得b n的通项公式,再由错位相减法求得答案.【解答】解:(1)∵a8是a5,a13的等比中项,{a n}是等差数列,∴(1+7d)2=(1+4d)(1+12d)解得d=0或d=2,∴a n=1或a n=2n﹣1;(2)由(1)及{a n}是单调数列知a n=2n﹣1,(i)当n=1时,T1=b1===.(ii)当n>1时,b n==,∴T n=+++…+……①∴T n=+++…++……②①﹣②得T n=+++…+﹣=﹣,∴T n=﹣.综上所述,T n=﹣.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题综上所述,20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.【分析】(1)直接利用等差数列的性质求出数列的通项公式.(2)利用裂项相消法求出数列的和.【解答】解:(1)等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.令n=1时,,n=2时,, n=3时,,由于2a 2=a 1+a 3, 所以,解得k=﹣1. 由于=(2n ﹣1)(n +1),且n +1≠0, 则a n =2n ﹣1;(2)由于===,所以S n =+…+=+n==.【点评】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用.21.(2分)已知函数f (x )=ax +lnx (a ∈R ) (1)若a=2,求曲线y=f (x )在x=1处的切线方程; (2)求f (x )的单调区间和极值;(3)设g (x )=x 2﹣2x +2,若对任意x 1∈(0,+∞),均存在x 2∈[0,1],使得f (x 1)<g (x 2),求实数a 的取值范围.【分析】(1)利用导数的几何意义,可求曲线y=f (x )在x=1处切线的斜率,从而求出切线方程即可;(2)求导函数,在区间(0,﹣)上,f'(x )>0;在区间(﹣,+∞)上,f'(x )<0,故可得函数的单调区间;求出函数的极值即可;(3)由已知转化为f (x )max <g (x )max ,可求g (x )max =2,f (x )最大值﹣1﹣ln (﹣a ),由此可建立不等式,从而可求a 的取值范围.【解答】解:(1)由已知f′(x)=2+(x>0),…(2分)∴f'(1)=2+1=3,f(1)=2,故曲线y=f(x)在x=1处切线的斜率为3,故切线方程是:y﹣2=3(x﹣1),即3x﹣y﹣1=0…(4分)(2)求导函数可得f′(x)=a+=(x>0).…当a<0时,由f'(x)=0,得x=﹣.在区间(0,﹣)上,f'(x)>0;在区间(﹣,+∞)上,f'(x)<0,所以,函数f(x)的单调递增区间为(0,﹣),单调递减区间为(﹣,+∞),=﹣1﹣ln(﹣a)…(10分)故f(x)极大值=f(﹣)(3)由已知转化为f(x)max<g(x)max.∵g(x)=x2﹣2x+2=(x﹣1)2+1,x2∈[0,1],∴g(x)max=2…(11分)由(2)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在(0,﹣)上单调递增,在(﹣,+∞)上单调递减,故f(x)的极大值即为最大值,f(﹣)=﹣1+ln(﹣)=﹣1﹣ln(﹣a),所以2>﹣1﹣ln(﹣a),所以ln(﹣a)>﹣3,解得a<﹣.…(14分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查求参数的值,解题的关键是转化为f(x)max<g(x)max.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)根据函数的单调性求出函数的最小值,求出m的范围,构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,根据函数的单调性证明即可.【解答】解:(Ⅰ)∵,∴∴a=1,∴f(x)=e x,f令h(x)=x2e x﹣1,h'(x)=(2x+x2)e x,h(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,所以x∈(﹣∞,0)时,h(x),即x∈(﹣∞,0)时,f'(x)<0,所以函数y=f(x)在x∈(﹣∞,0)上单调递减.(Ⅱ) 由条件可知,g(x)=e x﹣x+m+1,①g'(x)=e x﹣1,∴g(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,要使函数有两个零点,则g(x)min=g(0)=m+2<0,∴m<﹣2.‚②证明:由上可知,x1<0<x2,∴﹣x2<0,∴构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,所以m(x)>m(0)即g(x2)=g(x1)>g(﹣x1)又g(x)在(﹣∞,0)上单调递减,所以x1<﹣x2,即x1+x2<0.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,属于中档题.。
陕西省2025届高三数学第一次模拟联考试卷文含解析

陕西省2025届高三第一次模拟联考文科数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|-1≤x<2},B={x|0≤x≤3},则A∩B=()A. B. C. D.【答案】B【解析】【分析】利用集合的交集的定义,干脆运算,即可求解.【详解】由题意,集合A={x|-1≤x<2},B={x|0≤x≤3},∴A∩B={x|0≤x<2}.故选:B.【点睛】本题主要考查了集合的交集运算,其中解答中熟记集合的交集定义和精确运算是解答的关键,着重考查了运算与求解实力,属于基础题.2.复数i(1+2i)的模是()A. B. C. D.【答案】D【解析】【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式,即可求解.【详解】由题意,依据复数的运算可得,所以复数的模为,故选D.【点睛】本题主要考查了复数代数形式的乘除运算,考查复数模的求法,其中解答中熟记复数的运算,以及复数模的计算公式是解答的关键,着重考查了运算与求解实力,属于基础题。
3.若抛物线y2=2px的焦点坐标为(2,0),则准线方程为()A. B. C. D.【答案】A【解析】【分析】抛物线y2=2px的焦点坐标为(2,0),求得的值,即可求解其准线方程.【详解】由题意,抛物线y2=2px的焦点坐标为(2,0),∴,解得p=4,则准线方程为:x=-2.故选:A.【点睛】本题主要考查了抛物线的标准方程及其性质,其中解答中熟记抛物线的标准方程,及其简洁的几何性质,合理计算是解答的关键,着重考查了运算与求解实力,属于基础题.4.一个空间几何体的三视图如图所示,则该几何体的表面积为()A. 64B.C. 80D.【答案】B【解析】【分析】依据三视图画出几何体的直观图,推断几何体的形态以及对应数据,代入公式计算即可.【详解】几何体的直观图是:是放倒的三棱柱,底面是等腰三角形,底面长为4,高为4的三角形,棱柱的高为4,所求表面积:.故选:B.【点睛】本题主要考查了几何体的三视图,以及几何体的体积计算,其中解答中推断几何体的形态与对应数据是解题的关键,着重考查了推理与计算实力,属于基础题。
湖北省部分学校2025届高三上学期第一次大联考(一模) 数学试题(含解析)

高三数学考试注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:集合与常用逻辑用语,不等式,函数与导数,三角函数,数列,平面向量.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.命题“20,12a a ∃>+<”的否定为()A.20,12a a ∃>+ B.20,12a a ∃+ C.20,12a a ∀>+ D.20,12a a ∀+ 2.已知集合{}230,{013}A xx B x x =-<=<+<∣∣,则A B ⋂=()A.(-B.()2C.(D.()1,2-3.已知函数()()e 1x f x f x '=-,则()A.()e12f =- B.()e 12f '=-C.()22e e f =- D.()22e ef '=-4.已知函数()*(2),n f x x n =-∈N ,则“1n =”是“()f x 是增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.若对任意的,x y ∈R ,函数()f x 满足()()()2f x y f x f y +=+,则()4f =()A.6B.4C.2D.06.某公司引进新的生产设备投入生产,新设备生产的产品可获得的总利润s (单位:百万元)与新设备运行的时间ι(单位:年,*t ∈N )满足23225098,8,102,8,t t t s t t t t ⎧-+-<=⎨-+-⎩ 当新设备生产的产品可获得的年平均利润最大时,新设备运行的时间t =()A.6B.7C.8D.97.如图,在ABC 中,120,2,1,BAC AB AC D ∠=== 是BC 边上靠近B 点的三等分点,E 是BC 边上的动点,则AE CD ⋅ 的取值范围为()A.710,73⎡⎤-⎢⎥⎣⎦ B.77,73⎡⎤-⎢⎥⎣⎦ C.410,33⎡⎤-⎢⎥⎣⎦ D.47,33⎡⎤-⎢⎣⎦8.已知函数()331f x x x =++,若关于x 的方程()()sin cos 2f x f m x ++=有实数解,则m 的取值范围为()A.⎡-⎣B.[]1,1-C.[]0,1D.⎡⎣二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在等比数列{}n a 中,1232,4a a a ==,则()A.{}n a B.{}n a 的公比为2C.3520a a += D.数列21log n a ⎧⎫⎨⎬⎩⎭为递增数列10.已知函数()()1tan (0,0π)2f x x ωϕωϕ=-><<的部分图象如图所示,则()A.2ω=B.π3ϕ=C.()f x 的图象与y 轴的交点坐标为0,3⎛⎫- ⎪ ⎪⎝⎭D.函数()y f x =的图象关于直线7π12x =对称11.已知41log 100102,ln ,930a b c ===,则()A.c a> B.a b >C.c b > D.b a>三、填空题:本题共3小题,每小题5分,共15分.12.已知平面向量,m n 满足3m n ⋅= ,且()2m m n ⊥- ,则m = ()13.若π,02α⎛⎫∈- ⎪⎝⎭,且πcos2cos 4αα⎛⎫=+ ⎪⎝⎭,则α=__________.14.已知正实数,a b 满足232a b +=,则224ab a b -++的最大值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在公差不为0的等差数列{}n a 中,11a =,且5a 是2a 与14a 的等比中项.(1)求{}n a 的通项公式;(2)若2,n an n n n b c a b ==,求数列{}n c 的前n 项和n S .16.(15分)在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且2221a b c c b ac-=≠-.(1)证明:2B C =.(2)若点D 在边AC 上,且4CD BD ==,求a 的取值范围.17.(15分)已知函数()()2ln 1f x x a x =-+.(1)若4a =,求()f x 的极值点;(2)讨论()f x 的单调性.18.(17分)已知数列{}n a 的前n 项和为n S ,且()11,212n n n a S a ==-.(1)求{}n a 的通项公式;(2)证明:24212n S S S >.19.(17分)当一个函数值域内任意一个函数值y 都有且只有一个自变量x 与之对应时,可以把这个函数的函数值y 作为一个新的函数的自变量,而这个函数的自变量x 作为新的函数的函数值,我们称这两个函数互为反函数.例如,由3,y x x =∈R ,得,3y x y =∈R ,通常用x 表示自变量,则写成,3x y x =∈R ,我们称3,y x x =∈R 与,3x y x =∈R 互为反函数.已知函数()f x 与()g x 互为反函数,若,A B 两点在曲线()y f x =上,,C D 两点在曲线()y g x =上,以,,,A B C D 四点为顶点构成的四边形为矩形,且该矩形的其中一条边与直线y x =垂直,则我们称这个矩形为()f x 与()g x 的“关联矩形”.(1)若函数()f x =11,4A y ⎛⎫ ⎪⎝⎭在曲线()y f x =上.(i )求曲线()y f x =在点A 处的切线方程;(ii )求以点A 为一个顶点的“关联矩形”的面积.(2)若函数()ln f x x =,且()f x 与()g x 的“关联矩形”是正方形,记该“关联矩形”的面积为S .证明:2122S ⎫>⎪⎭.1ln20-<)高三数学考试参考答案1.C 存在量词命题的否定为全称量词命题.2.A因为((),1,2A B ==-,所以(A B ⋂=-.3.C 因为()()e 1x f x f x '=-,所以()()e 1x f x f =-'',则()()1e 1f f =-'',所以()e 12f '=,则()e e 2x f x x =-,所以()()()22e e 1,2e ,2e e 22f f f '==-=-.4.A 由()(2)n f x x =-,得()1(2)n f x n x -=-',则当21,n k k =+∈N 时,()(2)n f x x =-是增函数,故“1n =”是“()f x 是增函数”的充分不必要条件.5.D 令0y =,则由()()()2f x y f x f y +=+,可得()()20f x f =-为常数函数,令0x y ==,可得()00f =,故()40f =.6.B 由题意,新设备生产的产品可获得的年平均利润298250,8,102,8.t t s y t t t t t ⎧--+<⎪==⎨⎪-+-⎩ 当8t <时,98228t t + ,当且仅当7t =时,等号成立,则9825022t t--+ .当8t 时,22102(5)2314t t t -+-=--+ ,当且仅当8t =时,等号成立.故当新设备生产的产品可获得的年平均利润最大时,新设备运行的时间7t =.7.C 由222||||1cos 22AB AC BC BAC AB AC∠+-==-,解得BC = 设,01CE CB λλ= ,则()()()222221433333AE CD AC CE CD AC CB CB AC CB CB AC AB AC λλλ⋅=+⋅=+⋅=⋅+=⋅-+ 22214414410,3333333AC AB AC λλ⎡⎤=⋅-+=-+∈-⎢⎥⎣⎦.8.D 令()()313g x f x x x =-=+,则()2330g x x =+>'恒成立,则()g x 在R 上单调递增,且()g x 是奇函数.由()()sin cos 2f x f m x ++=,得()()sin 1cos 1f x f m x ⎡⎤-=-+-⎣⎦,即()()sin cos g x g m x =--,从而sin cos x m x =--,即πsin cos 4m x x x ⎫⎡=--=+∈⎪⎣⎭9.BC 设{}n a 的公比为q ,则21212,4,a q a q ⎧=⎨=⎩解得11,2,a q =⎧⎨=⎩则124352,2220n n a a a -=+=+=,21log 1n n a =-,则数列21log n a ⎧⎫⎨⎬⎩⎭为递减数列.10.AD 由图可知,()f x 的最小正周期ππ2T ω==,则2ππ2,π,32k k ωϕ=-=+∈Z ,由0πϕ<<,得π6ϕ=,即()1πtan 226f x x ⎛⎫=- ⎪⎝⎭,则()306f =-.由()f x 的图象关于点7π,012⎛⎫ ⎪⎝⎭对称,可得函数()y f x =的图象关于直线7π12x =对称.11.ACD 4211log log 10010110911122,ln ln ln 1,ln 110910101010a b a b ⎛⎫⎛⎫=====-=---=+- ⎪ ⎪⎝⎭⎝⎭.令()()()ln 1,0,1f x x x x =+-∈,则()()110,11x f x f x x x -=-=<--'在()0,1上单调递减,所以()10010f f ⎛⎫<= ⎪⎝⎭,即a b <.因为1030c ==,所以10ln 9b c -=-令()()ln 1,h x x x ∞=+∈+,则()()23322121(1)0,22x h x h x x x x '---=-==<在()1,∞+上单调递减,所以()10109h h ⎛⎫<= ⎪⎝⎭,即b c <.因为()2m m n ⊥- ,所以()20m m n ⋅-= ,则226m m n =⋅=,所以m = 13.π12-由πcos2cos 4αα⎛⎫=+ ⎪⎝⎭,得()222cos sin cos sin 2αααα-=-.因为π,02α⎛⎫∈- ⎪⎝⎭,所以cos sin 0αα-≠,则cos sin 2αα+=,则π1sin 42α⎛⎫+= ⎪⎝⎭.由π,02α⎛⎫∈- ⎪⎝⎭,得πππ,444α⎛⎫+∈- ⎪⎝⎭,则ππ46α+=,解得π12α=-.14.126因为232a b +=,所以。
陕西省商洛市山阳中学等校2023届高三上学期第一次联考文科数学试题

例如当
x
=
1 5
,
y
=
1 10
时,
lg
(
x
-
y)
=
lg
æ çè
1 5
-
1 10
ö ÷ø
=
lg 1 10
=
-1
<
0
,故选项
D
不正确.
故选:C. 5.B
【分析】根据正余弦函数的取值范围,分别求解 sina
=(
)
A. -2
B.0
C. 4 5
D.
-
14 3
10.已知
a
,
b
,
c
都是正实数,且
a
+
b
+
c
=
2
,则当
2 2
+ -
b c
+
b b
+ +
a c
取得最小值时,
ab
的最大值为( )
A.
1 2
B.1
C.2
D.3
11.已知函数 f ( x) = 1+ lnx , g ( x) = ex ,若 f ( x1 ) = g ( x2 ) 成立,则 x1 - x2 的最小值为
{ } 15.设集合 A = 0,1, a2 ,若 a -1Î A ,则实数 a = ______.
16.已知a , b 满足(1+ tana )(1- tanb ) = 2 ,则 b -a = ______.
2024届广东省东莞市虎门中学等七校高三上学期联考数学试题及答案

东莞市2023-2024学年第一学期七校联考试卷高三数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.1. 已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=( )A. ∅B. SC. TD. Z2. 在复平面内,复数z 对应点为()1,1-,则1iz=+( )A. 2 B. 1C. D.123. 对于定义域是R 的任意奇函数()f x ,都有( )A. ()()0f x f x -->B. ()()0f x f x --≤C. ()()0f x f x ⋅-≤ D. ()()0f x f x ⋅->4. 假设你有一笔资金,现有三种投资方案,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.现打算投资10天,三种投资方案的总收益分别为10A ,10B ,10C ,则( )A. 101010A B C << B. 101010A C B <<C. 101010B A C << D. 101010C A B <<5. 函数()()e x x tf x -=在()2,3上单调递减,则t 的取值范围是( )A. [)6,+∞B. (],6-∞C. (],4∞- D. [)4,+∞6. 等边ABC 边长为2,13BD BC = ,则AD BC ⋅=( )A. 1B. 1- C.23D. 23-7. 已知正实数,a b 满足3a b ab +=,则4a b +的最小值为( )的A. 9B. 8C. 3D.838. 向量()0,1a = ,()2,3b =- ,则b 在a 上的投影向量为( )A ()2,0 B. ()0,2 C. ()3,0- D. ()0,3-二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.请把正确选项在答题卡中的相应位置涂黑.9. 某学校一同学研究温差x (℃)与本校当天新增感冒人数y (人)的关系,该同学记录了5天的数据:x 568912y1720252835经过拟合,发现基本符合经验回归方程 2.6y x a=+,则( )A. 经验回归直线经过(8,25) B. 4.2a=C. 5x =时,残差为0.2- D. 若去掉样本点(8,25),则样本的相关系数r 增大10. 已知函数()()πsin (ω0,)2f x x ωϕϕ=+><的部分图象如图所示,则( )A. ()f x 的图象可由曲线sin 2y x =向左平移π3个单位长度得到B ()πcos 26f x x ⎛⎫=-⎪⎝⎭C. 2π,03⎛⎫-⎪⎝⎭是()f x 图象的一个对称中心D. ()f x 在区间7π5π,64⎡⎤⎢⎥⎣⎦上单调递增11. 如图,圆锥SO 的底面圆O 的直径4AC =,母线长为B 是圆O 上异于A ,C 的动点,则下..列结论正确的是( )A. SC 与底面所成角为45°B. 圆锥SO的表面积为C. SAB ∠的取值范围是ππ,42⎛⎫⎪⎝⎭D. 若点B 为弧AC 的中点,则二面角S BC O --的平面角大小为45°12. 已知大气压强()Pa p 随高度()m h 的变化满足关系式00ln ln p p kh p -=,是海平面大气压强,410k -=.我国陆地地势可划分为三级阶梯,其平均海拔如下表:若用平均海拔的范围直接代表各级阶梯海拔的范围,设在第一、二、三级阶梯某处的压强分别为123,,p p p ,则( )A. 010.4p p e ≤B. 03p p <C. 23p p ≤D. 0.1832ep p ≤三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上.13. 已知52345012345(1)x a a x a x a x a x a x -=+++++,则3a 的值为________.14. 已知tan 2α=,则()2sin π22cos 1αα+-值为______.15. 某公司员工小明上班选择自驾、坐公交车、骑共享单车的概率分别为13,13,13,而他自驾,坐公交车,骑共享单车迟到的概率分别为14,15,16,结果这一天他迟到了,在此条件下,他自驾去上班的概率的是________.16. 已知,A B 是球O 的球面上两点,60AOB ∠= ,P 为该球面上的动点,若三棱锥P OAB -体积的最大值为6,则球O 的表面积为________.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效.17. ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos 2cos a C c A b B +=.(1)求B ;(2)若b =,ABC 的面积为ABC 的周长.18. 如图,在长方体1111ABCD A B C D -中,112,AA AD DC BD ===和1B D 交于点,E F 为AB 的中点.(1)求证://EF 平面11ADD A ;(2)求点A 到平面CEF 的距离.19. 记n S 为数列{}n a 的前n 项和,已知()*233n n S a n =-∈N .(1)求n a ;(2)若3211log n n nb a a -=+,记n T 为{}n b 的前n 项和,且满足150n T <,求n 的最大值.20. 某乡镇在实施乡村振兴的进程中,大力推广科学种田,引导广大农户种植优良品种,进一步推动当地农业发展,不断促进农业增产农民增收.为了解某新品种水稻品种的产量情况,现从种植该新品种水稻的不同自然条件的田地中随机抽取400亩,统计其亩产量x (单位:吨()t ).并以此为样本绘制了如图所示的频率分布直方图.附:()()()()22()n ad bc a b c d a c b d χ-=++++.α0.1000.05000100.001x α2.7063.8416.63510.828(1)求这400亩水稻平均亩产量的估计值(同一组中的数据用该组区间的中点值代表,精确到小数点后两位);(2)若这400亩水稻的灌溉水源有河水和井水,现统计了两种水源灌溉的水稻的亩产量,并得到下表:试根据小概率值0.05α=的独立性检验分析,用井水灌溉是否比河水灌溉好?21. 适量的运动有助于增强自身体质,加快体内新陈代谢,有利于抵御疾病.某社区组织社区居民参加有奖投篮比赛,已知小李每次在罚球点投进的概率都为()01p p <<.(1)若每次投篮相互独立,小李在罚球点连续投篮6次,恰好投进4次的概率为()f p ,求()f p 的最大值点0p ;(2)现有两种投篮比赛规则,规则一:在罚球点连续投篮6次,每投进一次,奖励两盒鸡蛋,每次投篮相互独立,每次在罚球点投进的概率都以(1)中确定的0p 作为p 的值;规则二:连续投篮3次,每投进一次,奖励四盒鸡蛋.第一次在罚球点投篮,投进的概率以(1)中确定的0p 作为p 的值,若前次投进,则下一次投篮位置不变,投进概率也不变,若前次未投进,则下次投篮要后退1米,投进概率变为上次投.进概率的一半.请分析小李应选哪种比赛规则对自己更有利.22. 已知函数()e xm f x x =+.(1)讨论()f x 的单调性;(2)若12x x ≠,且()()122f x f x ==,证明:0e m <<,且122x x +<.东莞市2023-2024学年第一学期七校联考试卷高三数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.1. 已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=( )A. ∅B. SC. TD. Z【答案】C 【解析】【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.2. 在复平面内,复数z 对应的点为()1,1-,则1iz=+( )A. 2B. 1C.D.12【答案】B 【解析】【分析】利用复数的几何意义及复数的除法法则,结合复数的模公式即可求解.【详解】因为复数z 在复平面内对应的点为()1,1-,所以1i z =-.所以()()()()212i i i 1i 1i 1i i 21i 1i 11i z -⨯----+====-+++⨯,所以11iz ==+.故选:B.3. 对于定义域是R 的任意奇函数()f x ,都有( )A. ()()0f x f x --> B. ()()0f x f x --≤C. ()()0f x f x ⋅-≤D. ()()0f x f x ⋅->【答案】C 【解析】【分析】根据()f x 为奇函数,可得()()f x f x -=-,再对四个选项逐一判断即可得正确答案.【详解】∵()f x 为奇函数,∴()()f x f x -=-,∴()()()()()2=0f x f x f x f x f x ⎡⎤⎡⎤⋅-⋅-=-≤⎣⎦⎣⎦,又()0=0f ,∴()20f x -≤⎡⎤⎣⎦,故选:C【点睛】本题主要考查了奇函数的定义和性质,属于基础题.4. 假设你有一笔资金,现有三种投资方案,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.现打算投资10天,三种投资方案的总收益分别为10A ,10B ,10C ,则( )A. 101010A B C << B. 101010A C B <<C. 101010B A C << D. 101010C A B <<【答案】B 【解析】【分析】设三种方案第n 天的回报分别为n a ,n b ,n c ,由条件可知{}n a 为常数列;{}n b 是首项为10,公差为10的等差数列;{}n c 是首项为0.4,公比为2的等比数列,然后求出投资10天三种投资方案的总收益为10A ,10B ,10C ,即可判断大小.【详解】解:设三种方案第n 天的回报分别为n a ,n b ,n c ,则40n a =,由条件可知{}n a 为常数列;{}n b 是首项为10,公差为10的等差数列;{}n c 是首项为0.4,公比为2的等比数列.设投资10天三种投资方案的总收益为10A ,10B ,10C ,则10400A =;101091010105502B ⨯=⨯+⨯=;10100.4(12)409.212C -==-,所以101010B C A >>.故选:B .【点睛】本题考查数列的实际应用,关键在于根据生活中的数据,转化到数列中所需的基本量,公差,公比等,属于中档题.5. 函数()()e x x tf x -=在()2,3上单调递减,则t 的取值范围是( )A. [)6,+∞B. (],6-∞C. (],4∞- D. [)4,+∞【答案】A 【解析】【分析】根据复合函数的单调性可得()y x x t =-的单调性,从而可求得t 的取值范围.【详解】因为函数e x y =在R 上单调递增,所以根据复合函数的单调性可得函数()y x x t =-在()2,3上单调递减,则32t≥,解得6t ≥.故选:A6. 等边ABC 边长为2,13BD BC = ,则AD BC ⋅=( )A. 1B. 1- C.23D. 23-【答案】D 【解析】【分析】根据题意,结合向量的数量积的运算公式,准确运算,即可求解.【详解】如图所示,由ABC 是边长为2的等边三角形,且13BD BC = ,可得AD AB BD =+,所以()2222cos120233AD BC AB BD BC AB BC BD BC ⋅=+⋅=⋅+⋅=⋅⋅+⋅=-.故选:D.7. 已知正实数,a b 满足3a b ab +=,则4a b +的最小值为( )A. 9 B. 8C. 3D.83【答案】C 【解析】【分析】利用“1”的代换,结合基本不等式进行求解即可【详解】由条件知113a b+=,1111414(4)553333a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当21a b ==时取等号.故选:C8. 向量()0,1a = ,()2,3b =- ,则b 在a上投影向量为( )A. ()2,0B. ()0,2 C. ()3,0- D. ()0,3-【答案】D 【解析】【分析】直接由投影向量公式求解即可.【详解】b 在a 上的投影向量为.()··30,3a b a a a a=-=-故选:D.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.请把正确选项在答题卡中的相应位置涂黑.9. 某学校一同学研究温差x (℃)与本校当天新增感冒人数y (人)的关系,该同学记录了5天的数据:x568912的y 1720252835经过拟合,发现基本符合经验回归方程 2.6y x a=+,则( )A. 经验回归直线经过(8,25) B. 4.2a=C. 5x =时,残差为0.2- D. 若去掉样本点(8,25),则样本相关系数r 增大【答案】ABC 【解析】【分析】计算样本中心点可得验证选项A ;由样本中心点计算 a验证选项B ;根据残差的定义计算验证选项C ;根据相关系数r 的分析验证选项D .【详解】56891285x ++++==,1720252835255y ++++==,所以样本中心点为(8,25),则A 正确;由ˆ2.6y x a=+,得ˆ 2.625 2.68 4.2a y x =-=-⨯=,则B 正确;由B 知,ˆ 2.6 4.2yx =+,当5x =时,ˆ 2.65 4.217.2y =⨯+=,则残差为1717.20.2-=-,则C 正确;由相关系数公式可知,去掉样本点(8,25)后,相关系数r 的公式中的分子、分母的大小都不变,故相关系数r 的大小不变,故D 不正确.故选:ABC .10. 已知函数()()πsin (ω0,)2f x x ωϕϕ=+><的部分图象如图所示,则( )A. ()f x 的图象可由曲线sin 2y x =向左平移π3个单位长度得到B. ()πcos 26f x x ⎛⎫=-⎪⎝⎭的C. 2π,03⎛⎫-⎪⎝⎭是()f x 图象的一个对称中心D. ()f x 在区间7π5π,64⎡⎤⎢⎥⎣⎦上单调递增【答案】BC 【解析】【分析】根据函数的图象确定函数的表达式为()πsin 23f x x ⎛⎫=+⎪⎝⎭,即可结合选项逐一求解.【详解】由图可知:1πππ24126T T ω⎛⎫=--⇒=⇒= ⎪⎝⎭,又()f x 经过点π,112⎛⎫⎪⎝⎭,所以ππ22π,Z 122k k ϕ⨯+=+∈,故π2π,Z 3k k ϕ=+∈,由于ππ,,23ϕϕ<∴=故()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,对于A ,()f x 的图象可由曲线sin 2y x =向左平移π6个单位长度得到,故A 错误,对于B ,()ππππcos 2=sin 2=sin 26623f x x x x ⎛⎫⎛⎫⎛⎫=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 正确,对于C , ()2πsin π03f ⎛⎫-=-= ⎪⎝⎭,故2π,03⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,故C 正确,对于D ,令πππ2π22π,Z 232k x k k -+≤+≤+∈,解得ππ,Z 5ππ1212k x k k +≤≤+∈-,故()f x 的其中两个单调递增区间为7π13π,1212⎡⎤⎢⎥⎣⎦,19π25π,1212⎡⎤⎢⎥⎣⎦,故()f x 在7π5π,64⎡⎤⎢⎥⎣⎦不单调递增,故D 错误,故选:BC11. 如图,圆锥SO 的底面圆O 的直径4AC =,母线长为B 是圆O 上异于A ,C 的动点,则下列结论正确的是( )A. SC 与底面所成角为45°B. 圆锥SO 的表面积为C. SAB ∠的取值范围是ππ,42⎛⎫⎪⎝⎭D. 若点B 为弧AC 的中点,则二面角S BC O --的平面角大小为45°【答案】AC 【解析】【分析】对于A ,根据SO ⊥面ABC ,由cos OCSCO SC<=判断;对于B ,由圆锥SO 的侧面积公式求解判断;对于C ,由π0,2ASB ⎛⎫∠∈ ⎪⎝⎭求解判断;对于D ,取BC 的中点D ,连接OD ,SD ,易得SDO ∠为二面角S BC O --的平面角求解判断.【详解】对于A ,因为SO ⊥面ABC ,所以SCO ∠是SC 与底面所成角,在Rt SOC △中,圆锥的母线长是,半径2r OC ==,则cos OC SCO SC ∠===,所以SCO ∠=45︒,则A 正确;对于B ,圆锥SO 的侧面积为rl π=,表面积为+4π,则B 错误;对于C ,当点B 与点A 重合时,0ASB ∠=为最小角,当点B 与点C 重合时π2ASB ∠=,达到最大值,又因为B 与A ,C 不重合,则π0,2ASB ⎛⎫∠∈ ⎪⎝⎭,又2πSAB ASB ∠+∠=,可得ππ,42SAB ⎛⎫∠∈ ⎪⎝⎭,则C 正确;对于D ,如图所示,,取BC 的中点D ,连接OD ,SD ,又O 为AC 的中点,则//OD AB ,因为AB BC ⊥,所以BC OD ⊥,又SO ⊥面ABC ,BC ⊂面ABC ,所以BC SO ⊥,又SO OD O = ,BC ⊥面SOD ,故BC SD ⊥,所以SDO ∠为二面角S BC O --的平面角,因为点B 为弧AC的中点,所以AB =,12OD AB ==tan SO SDO OD∠==D 错误.故选:AC.12. 已知大气压强()Pa p 随高度()m h 的变化满足关系式00ln ln p p kh p -=,是海平面大气压强,410k -=.我国陆地地势可划分为三级阶梯,其平均海拔如下表:平均海拔/m第一级阶梯4000≥第二级阶梯10002000~第三级阶梯2001000~若用平均海拔的范围直接代表各级阶梯海拔的范围,设在第一、二、三级阶梯某处的压强分别为123,,p p p ,则( )A. 010.4p p e ≤B. 03p p <C. 23p p ≤D. 0.1832ep p ≤【答案】ACD 【解析】【分析】根据题意,列出不等式,根据对数函数的性质解对数不等式即可求解.【详解】设在第一级阶梯某处的海拔为1h ,则4011ln ln 10p p h --=,即41110lnp h p =.因为14000h ≥,所以40110ln4000p p ≥,解得010.4ep p ≤A 正确;由0ln ln p p kh -=,得0ekhp p =.当0h >时,0e 1khp p=>,即0p p >,所以03p p >,B 错误;设在第二级阶梯某处的海拔为2h ,在第三级阶梯某处的海拔为3h ,则40224033ln ln 10ln ln 10p p h p p h --⎧-=⎨-=⎩两式相减可得()43232ln 10p h h p -=-.因为[][]231000,2000,200,1000h h ∈∈,所以[]230,1800h h -∈,则4320ln1018000.18p p -≤≤⨯=,即0.18321e p p ≤≤,故0.18232e C,D p p p ≤≤,均正确.故选:ACD.三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上.13. 已知52345012345(1)x a a x a x a x a x a x -=+++++,则3a 的值为________.【答案】10【解析】【分析】根据给定条件,利用二项式定理直接列式计算作答.【详解】依题意,2235C (1)10a =-=.故答案为:1014. 已知tan 2α=,则()2sin π22cos 1αα+-的值为______.【答案】43【解析】【分析】利用三角函数的诱导公式、二倍角的正余弦公式以及同角三角函数的基本关系求解.【详解】()222222sin π2sin22sin cos 2tan 4tan 2,2cos 1cos sin cos sin 1tan 3αααααααααααα+---=====----.故答案为:43.15. 某公司员工小明上班选择自驾、坐公交车、骑共享单车的概率分别为13,13,13,而他自驾,坐公交车,骑共享单车迟到的概率分别为14,15,16,结果这一天他迟到了,在此条件下,他自驾去上班的概率是________.【答案】1537【解析】【分析】设小明迟到为事件A ,小明自驾为事件B ,由题可得()()(),,P A P B P AB ,后由条件概率公式可得答案.【详解】设小明迟到为事件A ,小明自驾为事件B ,则()11111137343536180P A =⨯+⨯+⨯=, ()1113412P AB =⨯=.则在小明迟到的条件下,他自驾去上班的概率为()()()115123737180P AB P B A P A ===.故答案为:153716. 已知,A B 是球O 的球面上两点,60AOB ∠= ,P 为该球面上的动点,若三棱锥P OAB -体积的最大值为6,则球O 的表面积为________.【答案】48π【解析】【分析】当PO ⊥平面OAB 时,三棱锥体积最大,设球O 的半径为R ,列方程求解即可.【详解】如图所示,当PO ⊥平面OAB 时,三棱锥的体积最大,设球O 的半径为R ,此时11sin 60632P OAB R V R R =⨯⨯⨯⨯⨯= -,故R =,则球O 的表面积为24π48πS R ==.故答案为:48π.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效.17. ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos 2cos a C c A b B +=.(1)求B ;(2)若b =,ABC的面积为ABC 的周长.【答案】(1)3B π=;(2)6+的【解析】【分析】(1)根据正弦定理以及两角和的正弦公式即可求出1cos 2B =,进而求出B ;(2)根据余弦定理可得到()2312a b ab +-=,再根据三角形面积公式得到 8ab =,即可求出6a b +=,进而求出ABC 的周长.【详解】解:(1)cos cos 2cos a C c A b B += ,由正弦定理得:sin cos sin cos 2sin cos A C C A B B +=,整理得:()sin 2sin cos sin A C B B B +==,∵在ABC 中,0B π<<,∴sin 0B ≠,即2cos 1B =,∴1cos 2B =,即3B π=;(2)由余弦定理得:(222122a c ac =+-⋅,∴()2312a c ac +-=,∵1sin 2S ac B ===,∴8ac =,∴()22412a c +-=,∴6a c +=,∴ABC 的周长为6+.18. 如图,在长方体1111ABCD A B C D -中,112,AA AD DC BD ===和1B D 交于点,E F 为AB 的中点.(1)求证://EF 平面11ADD A ;(2)求点A 到平面CEF 的距离.【答案】(1)证明见解析 (2)1【解析】【分析】(1)利用空间中直线与平面平行的判定定理,结合三角形中位线即可证明;(2)建立空间直角坐标系,求平面法向量,再根据面面夹角的向量公式及点到面的距离公式运算求解.【小问1详解】如图,连接1AD ,11B D ,BD .因为长方体1111ABCD A B C D -中,1//BB 1DD 且11BB DD =,所以四边形11BB D D 为平行四边形.所以E 为1BD 的中点,在1ABD 中,因为E ,F 分别为1BD 和AB 的中点,所以//EF 1AD .因为EF ⊄平面11ADD A ,1AD ⊂平面11ADD A ,所以//EF 平面11ADD A .【小问2详解】如图建立空间直角坐标系D xyz -,因为长方体中12A A AD ==,CD =,则(0,0,0)D ,(2,0,0)A,(0,C,B,F,1B,E .所以(1,CE =,(2,CF =,.设平面CEF 的法向量为111(,,)m x y z =,则0,0,m CE m CF ⎧⋅=⎪⎨⋅=⎪⎩即11111020x z x ⎧-+=⎪⎨=⎪⎩,令11x =,则1y =,11z =,可得m =.AF =,所以点A 到平面CEF 的距离为||1||AF m d m ⋅== .19. 记n S 为数列{}n a 的前n 项和,已知()*233n n S a n =-∈N .(1)求n a ;(2)若3211log n n nb a a -=+,记n T 为{}n b 的前n 项和,且满足150n T <,求n 的最大值.【答案】(1)3nn a = (2)12【解析】【分析】(1)利用n S 与n a 的关系计算即可;(2)利用等比数列、等差数列的求和公式及分组求和法求n T ,再由函数的单调性解不等式即可.【小问1详解】当1n =时,1112332S a a =-=,解得13a =,当2n ≥时,11233n n S a --=-,因为233n n S a =-,所以1122233n n n n n S S a a a ---==-,即13n n a a -=,所以()132nn a n a -=≥,所以,{}n a 是首项为3,公比为3的等比数列,所以数列{}n a 的通项公式为3nn a =;【小问2详解】由题意知:1213n nb n =+-,所以()211112111331122313nn nn n T n ⎛⎫-⎪+-⎛⎫⎝⎭=+=-+ ⎪⎝⎭-,易知{}n T 在*n ∈N 上单调递增,而1213121311111441150,16911502323T T ⎛⎫⎛⎫=+-<=+-> ⎪ ⎪⎝⎭⎝⎭,所以满足150n T <的n 的最大值为12.20. 某乡镇在实施乡村振兴的进程中,大力推广科学种田,引导广大农户种植优良品种,进一步推动当地农业发展,不断促进农业增产农民增收.为了解某新品种水稻品种的产量情况,现从种植该新品种水稻的不同自然条件的田地中随机抽取400亩,统计其亩产量x (单位:吨()t ).并以此为样本绘制了如图所示的频率分布直方图.附:()()()()22()n ad bc a b c d a c b d χ-=++++.α0.1000.0500.0100.001x α2.7063.8416.63510.828(1)求这400亩水稻平均亩产量的估计值(同一组中的数据用该组区间的中点值代表,精确到小数点后两位);(2)若这400亩水稻的灌溉水源有河水和井水,现统计了两种水源灌溉的水稻的亩产量,并得到下表:亩产量超过0.7t亩产量不超过0.7t 合计河水灌溉18090270井水灌溉7060130合计250150400试根据小概率值0.05α=的独立性检验分析,用井水灌溉是否比河水灌溉好?【答案】(1)0.75(2)用河水灌溉是比井水灌溉好.【解析】【分析】(1)先根据频率之和为1求出b 的值,再根据公式求出平均值;(2)运用卡方公式进行求解.【小问1详解】由题:(0.752 1.252 1.75 2.25)0.1=1b ⨯+⨯+++⨯,解得=2b ,所以这400亩水稻平均亩产量的估计值为:(0.450.750.55 1.250.65 1.750.75 2.250.8520.95 1.25 1.050.75)0.1⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯0.75≈;【小问2详解】()()()()222()400(180607090) 6.154250*********n ad bc a b c d a c b d χ-⨯⨯-⨯==≈++++⨯⨯⨯,因为6.154 3.841>,所以根据小概率值0.05α=的独立性检验分析,有95%的把握认为亩产量与所用灌溉水源相关,用河水灌溉是比井水灌溉好.21. 适量的运动有助于增强自身体质,加快体内新陈代谢,有利于抵御疾病.某社区组织社区居民参加有奖投篮比赛,已知小李每次在罚球点投进的概率都为()01p p <<.(1)若每次投篮相互独立,小李在罚球点连续投篮6次,恰好投进4次的概率为()f p ,求()f p 的最大值点0p ;(2)现有两种投篮比赛规则,规则一:在罚球点连续投篮6次,每投进一次,奖励两盒鸡蛋,每次投篮相互独立,每次在罚球点投进的概率都以(1)中确定的0p 作为p 的值;规则二:连续投篮3次,每投进一次,奖励四盒鸡蛋.第一次在罚球点投篮,投进的概率以(1)中确定的0p 作为p 的值,若前次投进,则下一次投篮位置不变,投进概率也不变,若前次未投进,则下次投篮要后退1米,投进概率变为上次投进概率的一半.请分析小李应选哪种比赛规则对自己更有利.【答案】(1)最大值点023=p (2)小李应选规则一参加比赛.【解析】【分析】(1)先求出连续投篮6次,恰好投进4次的概率()f p 的解析式,再利用导数研究其单调性及其最值即可;(2)若选规则一,利用二项分布概念即可求出其数学期望;若选规则二,可分别求出离散型随机变量的各种情况概率,从而可求得其分布列,进而得出其数学期望,比较这两种规则下求得的数学期望,进而判断即可.【小问1详解】由题意得则()()()2446C 1,0,1f p p p p =-∈,则()()()()()24344366C 4121C 146f p p p p p p p p ⎡⎤'=---=--⎣⎦,令()0f p '=,得23p =,当20,3p ⎛⎫∈ ⎪⎝⎭时,()0f p '>,()f p 在区间20,3⎛⎫ ⎪⎝⎭内单调递增,当2,13p ⎛⎫∈ ⎪⎝⎭时,()0f p '<,()f p 在区间2,13⎛⎫⎪⎝⎭内单调递减,所以()f p 的最大值点023=p .【小问2详解】若选规则一,记X 为小李投进的次数,则X 的所有可能取值为0,1,2,3,4,5,6.的则2~6,3X B ⎛⎫ ⎪⎝⎭,则()2643E X =⨯=,记Y 为小李所得鸡蛋的盒数,则2Y X =,()()28E Y E X ==.若选规则二,记Z 为小李投进的次数,则Z 的所有可能取值为0,1,2,3.记小李第k 次投进为事件()1,2,3k A k =,未投进为事件k A ,所以投进0次对应事件为123,,A A A ,其概率为()()1231255033627P Z P A A A ===⨯⨯=;投进1次对应事件为123123123A A A A A A A A A ++,其概率()2121121217133333333627P Z ==⨯⨯+⨯⨯+⨯⨯=;投进2次对应事件为123123123A A A A A A A A A ++,其概率()2212111117133333333327P Z ==⨯⨯+⨯⨯+⨯⨯=.投进3次对应事件为123A A A ,其概率()2228333327P Z ==⨯⨯=,所以Z 的分布列为Z 0123P527 727 727 827所以()577850123272727273E Z =⨯+⨯+⨯+⨯=;记L 为小李所得鸡蛋的盒数,则4L Z =,()203E L =,因为()()E Y E L >,所以小李应选规则一参加比赛.22. 已知函数()e xm f x x =+.(1)讨论()f x 的单调性;(2)若12x x ≠,且()()122f x f x ==,证明:0e m <<,且122x x +<.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求定义域,求导,分0m ≤和0m >两种情况,得到函数的单调性;(2)变形为12,x x 是方程e (2)x m x =-的两个实数根,构造函数()e (2)xg x x =-,得到其单调性和极值最值情况,结合图象得到0e m <<,再构造差函数,证明出122x x +<.小问1详解】()f x 的定义域为R ,由题意,得e ()1e exx x m f x m'-=-=,x ∈R ,当0m ≤时,()0f x '>恒成立,()f x 在R 上单调递增;当0m >,且当(,ln )x m ∈-∞时,()0f x '<,()f x 单调递减;当(ln ,)x m ∈+∞时,()0f x '>,()f x 单调递增.综上,当0m ≤时,()f x 在R 上单调递增;当0m >时,()f x 在区间(),ln m -∞上单调递减,在区间()ln ,m +∞上单调递增.【小问2详解】证明:由()()122f x f x ==,得1x ,2x 是方程2e xmx +=的两个实数根,即12,x x 是方程e (2)x m x =-的两个实数根.令()e (2)xg x x =-,则()e (1)xg x x '=-,所以当(),1x ∈-∞时,()0g x '>,()g x 单调递增;当()1x ∈+∞,时,()0g x '<,()g x 单调递减,所以()()max 1e g x g ==.因为当x →-∞时,()0g x →;当x →+∞时,()g x →-∞,()20g =,所以0e m <<.不妨设12x x <,因为1x ,2x 是方程e (2)x m x =-的两个实数根,则1212x x <<<.要证122x x +<,只需证122x x <-.因为11<x ,221x -<,【所以只需证()()122g x g x <-.因为()()12g x g x =,所以只需证()()222g x g x <-.今()()(2)h x g x g x =--,12x <<,则()22()()(2)e (1)e(1)(1)e e xxx xh x g x g x x x x --'''=+-=-+-=--22e e (1)0ex xx -=-⋅<在()1,2恒成立.所以()h x 在区间(1,2)上单调递减,所以()(1)0h x h <=,即当12x <<时,()(2)g x g x <-.所以()()222g x g x <-,即122x x +<成立.【点睛】极值点偏移问题,通常会构造差函数来进行求解,若等式中含有参数,则先消去参数.。
江西五校(江西师大附中、临川一中、鹰潭一中、宜春中学、新余四中)高三数学第一次联考试题 文
五校(江西师大附中、临川一中、鹰潭一中、宜春中学、新余四中)联考文科数学学科试题第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数Z 满足(2+i )·Z=1-2i 3,则复数Z 对应的点位于复平面内 ( )A 第一象限B 第二象限C 第三象限D 第四象限2.集合⎭⎬⎫⎩⎨⎧∈≤+=Z x x x x P ,21|,集合{}032|2>-+=x x x Q ,则R PC Q =( )A [)03,-B {}123-,-,-C {}1123,-,-,-D {}0123,-,-,-3.已知变量x ,y 之间具有线性相关关系,其回归方程为y ^=-3+bx ,若∑i =110x i =20,∑i =110y i =30,则b 的值为( )A .1B .3C .-3D .-14.已知数列{a n }满足a 1=1,2121n n n a a a +=-+ ()*n N ∈,则2014a =( )A 1B 0C 2014D -20145.设x ,y 满足约束条件10103x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则z =2x -3y 的最小值是( )A 7-B -6C 5-D 9-6.对某市人民公园一个月(30天)内每天游玩人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,537.如图三棱锥,,,30oV ABC VA VC AB BC VAC ACB -∠=∠=⊥⊥若侧面VAC ⊥底面ABC ,则其主视图与左视图面积之比为( )A.4 B.4 CDC8.()cos3502sin160sin 190o oo-=-( )A.B.D9.以下四个命题:①若{}{}1,2,3,A B x x A ==⊆,则A B ⊆;②为了调查学号为1、2、3、…、69、70的某班70名学生某项数据,抽取了学号为2、12、22、32、42、52、62的学生作为数据样本,这种抽样方法是系统抽样; ③空间中一直线l ,两个不同平面,αβ,若l ∥α,l ∥β,则α∥β; ④函数sin 1tan tan 2x y x x ⎛⎫=+⋅ ⎪⎝⎭的最小正周期为π. 其中真命题...的个数是( ) A .0个B .1个C .2个D .3个10.以双曲线x 2a 2-y 2b 2=1(a >0,b >0)中心O (坐标原点)为圆心,焦矩为直径的圆与双曲线交于M 点(第一象限),F 1、F 2分别为双曲线的左、右焦点,过点M 作x 轴垂线,垂足恰为OF 2的中点,则双曲线的离心率为( )A1B1D .2第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分11.向量,,a b c 在单位正方形网格中的位置如图所示,则()a b c += .12.设等差数列{}n a 前n 项和为n S ,若2,0,111==-=+-m m m S S S ,则=m ________.13.函数)2||,0,0)(sin()(πφωφω<>>+=A x A x f 的部分图像如图所示,则将()y f x =的图象向左至少平移 个单位后,得到的图像解析式为cos y A x ω=.14.过椭圆221164x y +=的左焦点作直线与椭圆相交,使弦长均为整数的所有直线中,等可能地任取一条直线,所取弦长不超过4的概率为 .15.若关于x 的方程211x x m --+=有两个不同的实数根,则实数m 的取值范围为 .三、解答题:本大题共6小题,共75分.解答题写出文字说明、证明过程或演算步骤. 16. (本题满分12分)为了增强中学生的法律意识,某中学高三年级组织了普法知识竞赛.并随机抽取了A 、B 两个班中各5名学生的成绩,成绩如下表所示:(1) 根据表中的数据,分别求出A 、B 两个班成绩的平均数和方差,并判断对法律知识的掌握哪个班更为稳定?(2) 用简单随机抽样方法从B 班5名学生中抽取2名,他们的成绩组成一个样本,求抽取的2名学生的分数差值至少是4分的概率.17. (本题满分12分)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且(2b -3c )cos A -3a cos C =0. (1)求角A 的大小;(2)若角B =π6,BC 边上的中线AM 的长为7,求△ABC 的面积.18.(本题满分12分)如图,在四棱锥P ﹣ABCD 中,侧棱PA 丄底面ABCD ,底面ABCD 为矩形,E 为PD 上一点,AD =2AB =2AP =2,PE =2DE .(1)若F 为PE 的中点,求证BF ∥平面ACE ;(2)求三棱锥P ﹣ACE 的体积.P AF ED19.(本题满分12分)如图所示,程序框图的输出的各数组成数列{}n a . (1)求{}n a 的通项公式及前n 项和n S ;(2)已知{}n b 是等差数列,且12b a =,3123b a a a =++,求数列{}n n a b ⋅前n 项和n T .20. (本题满分13分)如图所示,作斜率为14-的直线l 与抛物线2:2D y x =相交于不同的两点B 、C ,点A (2,1)在直线l 的右上方.(1)求证:△ABC 的内心在直线x =2上; (2)若90oBAC ∠=,求△ABC 内切圆的半径.21. (本题满分14分)已知,a b 是正实数,设函数()ln ,()ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =-,求()h x 的单调递减区间; (2)若存在03[,]45a b a b x ++∈使00()()f x g x ≤成立,求ba的取值范围.五校(江西师大附中、临川一中、鹰潭一中、宜春中学、新余四中)联考文科数学学科试题 参考答案:一.选择题二.填空题11.3 12. 3 13. 6π14.51215.32m >- 三.解答题16. (本题满分12分) 解:(1)1(8788919193)905A X =++++=,1(8589919293)905B X =++++=…1分 222222124(8790)(8890)(9190)(9190)(9390)55A S ⎡⎤=-+-+-+-+-=⎣⎦,…3分 2222221(8590)(8990)(9190)(9290)(9390)85A S ⎡⎤=-+-+-+-+-=⎣⎦…5分 法律知识的掌握A 班更为稳定……………6分(2).从B 班抽取两名学生的成绩分数,所有基本事件有:(85,89),(85,91),(85,92),(85,93),(89,91),(89,92),(89,93),(91,92),(91,93),(92,93) 共有10个…………………………8分基本事件;抽取的2名学生的分数差值至少是4分的有(85,89),(85,91),(85,92),(85,93),(89,93)5个基本事件。
湖北省武汉市部分重点中学2024-2025学年高三上学期第一次联考数学试卷含答案
湖北省部分重点中学2025届高三第一次联考高三数学试卷(答案在最后)考试时间:2024年11月11日下午14:00-16:00试卷满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合201x A xx -⎧⎫=≤⎨⎬+⎩⎭,{}220B x Nx x =∈+-≤∣,则A B = ()A.(]1,1-B.{}0,1,2C.{}0,1 D.{}1,0,1-2.已知i 为虚数单位,若()()1122z i i ++=-+,则z =()A.1i-+ B.1i-- C.1i+ D.1i-3.已知向量a ,b 满足()3,4a = ,()2,1b =- ,则向量b 在向量a方向上的投影向量为()A.68,2525⎛⎫⎪⎝⎭ B.(6,8)C.68,55⎛⎫⎪⎝⎭D.(4,2)4.已知角α,β满足tan 2α=,()sin 2cos sin βαβα=-,则tan β=()A.23B.23-C.43D.43-5.已知函数()26ln 1f x x x ax =++-在区间(1,2)上有极值,则实数a 的取值范围是()A.8,⎡--⎣B.(8,--C.7,⎡--⎣D.(8,7)--6.将正奇数按照如图排列,我们将3,7,13,21,31……,都称为“拐角数”,则下面是拐角数的为()A.55B.77C.91D.1137.已知等腰梯形的上底长为1,腰长为1,若以等腰梯形的上底所在直线为轴,旋转一周形成一个几何体,则该几何体表面积的最大值为()A. B.(2π+ C.(1π+ D.(3π+8.已知函数()f x ,()g x 的定义域均为R ,()1f x +是奇函数,且()()114f x g x -++=,()()24f x g x +-=,则下列结论正确的是()A.()f x 为奇函数B.()g x 为奇函数C.()()9136k f k g k =⎡⎤-=⎣⎦∑ D.()()9136k f k g k =⎡⎤+=⎣⎦∑二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知正实数x ,y 满足2x y +=,则2291x y x y+++的可能取值为()A.8B.9C.10D.1110.已知双曲线22:13y C x -=的左、右焦点分别为1F ,2F .过2F 的直线l 与双曲线C 的右支交于A ,B 两点.12AF F △的内心为1I ,12BF F △的内心为2I ,则下列说法正确的有()A.双曲线的离心率为2B.直线AB 的斜率的取值范围为(),-∞+∞C.12I I 的取值范围为2,3⎡⎢⎣⎦D.2112tan3tan 22AF F AF F ∠∠=11.在正三棱锥P ABC -中,AB =PA =,三棱锥P ABC -的内切球球心为O ,顶点P 在底面ABC 的射影为Q ,且PQ 中点为M ,则下列说法正确的是()A.三棱锥P ABC -的体积为3B.二面角M AB P --的余弦值为277C.球O 的表面积为43π D.若在此三棱锥中再放入一个球1O ,使其与三个侧面及内切球O 均相切,则球1O 的半径为39三、填空题:本题共3小题,每小题5分,共15分.12.已知点(),4A a 在抛物线24y x =上,F 为抛物线的焦点,直线AF 与准线相交于点B ,则线段FB 的长度为_____.13.已知直线y ax =与曲线()xe f x x=相切,则实数a 的值为_____.14.某人有两把雨伞用于上下班,如果一天上班时他在家而且天下雨,只要有雨伞可取,他将拿一把去办公室,如果一天下班时他在办公室而且天下雨,只要有雨伞可取,他将拿一把回家.如果天不下雨,那么他不带雨伞.假设每天上班和下班时下雨的概率均为13,不下雨的概率均为23,且与过去情况相互独立.现在两把雨伞均在家里,那么连续上班两天,他至少有一天淋雨的概率为_____.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知数列{}n a 为等比数列,数列{}n b 满足()()*21nnn b n N =+-∈,且()1,0nn n ab b R λλλ+=-∈>.(1)求数列{}n a 的通项公式;(2)数列{}n c 满足2n n c n a =,记数列{}n c 的前n 项和为n T ,求9T .16.(15分)如图,在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin sin sin sin A B B Cc a b++=-.(1)求A ;(2)若3,0BC BD AB AD =⋅=,2AD = ,将ABC △沿AD 折成直二面角B AD C '--,求直线AB '与平面B CD '所成角的正弦值.17.(15分)为倡导节能环保,实现废旧资源再利用,小明与小亮两位小朋友打算将自己家中的闲置玩具进行交换,其中小明家有2台不同的玩具车和2个不同的玩偶,小亮家也有与小明家不同的2台玩具车和2个玩偶,他们每次等可能的各取一件玩具进行交换.(1)两人进行一次交换后,求小明仍有2台玩具车和2个玩偶的概率;(2)两人进行两次交换后,记X 为“小明手中玩偶的个数”,求随机变量X 的分布列和数学期望.18.(17分)已知椭圆()2222:10x y C a b a b +=>>的离心率为2,其左顶点到点()2,1P 的距离为,不过原点O 的直线l 与椭圆C 相交于不同的A ,B 两点,与直线OP 交于点Q ,且2AB QB =,直线l 与x 轴,y 轴分别交于点M ,N .(1)求椭圆C 的标准方程;(2)当APB △的面积取最大值时,求MON △的面积.19.(17分)2022年7月,在重庆巴蜀中学读高一的瞿霄宇,夺得第63届国际数学奥林匹克(IMO )满分金牌.同年9月26日,入选2022年阿里巴巴全球数学竞赛获奖名单,同时成为了本届获奖者中年龄最小的选手.次年9月16日,他再接再厉,在2023阿里巴巴全球数学竞赛中获金奖.他的事迹激励着广大数学爱好者勇攀数学高峰,挖掘数学新质生产力.翔宇中学高二学生小刚结合自己“强基计划”的升学规划,自学了高等数学的罗尔中值定理:如果R 上的函数()f x 满足条件:①在闭区间[],a b 上连续;②在开区间(,)a b 可导;③()()f a f b =.则至少存在一个(),c a b ∈,使得()0f c '=.据此定理,请你尝试解决以下问题:(1)证明方程:()43254320ax bx cx dx a b c d +++-+++=在(0,1)内至少有一个实根,其中a ,b ,c ,d R ∈;(2)已知函数()()()2222222xf x emx e m x m R =-----∈在区间(0,1)内有零点,求m 的取值范围.湖北省部分重点中学2025届高三第一次联考数学试卷参考答案及评分标准选择题:1234567891011CAADBCADCDABDACD填空题:12.10313.24e 14.2881解答题:15.(13分)解:(1)因为{}n a 为等比数列,所以2213a a a =,即()()()2755177λλλ-=--,化简得()()210λλ-+=.因为0λ>,得2λ=.因此()()()11122122131n n nn n n n n a b b +++⎡⎤=-=+--+-=--⎣⎦,易知{}n a 为等比数列;(2)由(1)知,()231nn c n=--.22222291293123489135T c c c ⎡⎤=++⋯+=-⨯-+-+-+-=⎣⎦ ,16.(15分)解:(1)sin sin sin sin A B B C c a b ++=-,a b b c c a b++∴=-,化简得222b c a bc +-=-.由余弦定理得,2221cos 22b c a A bc +-==-,故23A π=;(2)设BD x =,2CD x =,在ACD △中,由sin sin CD AD DAC C ∠=得22sin30sin x C=,解得1sin 2C x=.①在ABD △中,2sin sin 3AD B C BD x π⎛⎫===- ⎪⎝⎭.②由①、②得27sin ,7B x ==BD ∴=CD =,从而AB =.二面角B AD C '--为直二面角,AB AD '⊥,平面AB D ' 平面ACD AD =,AB '⊂平面AB D ',AB ∴'⊥平面ACD建立如图所示的空间直角坐标系,易知()0,0,0A,()D,()C,(B ',(AB ∴=',(B C =',(B D '=.设平面B CD '的法向量(),,n x y z = ,则有00n B C n B D ⎧⋅=⎪⎨⋅=⎪'⎩',即0x ⎧-=⎪⎨+-=⎪⎩令1y =,解得()4n =.211cos ,11n AB n AB n AB ⋅∴=''=',故直线AB '与平面B CD '所成角的正弦值为21111.17.(15分)解:(1)若两人交换的是玩具车,则概率为111224⨯=,若两人交换的是玩偶,则概率也为111224⨯=,故两人进行一次交换后,小明仍有2台玩具车和2个玩偶的概率为111442+=.(5分)(2)X 可取的值为0、1、2、3、4,一次交换后,小明有1个玩偶和3台玩具车的概率为111224⨯=,有3个玩偶和1台玩具车的概率也为111224⨯=,经过两次交换后()1111044464P X ==⨯⨯=,()1131331117144444422232P X ==⨯⨯+⨯⨯+=()13313311111117244444422222232P X ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=()1131311117344444422232P X ==⨯⨯+⨯⨯+⨯⨯=,()1111444464P X ==⨯⨯=,故随机变量X 的分布列为:X 01234P1647321732732164()1717710123426432323264E X ∴=⨯+⨯+⨯+⨯⨯=.18.(17分)解:(1)设椭圆C 左顶点为D ,则D 坐标为(,0)a -.由PD==,解得2a =.因为椭圆C 的离心率为2c e a ==,得c =1b =.所以椭圆C 的标准方程为:2214x y +=;(2)设A 坐标为(),A A x y ,B 坐标为(),B B x y ,由于A 和B 为椭圆C 上两点,22221414A AB Bx y x y ⎧+=⎪⎪∴⎨⎪+=⎪⎩两式相减,得()222204A B A B x x y y -+-=,整理得222214A B A B y y x x -=--.(*)设Q 坐标为(),Q Q x y ,由2AB QB =得Q 为线段AB 的中点,2A B Q x x x +∴=,2A BQ y y y +=.由Q 在线段OP 所在直线上,且P 坐标为(2,1),则有12OQ OP k k ==,即12Q A B OQ QA B y y y k x x x +===+.由(*)得222214A B A B A B A B A B A B y y y y y y x x x x x x -+-=⨯=--+-,故12A B AB A B y y k x x -==--.设直线l 方程为1,02y x m m =-+≠,联立直线l 与椭圆C 的方程,得221412x y y x m ⎧+=⎪⎪⎨⎪=-+⎪⎩,整理得()222210x mx m -+-=.由0>△,得m <<且0m ≠.因为直线l 与椭圆C 相交于A 和B 两点,所以2A B x x m +=,()221A B x x m =-.A B AB x ∴=-=点P 到直线l的距离为52d ==,122APB S AB d ∴==-△m <<且0m ≠.记()()()2222f m m m =--,()()()2421f m m m m =---'.由()0f m '=,及m <<0m ≠得12m =即当12m =时,APB S △取最大值.此时直线l 方程为1122y x=-+,与坐标轴交点为()1M -,10,2N ⎛⎫- ⎪⎝⎭13522MON S OM ON ∴== △.19.(17分)证明:(1)设()()5432F x ax bx cx dx a b c d x =+++-+++,[]0,1x ∈,则()()4325432F x ax bx cx dx a b c d '=+++-+++,()F x ∴在[]0,1上连续,在(0,1)上可导.又()()010F F ==,由罗尔中值定理知:至少存在一个()00,1x ∈,使得()00F x '=成立,()432000054320ax bx cx dx a b c d ∴+++-+++=.故方程()43254320ax bx cx dx a b c d +++-+++=在(0,1)内至少有一个实根.(2)()()2222222xf x emx e m x =----- ,m R ∈在区间(0,1)内有零点,不妨设该零点为1x ,则()10f x =,()10,1x ∈.由于()()224222xf x e mx e m '=----,易知()f x '在[]10,x 和[]1,1x 上连续,且在()10,x 和()1,1x 上可导.又()()()1010f f x f ===,由罗尔中值定理可得,至少存在一个()210,x x ∈,使()20f x '=;至少存在一个()31,1x x ∈,使得()30f x '=.∴方程()()2242220x f x e mx e m '=----=在(0,1)上至少有两个不等实根2x 和3x .设()()()224222xg x f x emx e m ==--'--,()0,1x ∈,则()282x g x e m =-'.()0,1x ∈ ,()2288,8x e e ∴∈.1 当28m ≤,即4m ≤时,()()0820g x g m >=-'≥',故()g x 在(0,1)上单调递增;方程()0g x =在(0,1)上至多有一个实根,不符合题意,舍去2 当228m e ≥,即24m e ≥时,()()21820g x g e m <=-'≤',故()g x 在(0,1)上单调递减.方程()0g x =在(0,1)上至多有一个实根,不符合题意,舍去3 当244m e <<时,由()0g x '=得()1ln 0,124mx =∈,10,ln 24m x ⎛⎫∴∈ ⎪⎝⎭时,有()()0,g x g x '<单调递减;1ln ,124m x ⎛⎫∈ ⎪⎝⎭时,有()()0,g x g x '>单调递增.()g x ∴在(0,1)上的最小值()min 1ln 24m g x g ⎛⎫= ⎪⎝⎭.注意到()221422525202g e e e e e e ⎛⎫=+-<-=-<⎪⎝⎭,则有()min 11ln 0242m g x g g ⎛⎫⎛⎫=≤< ⎪ ⎪⎝⎭⎝⎭. 方程()0g x =在(0,1)上至少有两个不等实根,()()2206201220g m e g e m ⎧=+->⎪∴⎨=-+>⎪⎩,解得222622e m e -<<+.结合244m e <<,且22262 2.564e ->⨯->,222222224e e e e +<+=,故m 的取值范围为()2226,22e e -+.。
浙江省浙南名校联盟2025届高三上学期第一次联考(10月)数学试题含答案
2024学年第一学期浙南名校联盟第一次联考高三数学试题(答案在最后)审题考生须知:1.本试卷共4页,满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号.3.所有答案必须写在答题卷上,写在试卷上无效.4.考试结束后,只需上交答题卷.选择题部分一、选择题(本题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项符合题目要求.)1.已知复数121i,2i z z =-=-,则复数12z z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】应用复数的除法及乘法化简,得出复数即可求出对应点,进而得出所在象限即可.【详解】()()()()2121i 2i 1i 2i 2i i 31i 2i 2i 2i 555z z -+-+--====---+,复数12z z 在复平面内对应的点为31,55⎛⎫- ⎪⎝⎭,点位于第四象限.故选:D .2.已知集合1{(,)|||},(,)|||A x y y x B x y y x ⎧⎫====⎨⎬⎩⎭,则A B = ()A.{1,1}-B.{(1,1),(1,1)}- C.(0,)+∞ D.(0,1)【答案】B 【解析】【分析】先解方程组,得出点的坐标即可得出交集.【详解】,1y x y x ⎧=⎪⎨=⎪⎩,解得1,1x y =⎧⎨=⎩,或1,1x y =-⎧⎨=⎩,所以{(1,1),(1,1)}A B =- ,故选:B .3.“其身正,不令而行;其身不正,虽令不从”出自《论语·子路》.意思是:当政者本身言行端正,不用发号施令,大家自然起身效法,政令将会畅行无阻;如果当政者本身言行不正,虽下命令,大家也不会服从遵守.根据上述材料,“身正”是“令行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】结合题意判断“身正”和“令行”之间的逻辑关系,即得答案.【详解】由题意:其身正,不令而行,即身正⇒令行,故“身正”是“令行”的充分条件;又其身不正,虽令不从,即令行⇒身正,所以“身正”是“令行”的必要条件,综合知“身正”是“令行”的充要条件,故选:C .4.已知()f x 为定义在R 上的奇函数,当0x >时,1()1f x a x =-+.若()f x 在(,)-∞+∞上单调递减,则实数a 的取值范围为()A.[1,)+∞ B.(1,)+∞ C.(,1)-∞ D.(,1]-∞【答案】A 【解析】【分析】根据函数的奇偶性、单调性列出相应不等式,即可求得答案.【详解】因为()f x 为定义在R 上的奇函数,所以(0)0f =,若()f x 在(,)-∞+∞上单调递减,故只需11001a a -=-≤+,即1a ≥,故选:A .5.将6棵高度不同的景观树种植在道路两侧,要求每一侧种植3棵,且每一侧中间的景观树都要比两边的高,则不同的种植方法共有()A.20种B.40种C.80种D.160种【解析】【分析】先分步计算两侧的排法,再结合分步计数原理计算即可.【详解】一侧的种植方法有3262C A 20240=⨯=种排法,另一侧的种植方法有22A 2=种排法再由分步计数原理得不同的种植方法共有40280⨯=种排法,故选:C.6.将函数()*π()cos N 12g x x ωω⎛⎫=+∈ ⎪⎝⎭的图象上所有点的横坐标变为原来的12,纵坐标变为原来的2倍,得到函数()f x 的图象,若()f x 在π0,2⎛⎫⎪⎝⎭上只有一个极大值点,则ω的最大值为()A .2B.3C.4D.5【答案】B 【解析】【分析】根据伸缩变换规则可得()*π()2cos 2N 12f x x ωω⎛⎫=+∈ ⎪⎝⎭,再由余弦函数图象性质以及极值点个数解不等式可得结果.【详解】由题可知()*π()2cos 2N 12f x x ωω⎛⎫=+∈ ⎪⎝⎭,当π02x <<时,πππ2π121212x ωω<+<+,若()f x 在π0,2⎛⎫⎪⎝⎭上只有一个极大值点,则由2cos y x =的图像可得π2ππ4π12ω<+≤,解得23471212ω<≤,因为*N ω∈,所以ω的最大值为3.7.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,O 为坐标原点,若在C 的右支上存在关于x 轴对称的两点,P Q ,使得1PF Q △为正三角形,且1OQ F P ⊥,则C 的离心率为()A.B.1C.D.1+【答案】D 【解析】【分析】根据条件,利用几何关系得到12π2F PF ∠=,又21π6F F P ∠=,得到21,PF c PF ==,再结2c a -=,即可求解.【详解】设双曲线的焦距为2(0)c c >,右焦点为2F ,直线OQ 交1F P 于点M ,连接2PF ,因为1PF Q △为正三角形,1OQ F P ⊥,所以M 为1F P 的中点,所以2//OM F P ,故12π2F PF ∠=,易知21π6F F P ∠=,所以21,PF c PF ==,由双曲线的定义知122PF PF a -=,2c a -=,得1c e a ===+故选:D .8.已知0x 为函数222()e e ln 2e x f x x x =+-的零点,则00ln x x +=()A.1B.2C.3D.4【答案】B 【解析】【分析】由题意确定0x 为方程22e e e ln xx x x=的根,构造函数()e (0)x g x x x =>,由其单调性即可求解.【详解】由()0f x =得222e 2e e ln xx x =-,即22e e (2ln )xx x =-,即222ee e ln xx x=,因为0x >,所以22e e e ln xx x x =,所以0x 为方程22e e e ln xx x x=的根,令()e (0)x g x x x =>,则()e (1)0x g x x '=+>,所以()g x 在(0,)+∞上单调递增,又222e e e ln ln g x xx ⎛⎫=⎪⎝⎭,所以2e ln 2ln x x x ==-,即002ln x x =-,即00ln 2x x +=,故选:B .二、选择题(本题共3小题,每小题6分,共18分.在每小题所给的四个选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错得0分.)9.已知非零向量,,a b c,则下列结论正确的是()A.若()0a b c ⋅=,则b c ⊥ B.若()(),a b a b +⊥-则||||a b = C.若a c b c ⋅=⋅ ,则a b= D.向量()()a b c a c b ⋅-⋅ 与向量a垂直【答案】ABD 【解析】【分析】选项A ,根据条件,利用数乘向量的定义得到0b c ⋅=,即可判断选项A 的正误;选项B ,根据条件,利用数量积的运算及模的定义,即可判断选项B 的正误;选项C ,根据条件,利用数量积的定义,得到||cos ,||cos ,a a c b b c =,即可求解;选项D ,根据条件,结合数量积的运算律,得到[()()]0a b c a c b a ⋅-⋅⋅=,即可求解.【详解】对于选项A ,因为a为非零向量,若()0a b c ⋅= ,则0b c ⋅= ,故b c ⊥ ,所以选项A 正确,对于选项B ,若2222()()||||0a b a b a b a b +⋅-=-=-= ,故||||a b =,所以选项В正确,对于选项C ,若a c b c ⋅=⋅ ,则||||cos ,||||cos ,a c a c b c b c ⋅=⋅ ,得到||cos ,||cos ,a a c b b c = ,不能确定a b= ,所以选项C 错误,对于选项D ,[()()]()()()()()()0a b c a c b a a b c a a c b a a b c a a b c a ⋅-⋅⋅=⋅⋅-⋅⋅=⋅⋅-⋅⋅=,故[()()]a b c a c b a ⋅-⋅⊥,所以选项D 正确,故选:ABD .10.如图,在正三棱柱111ABC A B C -中4AB =,M ,N ,D ,Q 分别为棱111,,,AB AC B C AA 的中点,DQ QM ⊥,则以下结论正确的是()A.11//B C 平面QMNB.1AA =C.点Q 到平面DMN 的距离为D.三棱锥D QMN -的外接球表面积为131π18【答案】AC 【解析】【分析】应用线面平行判定定理判断A,应用勾股定理计算判断B,应用等体积求出点Q 到平面DMN 的距离判断C ,利用补形及直三棱柱的外接球公式计算外接球半径即可判断D .【详解】由题,11//,//MN BC BC B C ,所以11//,MN B C MN ⊂平面QMN ,11B C 不在平面QMN 内,故11//B C 平面QMN ,A 正确;由题可得,,QM QN DM DN ==,设12AA a =,易得22224,12QM a QD a =+=+,2244DM a =+,因为222DM QD QM =+,即22244124a a a +=+++,解得a =,故1AA =,B 错误;因为222DM QD QM =+,所以222DN QD QN =+,所以,,,DQ QN QN QM Q QN QM ⊥⋂=⊂平面QMN ,MN ⊂平面QMN ,得出DQ ⊥平面QMN ,112322QMNS MN ==⨯= ,所以13Q DMN D QMN QMN V V S DQ --==⋅=△133⨯⨯=又12DMNS MN == ,设点Q 到平面DMN 的距离为d,则13Q DMN DMN V S d -===△,得d =,C 正确;将三棱锥D QMN -补成以QMN 为底面的直三棱柱,则该三棱柱的外接球即为三棱锥D QMN -的外接球,其球心O位于上下底面外心的中点,sin 10QMN ∠=,故QMN 的外接圆半径152sin 3QN r QMN =⨯=∠,设外接球半径为R,则22251313218R ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以三棱锥D QMN -的外接球表面积2262π4π9S R ==,D 错误.故选:AC .11.已知抛物线2:4C x y =的焦点为F ,A ,B ,P 为抛物线C 上的点,cos ,1FA FB 〈〉=-,若抛物线C 在点A ,B 处的切线的斜率分别为12,k k ,且两切线交于点M .N 为抛物线C 的准线与y 轴的交点.则以下结论正确的是()A.若4AF BF +=,则1AF BF ⋅=-B.直线PN 的倾斜角π4α≥C.若122k k +=,则直线AB 的方程为10x y -+=D.||MF 的最小值为2【答案】BCD 【解析】【分析】先根据向量夹角设直线再结合抛物线定义得出焦半径公式即可判断A,设点20,4x P x ⎛⎫ ⎪⎝⎭,分000,0x x ≤>两种情况讨论判断B,求导函数得出直线的斜率即可得出直线方程判断C,先写出切线再联立得出1212,24x x x x M +⎛⎫⎪⎝⎭,结合焦半径公式计算最小值判断D.【详解】由题cos ,1FA FB 〈〉=- ,则向量,FA FB的夹角为π,故F ,A ,B 三点共线,设:1AB y kx =+,与C 的方程联立得2440x kx --=,设()()1122,,,A x y B x y ,则124x x k +=,124x x =-,故1221242,1k y y y y =+=+,由抛物线的定义得12||1,||1AF y BF y =+=+,故21224440AF BF y y k k +=++=+==,,·4FA FB =-,所以A 错误;设200,4x P x ⎛⎫ ⎪⎝⎭,(0,1)N -,当00x ≤时,直线PN 倾斜角大于等于π2,当00x >时,200011414PNx x k x x +==+≥=,所以直线PN 的倾斜角π4α≥,B 正确;记直线AB 的斜率为k ,令21()4f x x =,则1()2f x x '=,则()()11122211,22k f x x k f x x '=='==,又()222121212121144x x y y k x x x x x x --===+--,所以122k k k +=,所以1k =,又直线AB 过点(0,1)F ,故直线AB 的方程为10,C x y -+=正确;()111:2x MA y y x x -=-,又2114x y =,所以211:24x x MA y x =-,同理222:24x x MB y x =-,联立解得1212,24x x x x M +⎛⎫⎪⎝⎭,即(2,1)M k -,又(0,1)F ,所以||2MF =≥,当0k =时,等号成立,所以MF 的最小值为2,D 正确;故选:BCD.【点睛】关键点点睛:解题关键点是应用导数求出切线斜率进而得出切线方程,再分别得出直线方程及焦半径的最小值.非选择题部分三、填空题(本大题共3小题,每小题5分,共15分.)12.已知1πsin ,cos()26ααα=+=______________.【答案】14-##0.25-【解析】【分析】利用辅助角公式得到π1sin 34α⎛⎫-= ⎪⎝⎭,再整体法用诱导公式求出答案.【详解】1sin 2αα=,即π1sin 34α⎛⎫-= ⎪⎝⎭,ππππ1cos sin sin 62634ααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:14-13.已知某中学的3个年级各有学生300,300,400人,现采用分层抽样的方法从3个年级的学生中抽取10人,对他们的体重进行了统计.若3个年级被抽到的学生体重的平均值分别为48,52,55kg ,方差分别为4,10,1.将这10名学生体重W (kg )作为样本,则样本的方差为______.【答案】13【解析】【分析】先根据分层抽样的平均数公式求出平均数为52,再代入方差公式计算得出方差.【详解】3个年级抽取的学生数分别为3,3,4人,则()13483524555210W =⨯+⨯+⨯=,故22223344(4852)10(5252)1(5552)13101010s ⎡⎤⎡⎤⎡⎤=+-++-++-=⎣⎦⎣⎦⎣⎦.故答案为:13.14.“四进制”是一种以4为基数的计数系统,使用数字0,1,2,3来表示数值.四进制在数学和计算的世界中呈现出多个维度的特性,对于现代计算机科学和技术发展有着深远的影响.四进制数转换为十进制数的方法是通过将每一位上的数字乘以4的相应次方(从0开始),然后将所有乘积相加.例如:四进制数013转换为十进制数为2100414347⨯+⨯+⨯=;四进制数0033转换为十进制数为32100404343415⨯+⨯+⨯+⨯=;四进制数1230转换为十进制数为321014243404108⨯+⨯+⨯+⨯=;现将所有由1,2,3组成的4位(如:1231,3211)四进制数转化为十进制数,在这些十进制数中任取一个,则这个数能被3整除的概率为______.【答案】13【解析】【分析】根据四进制与十进制的转换规则,利用二项式定理将4的高次方展开并求得除以3之后的余数,令余数能被3整除即可得出所有数字组合种类数,可求得概率.【详解】设{},,,1,2,3a b c d ∈,则4位四进制数转换为十进制为3232444(13)(13)(13)a b c d a b c d⨯+⨯+⨯+=⨯++⨯++⨯++()()01223301223333222C C 3C 3C 3C C 3C 33a b c c d =+⋅+⋅+⋅++⋅+⋅+++()()1223312233322C 3C 3C 3C 3C 33a b c a b c d =⋅+⋅+⋅+⋅+⋅+++++,若这个数能被3整除,则+++a b c d 能被3整除.当这个四进制数由1,2,3,3组成时,有24A 12=个;当这个四进制数由1,1,2,2组成时,有24C 6=个;这个四进制数由1,1,1,3组成时,有14C 4=个;这个四进制数由2,2,2,3组成时,有14C 4=个;这个四进制数都由3组成时,有1个.因为由1,2,3组成的4位四进制数共有4381=个,所以能被3整除的概率1264411813P ++++==.故答案为:13.【点睛】关键点点睛:本题关键在于将4进制转化为10进制之后,利用二项式定理来求解能否被3整除的问题,得出所有可能的组合即可求得相应概率.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.)15.如图,三棱台111ABC A B C -中,ABC V 是正三角形,1A A ⊥平面ABC ,111224AB A A A C ===,M ,N 分别为棱1,AB B B 的中点.(1)证明:1B B ⊥平面MCN ;(2)求直线1C C 与平面MCN 所成的角的正弦值.【答案】(1)证明见解析(2)34【解析】【分析】(1)先应用线面垂直判定定理得出CM ⊥平面11,A ABB 再应用线面垂直性质得出线线垂直,即可证明线面垂直;(2)建立空间直角坐标系,应用空间向量法求线面角正弦值即可.【小问1详解】因为ABC V 是正三角形,M 为AB 中点,所以CM AB ⊥,因为1A A ⊥平面,ABC CM ⊂平面ABC ,所以1CM A A ⊥,又11,,A A AB A A A AB =⊂ 平面11,A ABB 所以CM ⊥平面11,A ABB 又因为1B B ⊂平面11A ABB ,所以1CM B B ⊥,连接1AB ,易得11AB B B ==,所以22211AB AB B B =+,所以11AB B B ⊥,又因为1//AB MN ,所以1MN BB ⊥,因为MN CM M = ,,MN CM ⊂平面MCN ,所以1B B ⊥平面MCN .【小问2详解】取AC 中点O ,连接1,BO C O ,易知1,,OB OC OC 三条直线两两垂直,以O 为坐标原点,1,,OB OC OC 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则111,2),(0,2,0),(0,0,2)B B C C -,由(1)知平面MCN的一个法向量为12)B B =- ,又1(0,2,2)C C =- ,所以1111113cos ,4B BC C B B C C B B C C ⋅==⋅ ,因为直线1A B 与平面FMN 所成的角为直线1B B 与1C C 所成角的余角,所以直线1A B 与平面FMN 所成的角的正弦值为34.16.已知0b >,函数2()((ln )1)f x x x x bx =---在点()(1,)1f 处的切线过点()0,1-.(1)求实数b 的值;(2)证明:()f x 在()0,∞+上单调递增;(3)若对())1,1(x f x a x ∀≥≥-恒成立,求实数a 的取值范围.【答案】(1)1b =(2)证明见解析(3)(,1]-∞【解析】【分析】(1)先求导函数再写出切线方程代入点得出参数值;(2)求出导函数1()2ln 2f x x x x'=+--,再根据导函数求出()(1)10f x f ''≥=>即可证明单调性;(3)根据函数解析式分1x =和1x >两种情况化简转化为ln x x a -≥恒成立,再求()ln (1)h x x x x =->的单调性得出最值即可求出参数范围.【小问1详解】()f x 的定义域为1(0,),()2ln()2f x x bx x'+∞=+--,故(1)1ln f b '=-,又(1)0f =,所以()f x 在点(1,(1))f 处的切线方程为(1ln )(1)y b x =--,将点(0,1)-代入得1ln 1b -=,解得1b =.【小问2详解】由(1)知2()(1)ln f x x x x x =---,则1()2ln 2f x x x x'=+--,令1()()2ln 2g x f x x x x '==+--,则22221121(1)(21)()2x x x x g x x x x x---+'=--==,当01x <<时,()0,()g x g x <'单调递减;当1x >时,()0,()g x g x >'单调递增,所以()(1)10f x f ''≥=>,所以()f x 在(0,)+∞上单调递增.【小问3详解】对())1,1(x f x a x ∀≥≥-恒成立,即对1,(1)(1)ln (1)x x x x x a x ∀≥---≥-恒成立,当1x =时,上式显然恒成立;当1x >时,上式转化为ln x x a -≥恒成立,设()ln (1)h x x x x =->,则11()10x h x x x'-=-=>,所以()h x 在(1,)+∞上单调递增;所以()(1)1h x h >=,故1a ≤,所以实数a 的取值范围为(,1]-∞.17.如图,四边形ABCD 中,1,2,3,πAB CD AD BC BAD BCD ====∠+∠=.(1)求BAD ∠;(2)P 为边BC 上一点,且PCD △ABP 的外接圆半径.【答案】(1)2π3(2)4【解析】【分析】(1)根据题意,在ABD △和BCD △中,利用余弦定理,分别求得2BD 的表达式,两式作差求得1cos 2BAD ∠=-,即可求解;(2)由(1)求得BD =PCD ∠,结合题意,求得2PC =,进而求得2PD =,再在ABD △和BCD △中,求得cos cosABD DBC ∠=∠1cos 7ABP ∠=,得到sin 7ABP ∠=,利用正弦定理,即可求解.【小问1详解】解:因为πBAD BCD ∠+∠=,所以cos cos BAD BCD ∠∠=-,在ABD △中,由余弦定理得:2222cos 54cos BD AB AD AB AD BAD BAD =+-⋅∠=-∠,在BCD △中,由余弦定理得:2222cos 1312cos BD BC CD BC CD BCD BAD =+-⋅∠=+∠,两式作差得:816cos 0BAD +∠=,解得1cos 2BAD ∠=-,因为(0,π)BAD ∠∈,所以2π3BAD ∠=.【小问2详解】解:因为1,2,3,πAB CD AD BC BAD BCD ====∠+∠=由(1)知22π54cos73BD =-=,可得BD =π3PCD BCD ∠=∠=,则1sin 22PCD S PC CD PCD =⋅∠==△所以2PC =,在PCD △中,可得2222cos 4PD CD PC CD PC PCD =+-⋅∠=,所以2PD =,在ABD △中,可得222cos 2AB BD AD ABD AB BD +-∠===⨯⨯在BCD △中,可得222cos 2BD BC CD DBC BD BC +-∠===⨯⨯可得ABD DBC ∠=∠,所以27cos 2cos 11ABP ABD ∠∠-==,则sin 7ABP ∠=,所以222122cos 7AP AB BP AB AP ABP =+-⋅∠=,解得7AP =,设ABP 的外接圆半径为R ,由正弦定理得772sin 2437AP R ABP ==∠,解得74R =,所以ABP的外接圆半径为4.18.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F,点(1,3P 在椭圆上,且直线1PF 与2PF 的斜率之积为23-.(1)求C 的方程;(2)直线:(0,0)l y kx m k m =+>>与C 交于M ,N 两点,与y 轴交于点A ,与x 轴交于点B .(ⅰ)若A ,B 恰为弦MN 的两个三等分点,求直线l 的方程;(ⅱ)若点B 与点1F 重合,线段MN 的垂直平分线与x 轴交于点Q ,求1||||MN QF 的值.【答案】(1)2213x y +=(2)(i )3535y x =+;(ii【解析】【分析】(1)根据点在椭圆上及斜率积列方程组计算22,a b 即可得出椭圆方程;(2)(i )设()()1122,,,M x y N x y 结合1()2OA OB OM =+ ,1()2OB OA ON =+ 向量关系列方程求出点的坐标,即可求出直线方程;(ⅱ)设方程:(l y k x =+联立方程组,韦达定理结合弦长公式计算求解.【小问1详解】将点1,3P ⎛⎫ ⎪ ⎪⎝⎭代入C 的方程得:221213a b +=①,设C 的焦距为2(0)c c >,则12(,0),(,0)F c F c -,故12233113PF PF k k c c ⋅=⨯=-+-,解得c =又222a b c =+③,由①②③解得21b =或23a =,所以C 的方程为2213x y +=.【小问2详解】(ⅰ)由题,(0,),,0m A m B k ⎛⎫- ⎪⎝⎭,设()()1122,,,M x y N x y ,O 为坐标原点,因为A ,B 恰为弦MN 的两个三等分点,所以BA NB AM == ,则1()2OA OB OM =+ ,即110,12m x k y m ⎧-=⎪⎪⎨⎪=⎪⎩,解得112m x k y m ⎧=⎪⎨⎪=⎩,所以,2m M m k ⎛⎫ ⎪⎝⎭,又1()2OB OA ON =+ ,即222,1022m x k m y ⎧=-⎪⎪⎨⎪+=⎪⎩,解得222,m x k y m ⎧=-⎪⎨⎪=-⎩,所以2,,m N m k ⎛⎫-- ⎪⎝⎭将点M ,N 的坐标代入C 的方程得22222241,3413m m k m m k ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2211,35k m ==,因为0,0k m >>,所以,35k m ==,所以直线l的方程为35y x =+.(ⅱ)由题直线l过点1(F,所以:(l y k x =+,与椭圆方程联立22(13y k x x y ⎧=+⎪⎨+=⎪⎩,得()222213630k x x k +++-=,212120k ∆=+>,设()()1122,,,M x y N x y,则2212122263,1313k x x x x k k--+==++,所以21MN x =-=22113k k+=+,又(21212221313y y k x x k k k ⎛-+=++=+= ++⎝,所以MN 中点为222322,1313k k ⎛⎫- ⎪ ⎪++⎝⎭,所以MN的垂直平分线方程为22211313y x k k k ⎛⎫-=-+ ⎪ ⎪++⎝⎭,令0y =得2213x k -=+,故22,013Q k ⎛⎫- ⎪ ⎪+⎝⎭,所以212113k QF k +==+,所以1MN QF =【点睛】关键点点睛:(2)(i )解题的关键点是应用1()2OA OB OM =+ 1()2OB OA ON =+ 向量关系列方程求出点的坐标即可求出直线方程;19.密码学是研究编制密码和破译密码的技术科学.研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学.20世纪70年代,一些学者提出了公开密钥体制,即运用单向函数的数学原理,以实现加、脱密密钥的分离.加密密钥是公开的,脱密密钥是保密的.这种新的密码体制,引起了密码学界的广泛注意和探讨.某数学课外小组研究了一种编制密码的方法:取任意的正整数n ,将小于等于n 且与n 互质的正整数从小到大排列,即为密码.记符合上述条件的正整数的个数为n a .(1)求数列{}n a 的前5项和;(2)求2(N )n a n *∈的表达式和3137a ⨯的值;(3)记22()nn n n b a +=,数列{}n b 的前n 项和n S ,证明16n S <.【答案】(1)10(2)122n n a -=,31371080a ⨯=(3)证明见解析【解析】【分析】(1)根据数列定义求出前5项即可求和;(2)先根据定义得出122n n a -=,再求出3137a ⨯即可;(3)应用错位相减法计算得出2158162n n n n S -++=-即可证明.【小问1详解】由题,11a =;小于等于2且与2互质的正整数有1,所以21a =;小于等于3且与3互质的正整数有1,2,所以32a =;小于等于4且与4互质的正整数有1,3,所以42a =;小于等于5且与5互质的正整数有1,2,3,4,所以54a =.所以数列{}n a 的前5项和为1122410++++=.【小问2详解】若2为质数,则小于等于2n 的正整数中,只有2的倍数不与2互质,又因为小于等于2n 的正整数中,2的倍数有12n -个,所以112222n n n n a --=-=.在小于等于31×37的正整数中,31的倍数有37个,37的倍数有31个,所以()()31373137313713113711080a ⨯=⨯--+=--=.【小问3详解】由(2)知122n n a -=,所以212n n n n b -+=,所以222201211122332222n n n n S -++++=++++ ,故222223111223322222n n n n S ++++=++++ ,作差得:2012111232222222n n n n n n S -+⎛⎫=++++- ⎝⎭,所以201211123422222n n n n n n S --+⎛⎫=++++- ⎪⎝⎭ .令01211232222n n n T -=++++ ,则23112322222n n n T =++++ ,作差得:2311111111221212222222212n n n n n n n n n T -⎛⎫- ⎪+⎝⎭=+++++-=-=-- ,所以1242n n n T -+=-,故221112584(4)16222n n n n n n n n n S ---++++=⨯--=-,因为*N n ∈,所以215802n n n -++>,所以16n S <得证.。
2024-2025学年湖南省名校联考联合体高三(上)第一次联考数学试卷(含答案)
2024-2025学年湖南省名校联考联合体高三(上)第一次联考数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={−6,−4,3,6},B ={x|3−x <x},则A ∩B =( )A. {3,6}B. {−4,3}C. {−6}D. {6}2.已知复数z 在复平面内对应的点为(2,−1),则|z 2|=( )A. 2B. 3C. 4D. 53.已知等差数列{a n }中,a 2=3,前5项和S 5=10,则数列{a n }的公差为( )A. −2B. −52C. −1D. −44.马德堡半球实验是17世纪50年代由马德堡市长进行的一项实验,其主要目的是证明大气压的存在.实验使用两个直径为14英寸的半球壳,将两个半球内的空气抽掉,球不容易被分开,以证明大气压的存在.若把直径为14英寸的一个实心球分割为两个半球,则这两个半球的表面积之和为( )A. 1176π平方英寸B. 294π平方英寸C. 245π平方英寸D. 196π平方英寸5.已知向量a =(1,2),b =(−1,1),若c =(x,y)满足(c +a )//b ,则x +y =( )A. −3B. 2C. −5D. 46.已知函数f(x)=3x 2−2lnx +(a−1)x +3在区间(1,2)上有最小值,则实数a 的取值范围是( )A. a >−3B. −493<a <−10C. −493<a <−3D. −10<a <−37.已知F 1为双曲线C :x 2a 2−y 2b2=1(a>0,b >0)的左焦点,Q 为双曲线C 左支上一点,∠OF 1Q =π3,2|QF 1|=a 2+b 2,则双曲线C 的离心率为( )A. 3B. 2C.5D.13+138.若α,β,γ∈(2π,5π2),且sinα−2cos β+γ2sin β−γ2=cosα−2cos β+γ2cos β−γ2=0,则sin (α−β)=( )A. ±12B. 12C. ±32D. −32二、不定项选择题:本大题共3小题,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市“五校联考”高2014级第五学期九月考试题数学(文)(全卷满分:150分 完成时间:120分钟)一、选择题(本大题共12小题,共60分)1.已知集合{}{}|12,|03A x x B x x =-<<=<<,则A B ⋃=( ) A .)3,1(- B .)0,1(- C .)2,0( D .)3,2(2.已知函数R x x x x x x x f ∈+=,sin )sin 2sin cos 2(cos )(,则)(x f 是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 3.下列函数中,既是奇函数又是增函数的为( ) A .3ln y x = B .2y x =- C . xy 1= D .y x x = 4.已知33cos()25πϕ-=,且2πϕ<,则tan ϕ为( )A .43-B .43C .34-D .345.下列说法中,正确的是( )A .命题“若b a <,则22bm am <”的否命题是假命题B .设βα,为两不同平面,直线α⊂l ,则“β⊥l ”是 “βα⊥” 成立的充分不必要条件C .命题“存在0,2>-∈x x R x ”的否定是“对任意0,2<-∈x x R x ” D .已知R x ∈,则“1>x ”是“2>x ”的充分不必要条件 6.在等比数列{}n a 中,7116a a =,4145,a a +=则2010a a 等于( ) A .23或32 B .13或12- C .23 D .327.已知命题1p :函数x x y --=22在R 上为增函数,2p :函数xx y -+=22在R 上为减函数,则在命题112:q p p ∨; 212:q p p ∧; 213)(:p p q ∨⌝和)(:214p p q ⌝∧中,真命题是( ) A .13,q q B .23,q q C .14,q q D .24,q q8.已知(x)sin(x )(A 0,0,,x )2f A R πωϕωϕ=+>><∈在一个周期内的图像如图所示,则(x)y f =的图像可由函数cos y x =的图像(纵坐标不变)( )得到. A .先把各点的横坐标缩短到原来的12倍,再向左平移6π单位 B .先把各点的横坐标缩短到原来的12倍,再向右平移12π单位C .先把各点的横坐标伸长到原来的2倍,再向左平移6π单位 D .先把各点的横坐标伸长到原来的2倍,,再向左平移12π单位9.函数)(x f 是奇函数,且在),0(+∞内是增函数,0)3(=-f ,则不等式0)(<⋅x f x 的解集为( ) A .}303|{><<-x x x 或 B .}303|{<<-<x x x 或 C .}33|{>-<x x x 或 D .}3003|{<<<<-x x x 或10. 设实数,x y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为( )A .252 B .492C .12D .14 11.已知m x g x x f x -=+=)21()(),1ln()(2,若对∀1x ∈[0,3],∃2x ∈[1,2],使得)()(21x g x f ≥,则实数m 的取值范围是( ) A .[41,+∞) B .(-∞,41] C .[21,+∞) D .(-∞,-21] 12.已知函数()xF x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,若(]0,2x ∀∈使得不等式()()20g x ah x -≥恒成立,则实数a 的取值范围是( ) A.(,-∞ B.(,-∞ C.(0, D.()+∞二、填空题(本大题共4小题,共20分)13.若{U n n =是小于9的正整数},{A n U n =∈是奇数},={U B n n ∈是3的倍数},则(A B)U C ⋃= .14.若533sin )6cos(=-+απα,则)65sin(πα+= .15.数列{a }n 满足+1=3a 1n n a +,且11a =,则数列{a }n 的通项公式n a = . 16.已知曲线ln y x x =+在点)1,1(处的切线与曲线()221y ax a x =+++相切,则a = .三、解答题(本大题共6小题,共70分)17.在ABC ∆中,角,,A B C 的对边分别为,,a b c cos cos CA =. (1)求角A 的值;(2)若,6B BC π∠=边上中线AM =ABC ∆的面积.18.某车间将10名技工平均分为甲,乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:(1)分别求出甲,乙两组技工在单位时间内完成合格零件的平均数及方差,并由此分析两组技工的技术水平;(2)质检部门从该车间甲,乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率. 19.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=2,E 是PC 的中点.(Ⅰ)证明PA//平面EDB ; (Ⅱ)求三棱锥A-BDP 的体积.20.已知P 为圆8)1(:22=++y x A 上的动点,点()1,0B ,线段PB的垂直平分线与半径PA 相交于点M ,记点M 的轨迹为Γ. (1)求曲线Γ的方程;(2)当点P 在第一象限,且cos BAP ∠=M 的坐标. 21.已知函数(x)(x k)e (k R)xf =-∈. (1)求(x)f 的单调区间和极值;(2)求(x)f 在[]1,2x ∈上的最小值;(3)设(x)(x)g f =+(x)'f ,若对∀35,22k ⎡⎤∈∀⎢⎥⎣⎦及[]0,1x ∈有(x)g λ≥恒成立,求实数λ的取值范围.请考生在22、23、24题中选一题作答,如果多做,则按所做的第一题给分。
22.选修4-1:几何证明选讲如图,AB 是⊙O 的一条切线,切点为B ,直线ADE ,CFD ,CGE 都是⊙O 的割线,已知AC=AB . (1)若CG=1,CD=4,求的值.(2)求证:FG//AC ;23.选修4-4:坐标系与参数方程 已知曲线1C的参数方程为2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2ρ=. (1)分别写出1C 的普通方程,2C 的直角坐标方程;(2)已知N M ,分别为曲线1C 的上,下顶点,点P 为曲线2C 上任意一点,求PM PN +的最大值.24.选修4-5:不等式选讲 已知(x)211f x x =--+(1)求(x )f x >的解集;(2)若141,,(0,),21a b a b x a b+=∀∈+∞+≥-对-1+x 恒成立,求x 的取值范围.成都市“五校联考”高2014级第五学期九月考数学(文科)答案AADCB ACBDA AB 13. {2,4,8} 14.5315. 1(31)2n n a =- 16. 817.(1)23cos cos 3b c C A a -=,∴由正弦定理,得cos cos C A =,cos 6A A π∴==. ……………6分 (2)2,63B C A B πππ∠=∴=--=,可知ABC ∆为等腰三角形,在ABC ∆中,由余弦定理,得2222cos120AM AC MC AC MC =+-⋅︒,即2272cos120222b b b b b ⎛⎫=+-⨯⨯⨯︒∴= ⎪⎝⎭……………10分ABC ∆的面积21sin 2S b C == ……………12分18.(1)依题中的数据可得:()()114579107,56789755x x =++++==+++++=甲乙()()()()()222222147577797107 5.25s ⎡⎤=-+-+-+-+-=⎣⎦甲()()()()()222222221576777879725s x x s s ⎡⎤=-+-+-+-+-==>⎣⎦乙甲乙甲乙,∴两组技工的总体水平相同,甲组中技工的技术水平差异比乙组大. ……………6分(2)设事件A 表示:该车间“质量合格”,则从甲,乙两种各抽取1名技工完成合格零件个数的基本事件为()()()()()()()()()()()()()()()4,5,4,6,4,7,4,8,4,9,5,5,5,6,5,7,5,8,5,9,7,5,7,6,7,7,7,8,7,9()()()()()()()()()()9,5,9,6,9,7,9,8,9,9,10,5,10,6,10,7,10,8,10,9,共25种,事件A 包含的基本事件有17种.()1725P A ∴=,即该车间“质量合格”的概率为1725. ……………12分19.证明:(Ⅰ)连接交于,连接∴是正方形∵是中点.又是中点,∴∥,又∵平面,平面,∥平面 ……………6分(Ⅱ)……………12分20.(1)圆A 的圆心为()1,0A -,半径等于,由已知M B M P=于是MA MB MA MP +=+=故曲线Γ是以,A B 为焦点,以1,1a b c ===故曲线Γ的方程为2212x y +=. ……………6分(2)由点P 在第一象限,cos BAP AP ∠==5,33P ⎛ ⎝⎭于是直线AP 方程为)1y x =+. ……………10分 代入椭圆方程,消去y 可得212752701,5x x x x +-=∴==-由于点M 在线段AP 上,所以点M 的坐标为⎛⎝⎭. ……………12分 21.(1)()(1)e x f x x k =-+ 由'()0f x =得1x k =-;当1x k <-时,(x)0f <;当1x k >-时(x)0f >;∴()f x 的单调递增区间为(1,)k -+∞,单调递减区间为(,1)k -∞-,1(x)=(1)k f f k e --=-极小值,无极大值; ……………4分(2)当11<-k 即2k ≤时,()f x 在[]1,2上递增,∴()=(1)(1k)e;f x f =-最小值当123k k -≥≥即时,(x)f 在[1,2]上递减∴2()=(2)(2)e f x f k =-最小值;当112k <-<即23k <<时,(x)f 在[]1,1k -上递减,在[]1,2k -递增,∴1(x)=(1)k f f k e --=-最小值;……………8分(3)(x)(221)x g x k e =-+ ∴'(x)(223)e xg x k =-+,由'(x )0g =得32x k =-,当32x k <-时,'(x)0g <;当32x k >-时'(x)0g >,∴(x)g 在3(,)2k -∞-递减,在(3,2k -+∞)递增,故323(x)=()22k g g k e --=-最小值,又∵[]353,0,1222k k ⎡⎤∈∴-∈⎢⎥⎣⎦,∴当[]0,1x ∈时,323(x )=(k )2e 2最小值--=-k g g ,∴(x )g λ≥对∀[]0,1x ∈恒成立即等价于32(x)=-2e ;k g λ-≥最小值又32(x)=-2k g eλ-≥最小值 对 ∀35,22k ⎡⎤∈⎢⎥⎣⎦恒成立.∴32mi n(2)k e λ--≥,故2e λ≤-. ……………12分22(1)由题意可得:F D E G ,,,四点共圆,CED CFG CDE CGF ∠=∠∠=∠∴,.CGF ∆∴∽CDE ∆.CGCDGF DE =∴.又 4,1==CD CG ,∴. ……………4分(2)因为为切线,为割线,,又因为,所以,.所以AD ACAC AE=,又因为EAC DAC ∠=∠,所以ADC △∽ACE △, 所以ADC ACE ∠=∠,又因为ADC EGF ∠=∠,所以EGF ACE ∠=∠, 所以//. ……………10分23.(1)曲线1C 的普通方程为22143x y +=,曲线2C 的普通方程为224x y +=………4分 (2)方法一:由曲线2:C 224x y +=,可得其参数方程为2cos sin x y αα=⎧⎨=⎩,所以P 点坐标为()2cos ,2sin αα由题意可知((,0,M N ,因此PM PN +==()214PM PN +=+所以当sin 0α=时,()2PM PN+有最大值28.因此PM PN +的最大值为方法二:设点(),P x y ,则224x y +=,由题意可知((,0,M N . 因此PM PN +==()214PM PN +=+0y =时,()2PM PN +有最大值28.因此PMPN +的最大值为 ……………10分24.(1)(x)211=--+f x x 当1x <-时,(x )x f >得121,x x x -++>即得1x <-;当112x -≤≤时,(x )xf >得121,x x x --->即10x -≤<;当12x >时,(x )xf >得21(x 1)x x --+>,得-2>0无解;综上0x <,所以(x)x f >的解集为{}0x x <.……………4分(2)∵2,x 11()3,1,212,x 2x f x x x x ⎧⎪-+<-⎪⎪=--≤≤⎨⎪⎪->⎪⎩如图:又∵,(0,),a b ∈+∞且1a b +=,所以14144()(a b)5()b aa b a b a b +=++=++59≥+=,当且仅当4b a a b =时等号成立,即12,33a b ==.由14211x x a b+≥--+恒成立,∴2119x x --+≤,结合图像知:711x -≤≤,∴x 的取值范围是:[-7,11]. ……………10分。